Efficient Aerobic Oxidative Coupling of Methyl Heteroarenes with Indoles

Direct oxidative coupling of inert C(sp3)−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol feat...

Full description

Saved in:
Bibliographic Details
Published inChemistry : a European journal Vol. 29; no. 5; pp. e202202240 - n/a
Main Authors Zhang, Lei‐Yang, Wang, Nai‐Xing, Yan, Zhan, Wu, Yue‐Hua, Gao, Xue‐Wang, Feng, Ke, Lucan, Dumitra, Xing, Yalan
Format Journal Article
LanguageEnglish
Published WEINHEIM Wiley 24.01.2023
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Direct oxidative coupling of inert C(sp3)−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry. A sustainable and environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles was first reported. A series of di‐heteroaryl ketones (26 examples) were obtained in moderate yields (up to 72 % yield), providing a highly atom‐economic approach for synthesizing complex pharmaceutical intermediates from small molecules. A plausible mechanism about cyclic catalysis was proposed and confirmed.
AbstractList Direct oxidative coupling of inert C(sp3)−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry. A sustainable and environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles was first reported. A series of di‐heteroaryl ketones (26 examples) were obtained in moderate yields (up to 72 % yield), providing a highly atom‐economic approach for synthesizing complex pharmaceutical intermediates from small molecules. A plausible mechanism about cyclic catalysis was proposed and confirmed.
Direct oxidative coupling of inert C(sp 3 )−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α ‐methyl substituted N ‐heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Direct oxidative coupling of inert C(sp(3))-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of alpha-methyl substituted N-heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Direct oxidative coupling of inert C(sp )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl substituted N-heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Direct oxidative coupling of inert C(sp3)−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α‐methyl substituted N‐heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Direct oxidative coupling of inert C(sp3 )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl substituted N-heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.Direct oxidative coupling of inert C(sp3 )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl substituted N-heteroarenes with indoles is reported. A variety of diheteroaryl ketones were prepared in good yields (up to 72 %). This protocol features simple operation and broad substrates scope (26 examples). Significantly, a plausible mechanism about catalytic cycle was proposed, and two key intermediates were confirmed by high resolution mass spectrometry.
Author Wang, Nai‐Xing
Zhang, Lei‐Yang
Gao, Xue‐Wang
Lucan, Dumitra
Yan, Zhan
Feng, Ke
Wu, Yue‐Hua
Xing, Yalan
Author_xml – sequence: 1
  givenname: Lei‐Yang
  surname: Zhang
  fullname: Zhang, Lei‐Yang
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 2
  givenname: Nai‐Xing
  orcidid: 0000-0001-9520-3254
  surname: Wang
  fullname: Wang, Nai‐Xing
  email: nxwang@mail.ipc.ac.cn
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 3
  givenname: Zhan
  surname: Yan
  fullname: Yan, Zhan
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 4
  givenname: Yue‐Hua
  surname: Wu
  fullname: Wu, Yue‐Hua
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 5
  givenname: Xue‐Wang
  surname: Gao
  fullname: Gao, Xue‐Wang
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 6
  givenname: Ke
  surname: Feng
  fullname: Feng, Ke
  organization: Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences
– sequence: 7
  givenname: Dumitra
  surname: Lucan
  fullname: Lucan, Dumitra
  email: dumitra.lucan@nuclear.ro
  organization: Technical Sciences Academy of Romania ASTR
– sequence: 8
  givenname: Yalan
  surname: Xing
  fullname: Xing, Yalan
  email: Yalan.Xing@hofstra.edu
  organization: Hofstra University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36345123$$D View this record in MEDLINE/PubMed
BookMark eNqNkUFP4zAQha0VaCndve5xFYkLEkrX9jiOc0RRoUggLrvnKHHGW6PULnEC9N_jqqVIXMAayQd_b_T83ik5ct4hIb8YnTFK-R-9xNWMU74dQb-RCcs4SyGX2RGZ0ELkqcygOCGnITxQSgsJ8J2cgASRMQ4TspgbY7VFNySX2PvG6uT-xbb1YJ8wKf247qz7n3iT3OGw3HTJAoeI1T06DMmzHZbJjWt9h-EHOTZ1F_Dn_p6Sf1fzv-Uivb2_vikvb1MNXNFUgFTQKAGFVA200rS81RwkFznnBW25KMAA1fFRG9Y2tVaGoZKguaa1NDAl57u9694_jhiGamWDxq6rHfoxVDwHwWSm4hen5OwD-uDH3kV3kcohB8ozFqnfe2psVthW696u6n5TvWUUgdkO0L0PoUdzQBittiVU2xKqQwlRoHaCZ2y8Cdt0NR5EsQVVCMkiHQ8r7RDD9i5m7YYovfi6NNLFnrYdbj6xVZWL-d27yVeK56jg
