Assessing micrometer-scale contamination from organic materials in serpentinite analysis
Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to mai...
Saved in:
Published in | The Science of the total environment Vol. 903; p. 166609 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
10.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.
[Display omitted]
•Organic materials cause micrometer-scale contamination in serpentinite analysis.•Evaluating contamination in serpentinite is vital for deriving significant insights.•Future studies need to limit the use of organic materials. |
---|---|
AbstractList | Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.
[Display omitted]
•Organic materials cause micrometer-scale contamination in serpentinite analysis.•Evaluating contamination in serpentinite is vital for deriving significant insights.•Future studies need to limit the use of organic materials. Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets. Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets. |
ArticleNumber | 166609 |
Author | Peng, Xiaotong Nan, Jingbo Zhu, Kechen Ren, Jieji Yao, Weiqi |
Author_xml | – sequence: 1 givenname: Jingbo surname: Nan fullname: Nan, Jingbo organization: Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China – sequence: 2 givenname: Kechen surname: Zhu fullname: Zhu, Kechen organization: Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China – sequence: 3 givenname: Jieji surname: Ren fullname: Ren, Jieji organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Weiqi surname: Yao fullname: Yao, Weiqi email: yaowq@sustech.edu.cn organization: Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China – sequence: 5 givenname: Xiaotong surname: Peng fullname: Peng, Xiaotong email: xtpeng@idsse.ac.cn organization: Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China |
BookMark | eNqFkMtKBDEQRYMoOD6-wV666bHymKR7OYgvENwouAsxqZYM3cmYioJ_bw8jbq1NLercC3VO2GHKCRm74LDkwPXVZkk-1lwxfS0FCLnkWmvoD9iCd6ZvOQh9yBYAqmt73ZtjdkK0gXlMxxfsdU2ERDG9N1P0JU9YsbTk3YiNz6m6KSZXY07NMB-bXN5dir6Z3IxFN1ITU0NYtphqTLFi45IbvynSGTsa5jue_-5T9nJ783x93z4-3T1crx9bL4Wp7YAhGOk77qDXSqt-pYxavQUICB1oOWgXus4bjf2AgrsQ3gSAF0O_8kYpJU_Z5b53W_LHJ1K1UySP4-gS5k-yEhTIFedS_IuKTs-w0XLXavborISo4GC3JU6ufFsOdqfdbuyfdrvTbvfa5-R6n8T56a-IZcdh8hhiQV9tyPHfjh8J5ZNx |
Cites_doi | 10.1016/j.rcim.2022.102360 10.1038/s41467-022-27970-0 10.1144/jgs2018-097 10.1073/pnas.1504674112 10.1016/j.saa.2013.08.014 10.1017/9781108677950.015 10.1016/j.gca.2020.04.017 10.1007/s43154-020-00021-6 10.1038/s41586-018-0684-z 10.1038/s41467-018-07385-6 10.1073/pnas.2002619117 10.1016/j.marpetgeo.2018.03.026 10.2113/econgeo.110.6.1515 10.1016/j.epsl.2023.118226 10.1016/j.lithos.2013.05.019 10.1029/2018JE005796 10.1016/j.lithos.2011.05.011 10.1073/pnas.1612147114 10.1016/j.scitotenv.2019.135675 10.1016/j.chemgeo.2008.10.029 10.1016/j.epsl.2019.01.054 10.1002/2016GC006321 10.1130/G35068.1 10.1073/pnas.1506295112 10.2138/rmg.2013.75.18 10.1038/ngeo2291 10.1016/j.epsl.2011.01.006 10.1073/pnas.1009043108 10.1016/0016-7037(82)90005-9 10.1038/ngeo1359 10.1126/sciadv.abo2397 10.1017/S0016756811000422 10.1016/j.lithos.2013.04.008 |
ContentType | Journal Article |
Copyright | 2023 Elsevier B.V. Copyright © 2023 Elsevier B.V. All rights reserved. |
Copyright_xml | – notice: 2023 Elsevier B.V. – notice: Copyright © 2023 Elsevier B.V. All rights reserved. |
DBID | AAYXX CITATION 7X8 7S9 L.6 |
DOI | 10.1016/j.scitotenv.2023.166609 |
DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Public Health Biology Environmental Sciences |
EISSN | 1879-1026 |
ExternalDocumentID | 10_1016_j_scitotenv_2023_166609 S0048969723052348 |
GeographicLocations | Yap Pacific Ocean |
GeographicLocations_xml | – name: Pacific Ocean – name: Yap |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM AABNK AACTN AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEIPS AEKER AENEX AFJKZ AFTJW AFXIZ AGUBO AGYEJ AHEUO AHHHB AIEXJ AIKHN AITUG AKIFW AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AXJTR BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W K-O KCYFY KOM LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCU SDF SDG SDP SES SPCBC SSH SSJ SSZ T5K ~02 ~G- ~KM 53G AAQXK AAYJJ AAYWO AAYXX ABEFU ABWVN ABXDB ACRPL ACVFH ADCNI ADMUD ADNMO ADXHL AEGFY AEUPX AFPUW AGCQF AGHFR AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ R2- RIG SEN SEW WUQ XPP ZXP ZY4 7X8 EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c327t-fedd73c81a096464954745bd0de08063f6ad88c76e9fe21addb200c2f95c74443 |
IEDL.DBID | .~1 |
ISSN | 0048-9697 1879-1026 |
IngestDate | Fri Jul 11 15:26:53 EDT 2025 Mon Jul 21 10:13:04 EDT 2025 Tue Jul 01 02:09:09 EDT 2025 Sun Apr 06 06:53:03 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep carbon cycle Serpentinites Serpentinization Organic contamination |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-fedd73c81a096464954745bd0de08063f6ad88c76e9fe21addb200c2f95c74443 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 2860407634 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_3040351132 proquest_miscellaneous_2860407634 crossref_primary_10_1016_j_scitotenv_2023_166609 elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_166609 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-12-10 |
PublicationDateYYYYMMDD | 2023-12-10 |
PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationTitle | The Science of the total environment |
PublicationYear | 2023 |
Publisher | Elsevier B.V |
Publisher_xml | – name: Elsevier B.V |
References | Mohamad, Sitinor, Amir Hashim (bb0125) 2013; 16 Rafieian, Hazel, Liu (bb0150) 2014 Andreani, Ménez (bb0005) 2019 Plümper, King, Geisler, Liu, Pabst, Savov, Rost, Zack (bb0145) 2017; 114 Andreani, Muñoz, Marcaillou, Delacour (bb0010) 2013; 178 Klein, Humphris, Guo, Schubotz, Schwarzenbach, Orsi, Karl (bb0085) 2015; 112 Manuella, Scribano, Carbone (bb0095) 2018 Wang, Konhauser, Zhang (bb0200) 2015; 110 Ménez, Pasini, Brunelli (bb0110) 2012; 5 Dodd, Papineau, She, Manikyamba, Wan, O’Neil, Karhu, Rizo, Pirajno (bb0050) 2019; 512 Ménez, Pisapia, Andreani, Jamme, Vanbellingen, Brunelle, Richard, Dumas, Réfrégiers (bb0115) 2018; 564 Durand-Souron, Boulet, Durand (bb0055) 1982; 46 Sun, Wu, Cheng, Zhang, Frost (bb0190) 2014; 117 Fujiwara, Tamura, Nishizawa, Fujioka, Kobayashi, Iwabuchi (bb0060) 2000; 21 Bonnemains, Carlut, Escartín, Mével, Andreani, Debret (bb0025) 2016; 17 Debret, Ménez, Walter, Bouquerel, Bouilhol, Mattielli, Pisapia, Rigaudier, Williams (bb0040) 2022; 8 Michalski, Glotch, Rogers, Niles, Cuadros, Ashley, Johnson (bb0120) 2019; 124 Goto, Sekine, Shimoda, Hein, Aoki, Ishikawa, Suzuki, Gordon, Anbar (bb0065) 2020; 280 Wu, Volponi, Oliver, Parikh, Simmons, Singh (bb0210) 2011; 108 Shneier, Bostelman (bb0170) 2015 Ciliberto, Crisafulli, Manuella, Samperi, Scirè, Scribano, Viccaro, Viscuso (bb0035) 2009; 258 Summons, Sessions, Allwood, Barton, Beaty, Blakkolb, Canham, Clark, Dworkin, Lin, Mathies, Milkovich, Steele (bb0185) 2014; 14 