Cites_doi 10.1002/ejoc.202100001
10.1021/acs.orglett.5b02116
10.1002/anie.201304654
10.1002/cmdc.201700669
10.1007/s11426-017-9142-1
10.1021/ol500079y
10.1016/j.ejmech.2017.02.042
10.1126/science.abg2362
10.1021/ol501353q
10.1021/ol302438z
10.1021/jacs.8b13757
10.1038/srep15250
10.1002/anie.202017271
10.1002/anie.201903330
10.1021/jacs.9b07932
10.1002/chem.201404308
10.1021/acs.chemrev.6b00657
10.1039/d2ob00872f
10.1038/s41467-019-09857-9
10.1021/acscatal.6b03370
10.1021/jacs.8b11211
10.1002/anie.201901673
10.1021/cs502126n
10.1055/s-0040-1706406
10.1021/acs.jmedchem.2c00208
10.1002/anie.201913400
10.1021/acs.accounts.7b00108
10.1021/jacs.7b08902
10.1002/anie.202003271
10.1021/acs.orglett.6b02692
10.1021/jacs.9b05921
10.1039/d0ob02212h
10.1055/s-0039-1690674
10.1002/ange.201903330
10.1002/ange.201913400
10.1039/D0OB02212H
10.1002/ange.201304654
10.1039/D2OB00872F
10.1002/ange.201901673
10.1021/ja01146a542
10.1002/ange.202003271
10.1021/jm00107a034
10.1002/ange.202017271
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH
2022 Wiley-VCH GmbH.
2023 Wiley‐VCH GmbH
Copyright_xml – notice: 2022 Wiley‐VCH GmbH
– notice: 2022 Wiley-VCH GmbH.
– notice: 2023 Wiley‐VCH GmbH
DBID 17B
1KM
1KN
BLEPL
BNZSX
DTL
EGQ
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
DOI 10.1002/chem.202202240
DatabaseName Web of Knowledge
Index Chemicus
Current Chemical Reactions
Web of Science Core Collection
Web of Science - Science Citation Index Expanded - 2023
Science Citation Index Expanded
Web of Science Primary (SCIE, SSCI & AHCI)
CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle Web of Science
CrossRef
PubMed
Materials Research Database
ProQuest Health & Medical Complete (Alumni)
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef
Web of Science
PubMed
Materials Research Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 1KN
  name: Current Chemical Reactions
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/woscc/search-with-editions?editions=WOS.CCR
  sourceTypes:
    Enrichment Source
    Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1521-3765
EndPage n/a
ExternalDocumentID 36345123
10_1002_chem_202202240
000894612200001
CHEM202202240
Genre article
Journal Article
GroupedDBID ---
-DZ
-~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
29B
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
6J9
702
77Q
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABIJN
ABJNI
ABLJU
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACNCT
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHMBA
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HHZ
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGC
RNS
ROL
RWI
RX1
RYL
SUPJJ
TN5
TWZ
UB1
UPT
V2E
V8K
W8V
W99
WBFHL
WBKPD
WH7
WIB
WIH
WIK
WJL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
YZZ
ZZTAW
~IA
~WT
17B
1KM
1KN
AEYWJ
AGHNM
AGYGG
BLEPL
DTL
GROUPED_WOS_SCIENCE_CITATION_INDEX_EXPANDED
GROUPED_WOS_WEB_OF_SCIENCE
AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
K9.
7X8
ID FETCH-LOGICAL-c3280-43683b843968b3d6fd2dc2362472290d2493f30c8b3cf1dbac8f1e863c2c0a6f3
IEDL.DBID DR2
ISICitedReferencesCount 0
ISICitedReferencesURI https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=CitingArticles&UT=000894612200001
ISSN 0947-6539
1521-3765
IngestDate Thu Jul 10 23:17:18 EDT 2025
Sun Jul 13 04:46:55 EDT 2025
Mon Jul 21 06:04:16 EDT 2025
Tue Jul 01 00:43:43 EDT 2025
Wed Jul 09 18:33:31 EDT 2025
Fri Aug 29 16:26:34 EDT 2025
Wed Jan 22 16:20:26 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords FUNCTIONALIZATION
indoles
oxidative coupling reactions
C-H BOND
VINYLARENES
aerobic coupling reactions
C(sp)-H
heteroarylacylation
C(sp3)−H
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
LogoURL https://exlibris-pub.s3.amazonaws.com/fromwos-v2.jpg
MergedId FETCHMERGED-LOGICAL-c3280-43683b843968b3d6fd2dc2362472290d2493f30c8b3cf1dbac8f1e863c2c0a6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9520-3254
PMID 36345123
PQID 2773730251
PQPubID 986340
PageCount 4
ParticipantIDs proquest_journals_2773730251
crossref_primary_10_1002_chem_202202240
pubmed_primary_36345123
webofscience_primary_000894612200001CitationCount
wiley_primary_10_1002_chem_202202240_CHEM202202240
proquest_miscellaneous_2734165836
webofscience_primary_000894612200001
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 24, 2023
PublicationDateYYYYMMDD 2023-01-24
PublicationDate_xml – month: 01
  year: 2023
  text: January 24, 2023
  day: 24
PublicationDecade 2020
PublicationPlace WEINHEIM
PublicationPlace_xml – name: WEINHEIM
– name: Germany
– name: Weinheim
PublicationSubtitle A European Journal
PublicationTitle Chemistry : a European journal
PublicationTitleAbbrev CHEM-EUR J
PublicationTitleAlternate Chemistry
PublicationYear 2023
Publisher Wiley
Wiley Subscription Services, Inc
Publisher_xml – name: Wiley
– name: Wiley Subscription Services, Inc
References 2017; 7
2015; 17
2021 2021; 133 60
2015; 5
2018; 140
2019; 51
1991; 34
2019; 10
2020 2020; 132 59
2017; 130
2022; 20
2022; 65
2018; 61
2016; 18
2012; 14
2019; 141
2017; 117
2017; 139
2013 2013; 52 125
2017; 50
2021; 32
2019 2019; 131 58
2021; 19
2015; 21
2014; 16
2021; 372
2021; 2021
1951; 73
2018; 13
Shi, RY (WOS:000474803100049) 2019; 58
Bosnidou, A.E. (000894612200001.6) 2019; 131
Lan, XW (WOS:000389396100005) 2016; 18
Bosnidou, AE (WOS:000474803100055) 2019; 58
Shantharjun, B (WOS:000612478400017) 2021; 19
Park, H.S. (000894612200001.24) 2020; 132
Guin, S (WOS:000309951500033) 2012; 14
Li, Z (WOS:000665860000050) 2021; 372
BELL, MR (WOS:A1991FB46900034) 1991; 34
Han, L (WOS:000340808000003) 2014; 16
Liu, C (WOS:000639278300001) 2021; 60
Xia, CL (WOS:000397180900011) 2017; 130
Qin, Y (WOS:000405642800023) 2017; 117
Liu, C. (000894612200001.11) 2021; 133
Shi, R. (000894612200001.4) 2019; 131
Park, HS (WOS:000537859700001) 2020; 59
Li, FY (WOS:000464654700013) 2019; 10
Grycová, A (WOS:000802633700029) 2022; 65
Zhang, T (WOS:000424012300007) 2018; 61
Hu, RM (WOS:000508989100001) 2020; 59
Liang, YF (WOS:000350843500062) 2015; 5
KORNBLUM, N (WOS:A1951UB19800145) 1951; 73
Deb, ML (WOS:000323829600041) 2013; 52
Wang, NX (WOS:000599193200005) 2021; 32
Yan, Z (WOS:000826341000001) 2022; 20
Dolciami, D (WOS:000424514900010) 2018; 13
Zhang, LY (WOS:000618723300001) 2021; 2021
Morales-Rivera, CA (WOS:000418204600039) 2017; 139
Deb, M.L. (000894612200001.14) 2013; 125
Lan, XW (WOS:000361867800016) 2015; 17
More, NY (WOS:000331163900042) 2014; 16
Cao, M (WOS:000461537700007) 2019; 141
Neff, RK (WOS:000492800500019) 2019; 141
Chen, M (WOS:000487180200054) 2019; 141
Liang, YF (WOS:000406085500016) 2017; 50
Zhang, T (WOS:000500764100003) 2019; 51
Zhang, W (WOS:000362874300001) 2015; 5
More, NY (WOS:000347615200048) 2015; 21
Li, RH (WOS:000393539200064) 2017; 7
Zhu, F (WOS:000454751800043) 2018; 140
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_9_2
e_1_2_7_7_3
e_1_2_7_7_2
e_1_2_7_19_2
e_1_2_7_17_1
e_1_2_7_15_2
e_1_2_7_13_3
e_1_2_7_1_1
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_11_2
e_1_2_7_43_2
e_1_2_7_26_2
e_1_2_7_26_3
e_1_2_7_28_2
e_1_2_7_25_2
e_1_2_7_31_2
e_1_2_7_23_1
e_1_2_7_33_2
e_1_2_7_21_1
e_1_2_7_35_2
e_1_2_7_37_2
e_1_2_7_39_1
e_1_2_7_4_1
e_1_2_7_2_2
e_1_2_7_6_3
e_1_2_7_8_1
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_14_3
e_1_2_7_16_1
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_42_2
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_2
e_1_2_7_27_2
e_1_2_7_29_1
e_1_2_7_30_2
e_1_2_7_24_1
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_20_1
e_1_2_7_36_2
e_1_2_7_38_1
References_xml – volume: 117
  start-page: 9433
  year: 2017
  end-page: 9520
  publication-title: Chem. Rev.
– volume: 141
  start-page: 16643
  year: 2019
  end-page: 16650
  publication-title: J. Am. Chem. Soc.
– volume: 372
  start-page: 1452
  year: 2021
  end-page: 1457
  publication-title: Science
– volume: 141
  start-page: 14889
  year: 2019
  end-page: 14897
  publication-title: J. Am. Chem. Soc.
– volume: 141
  start-page: 4199
  year: 2019
  end-page: 4203
  publication-title: J. Am. Chem. Soc.