Papineau, de Gregorio, Sagar, Thorogate, Wang, Nittler, Kilcoyne, Marbach, Drost, Thornton (bb0140) 2019; 176 McDermott, Seewald, German, Sylva (bb0105) 2015; 112 Bloise, Ricchiuti, Lanzafame, Punturo (bb0020) 2020; 703 Liu, Liu, Xu, Wang, Zhou (bb0090) 2022; 77 Sforna, Brunelli, Pisapia, Pasini, Malferrari, Ménez (bb0165) 2018; 9 Aswad, Aziz, Koyi (bb0015) 2011; 148 Bouilhol, Debret, Inglis, Warembourg, Grocolas, Rigaudier, Villeneuve, Burton (bb0030) 2022; 13 Socrates (bb0175) 2001 Huang, Daniel, Cardon, Montagnac, Sverjensky (bb0070) 2017; 8 Schrenk, Brazelton, Lang (bb0155) 2013; 75 Marcaillou, Muñoz, Vidal, Parra, Harfouche (bb0100) 2011; 303 Klein, Bach, Humphris, Kahl, Jöns, Moskowitz, Berquó (bb0080) 2014; 42 Deschamps, Godard, Guillot, Hattori (bb0045) 2013 Nan, Peng, Wang, Papineau, She, Guo, Peng, Zhou, Hu, Yao, Zhang, Wang, Tao (bb0135) 2023; 615 Scirè, Ciliberto, Crisafulli, Scribano, Bellatreccia, Ventura (bb0160) 2011; 125 Worman, Pratson, Karson, Schlesinger (bb0205) 2020; 117 Sverjensky, Stagno, Huang (bb0195) 2014; 7 Kleeberger, Bormann, Kraus, Huber (bb0075) 2020; 1 Nan, King, Delen, Meirer, Weckhuysen, Guo, Peng, Plümper (bb0130) 2021; 49 Socrates (bb0180) 2001 Bonnemains (10.1016/j.scitotenv.2023.166609_bb0025) 2016; 17 Huang (10.1016/j.scitotenv.2023.166609_bb0070) 2017; 8 Sverjensky (10.1016/j.scitotenv.2023.166609_bb0195) 2014; 7 Manuella (10.1016/j.scitotenv.2023.166609_bb0095) 2018 Bloise (10.1016/j.scitotenv.2023.166609_bb0020) 2020; 703 Ménez (10.1016/j.scitotenv.2023.166609_bb0110) 2012; 5 Fujiwara (10.1016/j.scitotenv.2023.166609_bb0060) 2000; 21 McDermott (10.1016/j.scitotenv.2023.166609_bb0105) 2015; 112 Wu (10.1016/j.scitotenv.2023.166609_bb0210) 2011; 108 Wang (10.1016/j.scitotenv.2023.166609_bb0200) 2015; 110 Klein (10.1016/j.scitotenv.2023.166609_bb0085) 2015; 112 Worman (10.1016/j.scitotenv.2023.166609_bb0205) 2020; 117 Socrates (10.1016/j.scitotenv.2023.166609_bb0175) 2001 Shneier (10.1016/j.scitotenv.2023.166609_bb0170) 2015 Aswad (10.1016/j.scitotenv.2023.166609_bb0015) 2011; 148 Andreani (10.1016/j.scitotenv.2023.166609_bb0005) 2019 Klein (10.1016/j.scitotenv.2023.166609_bb0080) 2014; 42 Ménez (10.1016/j.scitotenv.2023.166609_bb0115) 2018; 564 Goto (10.1016/j.scitotenv.2023.166609_bb0065) 2020; 280 Socrates (10.1016/j.scitotenv.2023.166609_bb0180) 2001 Nan (10.1016/j.scitotenv.2023.166609_bb0135) 2023; 615 Dodd (10.1016/j.scitotenv.2023.166609_bb0050) 2019; 512 Andreani (10.1016/j.scitotenv.2023.166609_bb0010) 2013; 178 Marcaillou (10.1016/j.scitotenv.2023.166609_bb0100) 2011; 303 Debret (10.1016/j.scitotenv.2023.166609_bb0040) 2022; 8 Sun (10.1016/j.scitotenv.2023.166609_bb0190) 2014; 117 Michalski (10.1016/j.scitotenv.2023.166609_bb0120) 2019; 124 Durand-Souron (10.1016/j.scitotenv.2023.166609_bb0055) 1982; 46 Rafieian (10.1016/j.scitotenv.2023.166609_bb0150) 2014 Kleeberger (10.1016/j.scitotenv.2023.166609_bb0075) 2020; 1 Scirè (10.1016/j.scitotenv.2023.166609_bb0160) 2011; 125 Liu (10.1016/j.scitotenv.2023.166609_bb0090) 2022; 77 Plümper (10.1016/j.scitotenv.2023.166609_bb0145) 2017; 114 Mohamad (10.1016/j.scitotenv.2023.166609_bb0125) 2013; 16 Nan (10.1016/j.scitotenv.2023.166609_bb0130) 2021; 49 Papineau (10.1016/j.scitotenv.2023.166609_bb0140) 2019; 176 Ciliberto (10.1016/j.scitotenv.2023.166609_bb0035) 2009; 258 Deschamps (10.1016/j.scitotenv.2023.166609_bb0045) 2013 Summons (10.1016/j.scitotenv.2023.166609_bb0185) 2014; 14 Bouilhol (10.1016/j.scitotenv.2023.166609_bb0030) 2022; 13 Schrenk (10.1016/j.scitotenv.2023.166609_bb0155) 2013; 75 Sforna (10.1016/j.scitotenv.2023.166609_bb0165) 2018; 9 |