– volume: 130
  start-page: 139
  year: 2017
  end-page: 153
  publication-title: Eur. J. Med. Chem.
– volume: 132 59
  start-page: 3904 3876
  year: 2020 2020
  end-page: 3908 3880
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 73
  start-page: 880
  year: 1951
  end-page: 881
  publication-title: J. Am. Chem. Soc.
– volume: 19
  start-page: 645
  year: 2021
  end-page: 652
  publication-title: Org. Biomol. Chem.
– volume: 34
  start-page: 1099
  year: 1991
  end-page: 1110
  publication-title: J. Med. Chem.
– volume: 2021
  start-page: 1446
  year: 2021
  end-page: 1451
  publication-title: Eur. J. Org. Chem.
– volume: 133 60
  start-page: 12145 12038
  year: 2021 2021
  end-page: 12152 12045
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 13
  start-page: 270
  year: 2018
  end-page: 279
  publication-title: ChemMedChem
– volume: 139
  start-page: 17935
  year: 2017
  end-page: 17944
  publication-title: J. Am. Chem. Soc.
– volume: 7
  start-page: 1478
  year: 2017
  end-page: 1484
  publication-title: ACS Catal.
– volume: 16
  start-page: 3428
  year: 2014
  end-page: 3431
  publication-title: Org. Lett.
– volume: 50
  start-page: 1640
  year: 2017
  end-page: 1653
  publication-title: Acc. Chem. Res.
– volume: 131 58
  start-page: 7532 7454
  year: 2019 2019
  end-page: 7536 7458
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 131 58
  start-page: 7564 7485
  year: 2019 2019
  end-page: 7568 7489
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 5
  start-page: 15250
  year: 2015
  publication-title: Sci. Rep.
– volume: 61
  start-page: 180
  year: 2018
  end-page: 183
  publication-title: Sci. China Chem.
– volume: 5
  start-page: 1956
  year: 2015
  end-page: 1963
  publication-title: ACS Catal.
– volume: 65
  start-page: 6859
  year: 2022
  end-page: 6868
  publication-title: J. Med. Chem.
– volume: 21
  start-page: 1337
  year: 2015
  end-page: 1342
  publication-title: Chem. Eur. J.
– volume: 10
  start-page: 1774
  year: 2019
  publication-title: Nat. Commun.
– volume: 18
  start-page: 5986
  year: 2016
  end-page: 5989
  publication-title: Org. Lett.
– volume: 140
  start-page: 18140
  year: 2018
  end-page: 18150
  publication-title: J. Am. Chem. Soc.
– volume: 17
  start-page: 4460
  year: 2015
  end-page: 4463
  publication-title: Org. Lett.
– volume: 52 125
  start-page: 9791 9973
  year: 2013 2013
  end-page: 9795 9977
  publication-title: Angew. Chem. Int. Ed. Angew. Chem.
– volume: 14
  start-page: 5294
  year: 2012
  end-page: 5297
  publication-title: Org. Lett.
– volume: 32
  start-page: 23
  year: 2021
  end-page: 29
  publication-title: Synlett
– volume: 51
  start-page: 4531
  year: 2019
  end-page: 4548
  publication-title: Synthesis
– volume: 132 59
  start-page: 12953 12853
  year: 2020 2020
  end-page: 12959 12859
  publication-title: Angew. Chem. Angew. Chem. Int. Ed.
– volume: 16
  start-page: 804
  year: 2014
  end-page: 807
  publication-title: Org. Lett.
– volume: 20
  start-page: 5845
  year: 2022
  end-page: 5851
  publication-title: Org. Biomol. Chem.
– volume: 73
  start-page: 880
  year: 1951
  ident: WOS:A1951UB19800145
  article-title: THE BASE CATALYZED DECOMPOSITION OF A DIALKYL PEROXIDE
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
– volume: 2021
  start-page: 1446
  year: 2021
  ident: WOS:000618723300001
  article-title: Methylthiolation for Electron-Rich Heteroarenes with DMSO-TsCl
  publication-title: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY
  doi: 10.1002/ejoc.202100001
– volume: 17
  start-page: 4460
  year: 2015
  ident: WOS:000361867800016
  article-title: Copper/Manganese Cocatalyzed Oxidative Coupling of Vinylarenes with Ketones
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.5b02116
– volume: 52
  start-page: 9791
  year: 2013
  ident: WOS:000323829600041
  article-title: Copper-Catalyzed Regioselective Intramolecular Oxidative α-Functionalization of Tertiary Amines: An Efficient Synthesis of Dihydro-1,3-Oxazines
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201304654
– volume: 13
  start-page: 270
  year: 2018
  ident: WOS:000424514900010
  article-title: Binding Mode and Structure-Activity Relationships of ITE as an Aryl Hydrocarbon Receptor (AhR) Agonist
  publication-title: CHEMMEDCHEM
  doi: 10.1002/cmdc.201700669
– volume: 61
  start-page: 180
  year: 2018
  ident: WOS:000424012300007
  article-title: C(sp3)-H bond functionalization of non-cyclic ethers by decarboxylative oxidative coupling with α,β-unsaturated carboxylic acids
  publication-title: SCIENCE CHINA-CHEMISTRY
  doi: 10.1007/s11426-017-9142-1
– volume: 16
  start-page: 804
  year: 2014
  ident: WOS:000331163900042
  article-title: Aerobic Dehydrogenative α-Diarylation of Benzyl Ketones with Aromatics through Carbon-Carbon Bond Cleavage
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol500079y
– volume: 125
  start-page: 9973
  year: 2013
  ident: 000894612200001.14
  publication-title: Angew. Chem
– volume: 130
  start-page: 139
  year: 2017
  ident: WOS:000397180900011
  article-title: Design, synthesis and evaluation of 2-arylethenyl-N-methylquinolinium derivatives as effective multifunctional agents for Alzheimer's disease treatment
  publication-title: EUROPEAN JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1016/j.ejmech.2017.02.042
– volume: 372
  start-page: 1452
  year: 2021
  ident: WOS:000665860000050
  article-title: A tautomeric ligand enables directed C-H hydroxylation with molecular oxygen
  publication-title: SCIENCE
  doi: 10.1126/science.abg2362
– volume: 16
  start-page: 3428
  year: 2014
  ident: WOS:000340808000003
  article-title: Selective Aerobic Oxidation of Alcohols to Aldehydes, Carboxylic Acids, and Imines Catalyzed by a Ag-NHC Complex
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol501353q
– volume: 14
  start-page: 5294
  year: 2012
  ident: WOS:000309951500033
  article-title: Four Tandem C-H Activations: A Sequential C-C and C-O Bond Making via a Pd-Catalyzed Cross Dehydrogenative Coupling (CDC) Approach
  publication-title: ORGANIC LETTERS
  doi: 10.1021/ol302438z
– volume: 141
  start-page: 4199
  year: 2019
  ident: WOS:000461537700007
  article-title: Enantioselective Conia-Ene-Type Cyclizations of Alkynyl Ketones through Cooperative Action of B(C6F5)3, N-Alkylamine and a Zn-Based Catalyst
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b13757
– volume: 5
  start-page: ARTN 15250
  year: 2015
  ident: WOS:000362874300001
  article-title: Manganese-Mediated Coupling Reaction of Vinylarenes and Aliphatic Alcohols
  publication-title: SCIENTIFIC REPORTS
  doi: 10.1038/srep15250
– volume: 60
  start-page: 12038
  year: 2021
  ident: WOS:000639278300001
  article-title: Solvent-Switched Oxidation Selectivities with O2: Controlled Synthesis of α-Difluoro(thio)methylated Alcohols and Ketones
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202017271
– volume: 58
  start-page: 7454
  year: 2019
  ident: WOS:000474803100049
  article-title: From Alkyl Halides to Ketones: Nickel-Catalyzed Reductive Carbonylation Utilizing Ethyl Chloroformate as the Carbonyl Source
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201903330
– volume: 141
  start-page: 14889
  year: 2019
  ident: WOS:000487180200054