References_xml | – volume: 117 year: 2014 ident: bb0190 article-title: A Raman spectroscopic comparison of calcite and dolomite publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. – volume: 49 year: 2021 ident: bb0130 article-title: The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean publication-title: Geology – start-page: 8022 year: 2015 ident: bb0170 article-title: Literature Review of Mobile Robots for Manufacturing – volume: 13 year: 2022 ident: bb0030 article-title: Decoupling of inorganic and organic carbon during slab mantle devolatilisation publication-title: Nat. Commun. – volume: 112 year: 2015 ident: bb0105 article-title: Pathways for abiotic organic synthesis at submarine hydrothermal fields publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 46 year: 1982 ident: bb0055 article-title: Formation of methane and hydrocarbons by pyrolysis of immature kerogens publication-title: Geochim. Cosmochim. Acta – volume: 280 year: 2020 ident: bb0065 article-title: A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: insights from modern marine hydrothermal Fe-Mn oxides publication-title: Geochim. Cosmochim. Acta – volume: 1 year: 2020 ident: bb0075 article-title: A survey on learning-based robotic grasping publication-title: Curr. Robot. Rep. – volume: 42 year: 2014 ident: bb0080 article-title: Magnetite in seafloor serpentinite-Some like it hot publication-title: Geology – year: 2019 ident: bb0005 article-title: New Perspectives on Abiotic Organic Synthesis and Processing During Hydrothermal Alteration of the Oceanic Lithosphere publication-title: Deep Carbon: Past to Present – volume: 21 year: 2000 ident: bb0060 article-title: Morphology and tectonics of the Yap Trench publication-title: Mar. Geophys. Res. (Dordr.) – volume: 77 year: 2022 ident: bb0090 article-title: Robot learning towards smart robotic manufacturing: a review publication-title: Robot. Comput. Integr. Manuf. – volume: 14 year: 2014 ident: bb0185 article-title: Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover publication-title: Astrobiology – volume: 125 year: 2011 ident: bb0160 article-title: Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily publication-title: Lithos – volume: 7 year: 2014 ident: bb0195 article-title: Important role for organic carbon in subduction-zone fluids in the deep carbon cycle publication-title: Nat. Geosci. – volume: 8 year: 2017 ident: bb0070 article-title: Immiscible hydrocarbon fluids in the deep carbon cycle publication-title: Nat. Commun. – volume: 615 year: 2023 ident: bb0135 article-title: Molecular mechanism of metamorphic alteration on traces of early life in banded iron formations publication-title: Earth Planet. Sci. Lett. – volume: 114 year: 2017 ident: bb0145 article-title: Subduction zone forearc serpentinites as incubators for deep microbial life publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 117 year: 2020 ident: bb0205 article-title: Abiotic hydrogen (H publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 703 year: 2020 ident: bb0020 article-title: X-ray synchrotron microtomography: a new technique for characterizing chrysotile asbestos publication-title: Sci. Total Environ. – volume: 112 year: 2015 ident: bb0085 article-title: Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 564 year: 2018 ident: bb0115 article-title: Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere publication-title: Nature – volume: 124 year: 2019 ident: bb0120 article-title: The geology and astrobiology of McLaughlin Crater, Mars: an ancient Lacustrine Basin containing turbidites, mudstones, and serpentinites publication-title: J. Geophys. Res. Planets – year: 2014 ident: bb0150 article-title: Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm publication-title: Procedia CIRP – volume: 8 year: 2022 ident: bb0040 article-title: High-pressure synthesis and storage of solid organic compounds in active subduction zones publication-title: Sci. Adv. – volume: 110 year: 2015 ident: bb0200 article-title: Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China publication-title: Econ. Geol. – start-page: 342 year: 2001 ident: bb0180 article-title: Infrared and Raman characteristic group frequencies publication-title: Tables and charts – volume: 148 year: 2011 ident: bb0015 article-title: Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq publication-title: Geol. Mag. – year: 2018 ident: bb0095 article-title: Abyssal serpentinites as gigantic factories of marine salts and oil publication-title: Mar. Pet. Geol. – volume: 303 start-page: 281 year: 2011 end-page: 290 ident: bb0100 article-title: Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar publication-title: Earth Planet. Sci. Lett. – volume: 178 year: 2013 ident: bb0010 article-title: μXANES study of iron redox state in serpentine during oceanic serpentinization publication-title: Lithos – start-page: 342 year: 2001 ident: bb0175 article-title: Infrared and Raman Characteristic Group Frequencies. Tables and charts – volume: 17 start-page: 2969 year: 2016 end-page: 2986 ident: bb0025 article-title: Magnetic signatures of serpentinization at ophiolite complexes publication-title: Geochem. Geophys. Geosyst. – volume: 5 year: 2012 ident: bb0110 article-title: Life in the hydrated suboceanic mantle publication-title: Nat. Geosci. – volume: 108 year: 2011 ident: bb0210 article-title: In vivo lipidomics using single-cell Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 176 year: 2019 ident: bb0140 article-title: Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C publication-title: J. Geol. Soc. Lond. – volume: 16 year: 2013 ident: bb0125 article-title: The effect of grounded calcium carbonate on the physical properties of NR vulcanised latex films publication-title: J. Rubber Res. – volume: 75 year: 2013 ident: bb0155 article-title: Serpentinization, carbon, and deep life publication-title: Rev. Mineral. Geochem. – year: 2013 ident: bb0045 article-title: Geochemistry of subduction zone serpentinites: a review publication-title: Lithos. – volume: 512 start-page: 163 year: 2019 end-page: 174 ident: bb0050 article-title: Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations publication-title: Earth Planet. Sci. Lett. – volume: 9 year: 2018 ident: bb0165 article-title: Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust publication-title: Nat. Commun. – volume: 258 year: 2009 ident: bb0035 article-title: Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system publication-title: Chem. Geol. – volume: 77 year: 2022 ident: 10.1016/j.scitotenv.2023.166609_bb0090 article-title: Robot learning towards smart robotic manufacturing: a review publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2022.102360 – volume: 13 year: 2022 ident: 10.1016/j.scitotenv.2023.166609_bb0030 article-title: Decoupling of inorganic and organic carbon