  article-title: Copper-Catalyzed Desaturation of Lactones, Lactams, and Ketones under pH-Neutral Conditions
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b07932
– volume: 21
  start-page: 1337
  year: 2015
  ident: WOS:000347615200048
  article-title: A Regioselective Synthesis of Benzopinacolones through Aerobic Dehydrogenative α-Arylation of the Tertiary sp3 C-H Bond of 1,1-Diphenylketones with Aromatic and Heteroaromatic Compounds
  publication-title: CHEMISTRY-A EUROPEAN JOURNAL
  doi: 10.1002/chem.201404308
– volume: 117
  start-page: 9433
  year: 2017
  ident: WOS:000405642800023
  article-title: Organocatalysis in Inert C-H Bond Functionalization
  publication-title: CHEMICAL REVIEWS
  doi: 10.1021/acs.chemrev.6b00657
– volume: 20
  start-page: 5845
  year: 2022
  ident: WOS:000826341000001
  article-title: The C(sp3)-H bond functionalization of thioethers with styrenes with insight into the mechanism
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/d2ob00872f
– volume: 10
  start-page: ARTN 1774
  year: 2019
  ident: WOS:000464654700013
  article-title: Chiral acid-catalysed enantioselective C-H functionalization of toluene and its derivatives driven by visible light
  publication-title: NATURE COMMUNICATIONS
  doi: 10.1038/s41467-019-09857-9
– volume: 7
  start-page: 1478
  year: 2017
  ident: WOS:000393539200064
  article-title: Oxygen-Controlled Hydrogen Evolution Reaction: Molecular Oxygen Promotes Hydrogen Production from Formaldehyde Solution Using Ag/MgO Nanocatalyst
  publication-title: ACS CATALYSIS
  doi: 10.1021/acscatal.6b03370
– volume: 140
  start-page: 18140
  year: 2018
  ident: WOS:000454751800043
  article-title: Stereoretentive C(sp3)-S Cross-Coupling
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.8b11211
– volume: 131
  start-page: 7564
  year: 2019
  ident: 000894612200001.6
  publication-title: Angew. Chem
– volume: 58
  start-page: 7485
  year: 2019
  ident: WOS:000474803100055
  article-title: Intermolecular Radical C(sp3)-H Amination under Iodine Catalysis
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201901673
– volume: 5
  start-page: 1956
  year: 2015
  ident: WOS:000350843500062
  article-title: Aerobic Oxidation of PdII to PdIV by Active Radical Reactants: Direct C-H Nitration and Acylation of Arenes via Oxygenation Process with Molecular Oxygen
  publication-title: ACS CATALYSIS
  doi: 10.1021/cs502126n
– volume: 32
  start-page: 23
  year: 2021
  ident: WOS:000599193200005
  article-title: C(sp 3 )-H Bond Functionalization of Alcohols, Ketones, Nitriles, Ethers and Amides using tert -Butyl Hydroperoxide as a Radical Initiator
  publication-title: SYNLETT
  doi: 10.1055/s-0040-1706406
– volume: 65
  start-page: 6859
  year: 2022
  ident: WOS:000802633700029
  article-title: Targeting the Aryl Hydrocarbon Receptor with Microbial Metabolite Mimics Alleviates Experimental Colitis in Mice
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
  doi: 10.1021/acs.jmedchem.2c00208
– volume: 133
  start-page: 12145
  year: 2021
  ident: 000894612200001.11
  publication-title: Angew. Chem
– volume: 59
  start-page: 3876
  year: 2020
  ident: WOS:000508989100001
  article-title: Iron-Catalyzed Direct Oxidative Alkylation and Hydroxylation of Indolin-2-ones with Alkyl-Substituted N-Heteroarenes
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.201913400
– volume: 50
  start-page: 1640
  year: 2017
  ident: WOS:000406085500016
  article-title: Oxygenation via C-H/C-C Bond Activation with Molecular Oxygen
  publication-title: ACCOUNTS OF CHEMICAL RESEARCH
  doi: 10.1021/acs.accounts.7b00108
– volume: 139
  start-page: 17935
  year: 2017
  ident: WOS:000418204600039
  article-title: Predictive Model for Oxidative C-H Bond Functionalization Reactivity with 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.7b08902
– volume: 59
  start-page: 12853
  year: 2020
  ident: WOS:000537859700001
  article-title: Distal γ-C(sp3)-H Olefination of Ketone Derivatives and Free Carboxylic Acids
  publication-title: ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
  doi: 10.1002/anie.202003271
– volume: 18
  start-page: 5986
  year: 2016
  ident: WOS:000389396100005
  article-title: Unactivated C(sp3)-H Bond Functionalization of Alkyl Nitriles with Vinylarenes and Mechanistic Studies
  publication-title: ORGANIC LETTERS
  doi: 10.1021/acs.orglett.6b02692
– volume: 141
  start-page: 16643
  year: 2019
  ident: WOS:000492800500019
  article-title: Generation of Halomethyl Radicals by Halogen Atom Abstraction and Their Addition Reactions with Alkenes
  publication-title: JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
  doi: 10.1021/jacs.9b05921
– volume: 19
  start-page: 645
  year: 2021
  ident: WOS:000612478400017
  article-title: Hydroxymethylation of quinolines via iron promoted oxidative C-H functionalization: synthesis of arsindoline-A and its derivatives
  publication-title: ORGANIC & BIOMOLECULAR CHEMISTRY
  doi: 10.1039/d0ob02212h
– volume: 132
  start-page: 12953
  year: 2020
  ident: 000894612200001.24
  publication-title: Angew. Chem
– volume: 51
  start-page: 4531
  year: 2019
  ident: WOS:000500764100003
  article-title: Advances in C(sp3)-H Bond Functionalization via Radical Processes
  publication-title: SYNTHESIS-STUTTGART
  doi: 10.1055/s-0039-1690674
– volume: 34
  start-page: 1099
  year: 1991
  ident: WOS:A1991FB46900034
  article-title: ANTINOCICEPTIVE (AMINOALKYL)INDOLES
  publication-title: JOURNAL OF MEDICINAL CHEMISTRY
– volume: 131
  start-page: 7532
  year: 2019
  ident: 000894612200001.4
  publication-title: Angew. Chem
– ident: e_1_2_7_34_1
– ident: e_1_2_7_38_1
  doi: 10.1002/ejoc.202100001
– ident: e_1_2_7_32_2
  doi: 10.1021/acs.orglett.6b02692
– ident: e_1_2_7_6_2
  doi: 10.1002/ange.201903330
– ident: e_1_2_7_22_1
  doi: 10.1002/ange.201913400
– ident: e_1_2_7_23_1
  doi: 10.1039/D0OB02212H
– ident: e_1_2_7_14_3
  doi: 10.1002/ange.201304654
– ident: e_1_2_7_19_2
  doi: 10.1021/acs.jmedchem.2c00208
– ident: e_1_2_7_30_2
  doi: 10.1038/srep15250
– ident: e_1_2_7_43_2
  doi: 10.1021/acscatal.6b03370
– ident: e_1_2_7_17_1
– ident: e_1_2_7_4_1
– ident: e_1_2_7_39_1
– ident: e_1_2_7_37_2
  doi: 10.1039/D2OB00872F
– ident: e_1_2_7_8_1
– ident: e_1_2_7_14_2
  doi: 10.1002/anie.201304654
– ident: e_1_2_7_20_1
  doi: 10.1016/j.ejmech.2017.02.042
– ident: e_1_2_7_35_2
  doi: 10.1055/s-0039-1690674
– ident: e_1_2_7_24_1
– ident: e_1_2_7_5_2
  doi: 10.1021/jacs.8b11211
– ident: e_1_2_7_7_2
  doi: 10.1002/ange.201901673
– ident: e_1_2_7_2_2
  doi: 10.1021/acs.chemrev.6b00657
– ident: e_1_2_7_25_2
  doi: 10.1021/acs.accounts.7b00108
– ident: e_1_2_7_6_3
  doi: 10.1002/anie.201903330
– ident: e_1_2_7_44_1
  doi: 10.1021/ja01146a542
– ident: e_1_2_7_29_1
– ident: e_1_2_7_31_2
  doi: 10.1021/acs.orglett.5b02116
– ident: e_1_2_7_1_1
– ident: e_1_2_7_7_3
  doi: 10.1002/anie.201901673
– ident: e_1_2_7_26_3
  doi: 10.1002/anie.202003271
– ident: e_1_2_7_33_2
  doi: 10.1007/s11426-017-9142-1
– ident: e_1_2_7_26_2
  doi: 10.1002/ange.202003271
– ident: e_1_2_7_9_2
  doi: 10.1021/jacs.9b07932
– ident: e_1_2_7_10_2
  doi: 10.1021/jacs.7b08902
– ident: e_1_2_7_36_2
  doi: 10.1055/s-0040-1706406
– ident: e_1_2_7_13_3
  doi: 10.1002/anie.202017271
– ident: e_1_2_7_22_2
  doi: 10.1002/anie.201913400
– ident: e_1_2_7_27_2
  doi: 10.1021/ol500079y
– ident: e_1_2_7_15_2
  doi: 10.1126/science.abg2362
– ident: e_1_2_7_21_1
  doi: 10.1038/s41467-019-09857-9
– ident: e_1_2_7_41_2
  doi: 10.1021/cs502126n
– ident: e_1_2_7_3_2
  doi: 10.1021/jacs.8b13757
– ident: e_1_2_7_28_2
  doi: 10.1002/chem.201404308
– ident: e_1_2_7_11_2
  doi: 10.1021/jacs.9b05921
– ident: e_1_2_7_16_1
  doi: 10.1021/jm00107a034
– ident: e_1_2_7_42_2
  doi: 10.1021/ol501353q
– ident: e_1_2_7_18_2
  doi: 10.1002/cmdc.201700669
– ident: e_1_2_7_12_1
– ident: e_1_2_7_13_2
  doi: 10.1002/ange.202017271
– ident: e_1_2_7_40_2
  doi: 10.1021/ol302438z
SSID ssj0009633
Score 2.4075298
Snippet Direct oxidative coupling of inert C(sp3)−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α‐methyl...
Direct oxidative coupling of inert C(sp(3))-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of alpha-methyl...
Direct oxidative coupling of inert C(sp 3 )−H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α ‐methyl...
Direct oxidative coupling of inert C(sp )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl...
Direct oxidative coupling of inert C(sp3 )-H bond has been a great challenge. Herein, an environmentally friendly aerobic oxidative coupling of α-methyl...