during slab mantle devolatilisation publication-title: Nat. Commun. doi: 10.1038/s41467-022-27970-0 – volume: 176 year: 2019 ident: 10.1016/j.scitotenv.2023.166609_bb0140 article-title: Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C publication-title: J. Geol. Soc. Lond. doi: 10.1144/jgs2018-097 – volume: 112 year: 2015 ident: 10.1016/j.scitotenv.2023.166609_bb0085 article-title: Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1504674112 – volume: 117 year: 2014 ident: 10.1016/j.scitotenv.2023.166609_bb0190 article-title: A Raman spectroscopic comparison of calcite and dolomite publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc. doi: 10.1016/j.saa.2013.08.014 – year: 2019 ident: 10.1016/j.scitotenv.2023.166609_bb0005 article-title: New Perspectives on Abiotic Organic Synthesis and Processing During Hydrothermal Alteration of the Oceanic Lithosphere doi: 10.1017/9781108677950.015 – volume: 280 year: 2020 ident: 10.1016/j.scitotenv.2023.166609_bb0065 article-title: A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: insights from modern marine hydrothermal Fe-Mn oxides publication-title: Geochim. Cosmochim. Acta doi: 10.1016/j.gca.2020.04.017 – volume: 1 year: 2020 ident: 10.1016/j.scitotenv.2023.166609_bb0075 article-title: A survey on learning-based robotic grasping publication-title: Curr. Robot. Rep. doi: 10.1007/s43154-020-00021-6 – volume: 564 year: 2018 ident: 10.1016/j.scitotenv.2023.166609_bb0115 article-title: Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere publication-title: Nature doi: 10.1038/s41586-018-0684-z – volume: 9 year: 2018 ident: 10.1016/j.scitotenv.2023.166609_bb0165 article-title: Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust publication-title: Nat. Commun. doi: 10.1038/s41467-018-07385-6 – volume: 117 year: 2020 ident: 10.1016/j.scitotenv.2023.166609_bb0205 article-title: Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.2002619117 – year: 2018 ident: 10.1016/j.scitotenv.2023.166609_bb0095 article-title: Abyssal serpentinites as gigantic factories of marine salts and oil publication-title: Mar. Pet. Geol. doi: 10.1016/j.marpetgeo.2018.03.026 – year: 2014 ident: 10.1016/j.scitotenv.2023.166609_bb0150 article-title: Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm – volume: 110 year: 2015 ident: 10.1016/j.scitotenv.2023.166609_bb0200 article-title: Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China publication-title: Econ. Geol. doi: 10.2113/econgeo.110.6.1515 – volume: 8 year: 2017 ident: 10.1016/j.scitotenv.2023.166609_bb0070 article-title: Immiscible hydrocarbon fluids in the deep carbon cycle publication-title: Nat. Commun. – volume: 615 year: 2023 ident: 10.1016/j.scitotenv.2023.166609_bb0135 article-title: Molecular mechanism of metamorphic alteration on traces of early life in banded iron formations publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2023.118226 – start-page: 342 year: 2001 ident: 10.1016/j.scitotenv.2023.166609_bb0180 article-title: Infrared and Raman characteristic group frequencies – year: 2013 ident: 10.1016/j.scitotenv.2023.166609_bb0045 article-title: Geochemistry of subduction zone serpentinites: a review publication-title: Lithos. doi: 10.1016/j.lithos.2013.05.019 – volume: 124 year: 2019 ident: 10.1016/j.scitotenv.2023.166609_bb0120 article-title: The geology and astrobiology of McLaughlin Crater, Mars: an ancient Lacustrine Basin containing turbidites, mudstones, and serpentinites publication-title: J. Geophys. Res. Planets doi: 10.1029/2018JE005796 – volume: 125 year: 2011 ident: 10.1016/j.scitotenv.2023.166609_bb0160 article-title: Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily publication-title: Lithos doi: 10.1016/j.lithos.2011.05.011 – volume: 114 year: 2017 ident: 10.1016/j.scitotenv.2023.166609_bb0145 article-title: Subduction zone forearc serpentinites as incubators for deep microbial life publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1612147114 – volume: 703 year: 2020 ident: 10.1016/j.scitotenv.2023.166609_bb0020 article-title: X-ray synchrotron microtomography: a new technique for characterizing chrysotile asbestos publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2019.135675 – volume: 258 year: 2009 ident: 10.1016/j.scitotenv.2023.166609_bb0035 article-title: Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system publication-title: Chem. Geol. doi: 10.1016/j.chemgeo.2008.10.029 – volume: 49 year: 2021 ident: 10.1016/j.scitotenv.2023.166609_bb0130 article-title: The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean publication-title: Geology – start-page: 8022 year: 2015 ident: 10.1016/j.scitotenv.2023.166609_bb0170 – volume: 512 start-page: 163 year: 2019 ident: 10.1016/j.scitotenv.2023.166609_bb0050 article-title: Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2019.01.054 – volume: 14 year: 2014 ident: 10.1016/j.scitotenv.2023.166609_bb0185 article-title: Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover publication-title: Astrobiology – volume: 17 start-page: 2969 year: 2016 ident: 10.1016/j.scitotenv.2023.166609_bb0025 article-title: Magnetic signatures of serpentinization at ophiolite complexes publication-title: Geochem. Geophys. Geosyst. doi: 10.1002/2016GC006321 – volume: 42 year: 2014 ident: 10.1016/j.scitotenv.2023.166609_bb0080 article-title: Magnetite in seafloor serpentinite-Some like it hot publication-title: Geology doi: 10.1130/G35068.1 – volume: 112 year: 2015 ident: 10.1016/j.scitotenv.2023.166609_bb0105 article-title: Pathways for abiotic organic synthesis at submarine hydrothermal fields publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1506295112 – volume: 75 year: 2013 ident: 10.1016/j.scitotenv.2023.166609_bb0155 article-title: Serpentinization, carbon, and deep life publication-title: Rev. Mineral. Geochem. doi: 10.2138/rmg.2013.75.18 – volume: 7 year: 2014 ident: 10.1016/j.scitotenv.2023.166609_bb0195 article-title: Important role for organic carbon in subduction-zone fluids in the deep carbon cycle publication-title: Nat. Geosci. doi: 10.1038/ngeo2291 – volume: 303 start-page: 281 year: 2011 ident: 10.1016/j.scitotenv.2023.166609_bb0100 article-title: Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar publication-title: Earth Planet. Sci. Lett. doi: 10.1016/j.epsl.2011.01.006 – volume: 108 year: 2011 ident: 10.1016/j.scitotenv.2023.166609_bb0210 article-title: In vivo lipidomics using single-cell Raman spectroscopy publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1009043108 – volume: 46 year: 1982 ident: 10.1016/j.scitotenv.2023.166609_bb0055 article-title: Formation of methane and hydrocarbons by pyrolysis of immature kerogens publication-title: Geochim. Cosmochim. Acta doi: 10.1016/0016-7037(82)90005-9 – volume: 5 year: 2012 ident: 10.1016/j.scitotenv.2023.166609_bb0110 article-title: Life in the hydrated suboceanic mantle publication-title: Nat. Geosci. doi: 10.1038/ngeo1359 – volume: 8 year: 2022 ident: 10.1016/j.scitotenv.2023.166609_bb0040 