Source Web of Science
SourceID proquest
pubmed
crossref
webofscience
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage e202202240
SubjectTerms aerobic coupling reactions
C(sp3)−H
Catalysis
Chemistry
Chemistry, Multidisciplinary
Coupling
heteroarylacylation
Hydrogen bonds
Indoles
Indoles - chemistry
Intermediates
Ketones
Mass spectrometry
Mass spectroscopy
Oxidative Coupling
oxidative coupling reactions
Physical Sciences
Science & Technology
Substrates
Title Efficient Aerobic Oxidative Coupling of Methyl Heteroarenes with Indoles
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fchem.202202240
http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestApp=WOS&DestLinkType=FullRecord&UT=000894612200001
https://www.ncbi.nlm.nih.gov/pubmed/36345123
https://www.proquest.com/docview/2773730251
https://www.proquest.com/docview/2734165836
Volume 29
WOS 000894612200001
WOSCitedRecordID wos000894612200001
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1RS90wFMcPw5ftZW7OzW5OIgg-Rdskpu2jXJSroANR8K0kaTJEacV7L4if3nPS2-p1Dw59a0lCSU6S82-S8wvAljXBZ7lNee6t40q5nJcq9zwNqjZuLw8-houdnOrxhTq-3Lt8FsXf8SGGBTcaGXG-pgFu7GT3CRqKdaJIciGiV8JJmA5skSo6e-JHYe_q7pJXOScGa09tTMXuYvFFr_SP1HzhlRaFbPREh8tg-jp0B1Cud2ZTu-MeXuAd31PJL_B5LlPZftevvsIH36zAx1F_O9w3GB9E9gS6LLbvieXk2J_7qzpixNmonVGg71_WBnbisSvcsDEdu2kp8sxPGC3-sqMmwqRW4eLw4Hw05vNbGbiTokg5IeulLVDI6MLKWoda1E6gHyTsZJnW-D8ng0wdJrqQ1da4ImS-0NIJlxod5HdYatrGrwHLrCyNMqrUIiiPYsUKXdSp9dpj97Emge3eKtVtB9-oOsyyqKhlqqFlEljvjVbNB-GkEnkucQJDBZfA5pCM7UR7Iqbx7YzyoBtHFSZ1Aj86Yw-fkloq1EMyga3n1h_SST-VCiWiiHskCWT_k200Z68Tc2CagIjmf6V6FfExhrefbyn0Cz7hA52d40Ktw9L0buZ_o56a2o04Zh4ByjsUmA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1NT9wwEIZHhR7gAvQDGqDFlZB6MiS2cZIj2oJCy1KpAqm3KHZshKgSVHalil_PjLMJLD20osfEtiJ7bM8b2_MYYNdU3iWpiXnqjOVK2ZTnKnU89qqu7EHqXQgXG5_p4kJ9-XHQnyakWJiODzEsuNHICPM1DXBakN5_oIZipSiUXIjglhbgJV3rTfj8z98fCFLYv7rb5FXKicLacxtjsT9fft4v_SE2n_ileSkbfNHxKpi-Ft0RlOu96cTs2bsngMf_quYarMyUKjvsutYreOGa17A06i-IewPFUcBPoNdih45wTpZ9-31VB5I4G7VTivW9ZK1nY4e94Scr6ORNS8Fn7pbR-i87aQJP6i1cHB-djwo-u5iBWymymBO1XpoMtYzOjKy1r0VtBbpCIk_mcY2_dNLL2GKi9UltKpv5xGVaWmHjSnu5DotN27h3wBIj80pVKtfCK4d6xQid1bFx2mEPMlUEn3qzlDcdf6PsSMuipJYph5aJYLu3Wjkbh7elSFOJcxiKuAg-DsnYTrQtUjWunVIe9OQoxKSOYKOz9vApqaVCSSQj2H1s_iGdJFSuUCWKsE0SQfIv2UYz_DphByYRiGD_v1SvJETG8LT5nEI7sFScj0_L05Ozr1uwjC_pKB0XahsWJ7-m7j3Kq4n5EAbQPRkgGLQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ1Nb9QwEIZHUCTgwnchUMBIlTi5dWzXSY7Vtqst0IIQlXqL4i-EWiUV3ZUQv54ZZ5N2ywEEx8S2Intszxvb8xhg0zYx5IUVvAjWca1dwStdBC6i9o3bKWJI4WKHR2Z2rN-d7JxcieLv-RDjghuNjDRf0wA_93H7EhqKdaJIcimTV7oJt7QRFV3esPf5EiCF3au_TF4XnCCsA7ZRyO3V8qtu6Tetec0trSrZ5Iqm96EZKtGfQDndWsztlvt5je_4P7V8APeWOpXt9h3rIdwI7SO4Mxmuh3sMs_0En0CfxXYDwZwc-_jjm08ccTbpFhTp-5V1kR0G7AtnbEbnbjoKPQsXjFZ_2UGbaFJP4Hi6_2Uy48trGbhTshScmPXKlqhkTGmVN9FL7yQ6QuJOVsLjD52KSjhMdDH3tnFlzENplJNONCaqdVhruzY8A5ZbVTW60ZWRUQdUK1aa0gsbTMD-Y5sM3g5Wqc97-kbdc5ZlTS1Tjy2TwcZgtHo5Ci9qWRQKZzCUcBm8GZOxnWhTpGlDt6A86MdRhimTwdPe2OOnlFEaBZHKYPOq9cd0ElCVRo0o0yZJBvnfZJss4esEHZhnIJP5_1C9mgAZ49Pzfyn0Gm5_2pvWHw6O3r-Au_iOztFxqTdgbf59EV6itprbV2n4_AKughdj
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Aerobic+Oxidative+Coupling+of+Methyl+Heteroarenes+with+Indoles&rft.jtitle=Chemistry+%3A+a+European+journal&rft.au=Zhang%2C+Lei%E2%80%90Yang&rft.au=Wang%2C+Nai%E2%80%90Xing&rft.au=Yan%2C+Zhan&rft.au=Wu%2C+Yue%E2%80%90Hua&rft.date=2023-01-24&rft.issn=0947-6539&rft.eissn=1521-3765&rft.volume=29&rft.issue=5&rft_id=info:doi/10.1002%2Fchem.202202240&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_chem_202202240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0947-6539&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0947-6539&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0947-6539&client=summon