article-title: High-pressure synthesis and storage of solid organic compounds in active subduction zones publication-title: Sci. Adv. doi: 10.1126/sciadv.abo2397 – volume: 148 year: 2011 ident: 10.1016/j.scitotenv.2023.166609_bb0015 article-title: Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq publication-title: Geol. Mag. doi: 10.1017/S0016756811000422 – start-page: 342 year: 2001 ident: 10.1016/j.scitotenv.2023.166609_bb0175 – volume: 178 year: 2013 ident: 10.1016/j.scitotenv.2023.166609_bb0010 article-title: μXANES study of iron redox state in serpentine during oceanic serpentinization publication-title: Lithos doi: 10.1016/j.lithos.2013.04.008 – volume: 21 year: 2000 ident: 10.1016/j.scitotenv.2023.166609_bb0060 article-title: Morphology and tectonics of the Yap Trench publication-title: Mar. Geophys. Res. (Dordr.) – volume: 16 year: 2013 ident: 10.1016/j.scitotenv.2023.166609_bb0125 article-title: The effect of grounded calcium carbonate on the physical properties of NR vulcanised latex films publication-title: J. Rubber Res. |
SSID | ssj0000781 |
Score | 2.432162 |
Snippet | Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 166609 |
SubjectTerms | biosphere carbon Deep carbon cycle electron microscopy energy hydrogen latex nylon Organic contamination organic matter Pacific Ocean Raman spectroscopy serpentinite Serpentinites Serpentinization Yap |
Title | Assessing micrometer-scale contamination from organic materials in serpentinite analysis |
URI | https://dx.doi.org/10.1016/j.scitotenv.2023.166609 https://www.proquest.com/docview/2860407634 https://www.proquest.com/docview/3040351132 |
Volume | 903 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSysxEB9EEYSHaFWen0R4161tdprdeBNRqgUPorzeQpLNQgW3xVbBi3-7M82uoigePC27TJaQ-cgk85sZgH-pk177kCVSyyJBhZ3EqYCJdtpaJwsuIsZoiyvVv8XLYW-4AKdNLgzDKmvbH2363FrXX47q1TyajEac44u5Vtw1i682kRN-ETOW8vbLO8yDi9nEKDMpNlF_wHjRf2dj8k2f2txFvM0hNEYmfr1DfbLV8w3ofA1Wa89RnMTJrcNCqFqwHHtJPrdg6-w9ZY3Iap2dtuBPvJkTMeFoA4Yxzktblrifo_EYEJNMiVdBMHDdMjiG2SU49UTEtk9ekGcbhVWMKkFyO2GYETuswtZ1TTbh9vzs5rSf1P0VEp_KbJaUoSiy1OddS-cYYpPuYYY9V3SKQH6kSktlizz3mQq6DLJLltCRTnlZ6p7PEDHdgsVqXIW_IGgvDKhpuNIBfTezrkSn-Gzpi1wpuw2dZk3NJJbRMA2-7M68scEwG0xkwzYcN2tvPkiEIWP_8-DDhluG9IWDILYK48epkbkiu0VWFb-nSYmCA6yp3PnNJHZhhd8Y_NLt7MHi7OEx7JMLM3MHcxk9gKWTi0H_ip-D6_-DVxzy9Qw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50QxREdCr-NoKv1S3N0sa3Icp0uqcJewtJmsIEu-Gm4H_v3dIqiuKDr21Swl3uu0vz3R3AaWy5U84nEVc8i4QUzchKLyJllTGWZ1REjNgWfdl9ELfD9nABLqtcGKJVltgfMH2O1uWT81Ka55PRiHJ8Raokdc2iX5siXYQ6Vadq16Deuel1-5-AnKShcZ5A28YJX2he-OnZGMPT1zNqJH5Gt2hETvzZSX2D67kPul6HtTJ4ZJ2wvg1Y8EUDlkI7ybcGbF99Zq3hsNJspw1YDT_nWMg52oRhuOpFr8We5oQ84sREU1SXZ8RdN8SPIY0xyj5hofOTYxjchv3KRgXDrTshphHFrMyUpU224OH6anDZjcoWC5GLeTKLcp9lSezSlsGjDGpKoQBF22bNzGMoKeNcmixNXSK9yj1vIRhaNCvHc9V2iRAi3oZaMS78DjB0h14onC6VF66VGJsLK-l46bJUSrMLzUqmehIqaeiKYvaoP9SgSQ06qGEXLirZ6y-bQiPe_z35pNKWRpOhexBT-PHLVPNUInQhsIrfx8Q4gu5YY773n0Ucw3J3cH-n7276vX1YoTfEhWk1D6A2e37xhxjRzOxRuWPfAc019ho |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+micrometer-scale+contamination+from+organic+materials+in+serpentinite+analysis&rft.jtitle=The+Science+of+the+total+environment&rft.au=Nan%2C+Jingbo&rft.au=Zhu%2C+Kechen&rft.au=Ren%2C+Jieji&rft.au=Yao%2C+Weiqi&rft.date=2023-12-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=903&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.166609&rft.externalDocID=S0048969723052348 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon |