Assessing micrometer-scale contamination from organic materials in serpentinite analysis

Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to mai...

Full description

Saved in:
Bibliographic Details
Published inThe Science of the total environment Vol. 903; p. 166609
Main Authors Nan, Jingbo, Zhu, Kechen, Ren, Jieji, Yao, Weiqi, Peng, Xiaotong
Format Journal Article
LanguageEnglish
Published Elsevier B.V 10.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets. [Display omitted] •Organic materials cause micrometer-scale contamination in serpentinite analysis.•Evaluating contamination in serpentinite is vital for deriving significant insights.•Future studies need to limit the use of organic materials.
AbstractList Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets. [Display omitted] •Organic materials cause micrometer-scale contamination in serpentinite analysis.•Evaluating contamination in serpentinite is vital for deriving significant insights.•Future studies need to limit the use of organic materials.
Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.
Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse micrometer-scale organic matter in serpentinites offers insights into deep carbon cycling and the origin of life on Earth. It is critical to maintain stringent lab protocols in analyzing serpentinite samples, limiting the contact with organic materials that could contaminate serpentinites and cause misinterpretations. However, the extent to which these organic materials (e.g. latex gloves or nylon polishing disc) can introduce contamination remains unclear. Here we subject serpentinite samples from the Yap Trench in the western Pacific Ocean to multi-stage cutting and polishing procedures prior to analysis. Our findings from electron microscopy reveal that micrometer-scale organic matter in serpentinites is randomly distributed either on the sample surface or within Cr-spinel fractures. Further analysis using Raman spectroscopy indicates that the organic matter contains several hydrogen bonding moieties, similar to those found in the latex gloves or nylon polishing disc used during the treatment of serpentinite samples. Our results suggest that the detected organic matter is likely due to contamination from the organic materials involved during sample processing. Thus, future studies need to carefully assess micrometer-scale organic contamination and limit the use of organic materials when analyzing organic compounds hosted in serpentinites, not only on Earth but also on other rocky planets.
ArticleNumber 166609
Author Peng, Xiaotong
Nan, Jingbo
Zhu, Kechen
Ren, Jieji
Yao, Weiqi
Author_xml – sequence: 1
  givenname: Jingbo
  surname: Nan
  fullname: Nan, Jingbo
  organization: Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China
– sequence: 2
  givenname: Kechen
  surname: Zhu
  fullname: Zhu, Kechen
  organization: Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
– sequence: 3
  givenname: Jieji
  surname: Ren
  fullname: Ren, Jieji
  organization: School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Weiqi
  surname: Yao
  fullname: Yao, Weiqi
  email: yaowq@sustech.edu.cn
  organization: Department of Ocean Science and Engineering, Southern University of Science and Technology, 518055 Shenzhen, China
– sequence: 5
  givenname: Xiaotong
  surname: Peng
  fullname: Peng, Xiaotong
  email: xtpeng@idsse.ac.cn
  organization: Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, 572000 Sanya, China
BookMark eNqFkMtKBDEQRYMoOD6-wV666bHymKR7OYgvENwouAsxqZYM3cmYioJ_bw8jbq1NLercC3VO2GHKCRm74LDkwPXVZkk-1lwxfS0FCLnkWmvoD9iCd6ZvOQh9yBYAqmt73ZtjdkK0gXlMxxfsdU2ERDG9N1P0JU9YsbTk3YiNz6m6KSZXY07NMB-bXN5dir6Z3IxFN1ITU0NYtphqTLFi45IbvynSGTsa5jue_-5T9nJ783x93z4-3T1crx9bL4Wp7YAhGOk77qDXSqt-pYxavQUICB1oOWgXus4bjf2AgrsQ3gSAF0O_8kYpJU_Z5b53W_LHJ1K1UySP4-gS5k-yEhTIFedS_IuKTs-w0XLXavborISo4GC3JU6ufFsOdqfdbuyfdrvTbvfa5-R6n8T56a-IZcdh8hhiQV9tyPHfjh8J5ZNx
Cites_doi 10.1016/j.rcim.2022.102360
10.1038/s41467-022-27970-0
10.1144/jgs2018-097
10.1073/pnas.1504674112
10.1016/j.saa.2013.08.014
10.1017/9781108677950.015
10.1016/j.gca.2020.04.017
10.1007/s43154-020-00021-6
10.1038/s41586-018-0684-z
10.1038/s41467-018-07385-6
10.1073/pnas.2002619117
10.1016/j.marpetgeo.2018.03.026
10.2113/econgeo.110.6.1515
10.1016/j.epsl.2023.118226
10.1016/j.lithos.2013.05.019
10.1029/2018JE005796
10.1016/j.lithos.2011.05.011
10.1073/pnas.1612147114
10.1016/j.scitotenv.2019.135675
10.1016/j.chemgeo.2008.10.029
10.1016/j.epsl.2019.01.054
10.1002/2016GC006321
10.1130/G35068.1
10.1073/pnas.1506295112
10.2138/rmg.2013.75.18
10.1038/ngeo2291
10.1016/j.epsl.2011.01.006
10.1073/pnas.1009043108
10.1016/0016-7037(82)90005-9
10.1038/ngeo1359
10.1126/sciadv.abo2397
10.1017/S0016756811000422
10.1016/j.lithos.2013.04.008
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright © 2023 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2023 Elsevier B.V.
– notice: Copyright © 2023 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.scitotenv.2023.166609
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Public Health
Biology
Environmental Sciences
EISSN 1879-1026
ExternalDocumentID 10_1016_j_scitotenv_2023_166609
S0048969723052348
GeographicLocations Yap
Pacific Ocean
GeographicLocations_xml – name: Pacific Ocean
– name: Yap
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BKOJK
BLECG
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
K-O
KCYFY
KOM
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCU
SDF
SDG
SDP
SES
SPCBC
SSH
SSJ
SSZ
T5K
~02
~G-
~KM
53G
AAQXK
AAYJJ
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEUPX
AFPUW
AGCQF
AGHFR
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
R2-
RIG
SEN
SEW
WUQ
XPP
ZXP
ZY4
7X8
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c327t-fedd73c81a096464954745bd0de08063f6ad88c76e9fe21addb200c2f95c74443
IEDL.DBID .~1
ISSN 0048-9697
1879-1026
IngestDate Fri Jul 11 15:26:53 EDT 2025
Mon Jul 21 10:13:04 EDT 2025
Tue Jul 01 02:09:09 EDT 2025
Sun Apr 06 06:53:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep carbon cycle
Serpentinites
Serpentinization
Organic contamination
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-fedd73c81a096464954745bd0de08063f6ad88c76e9fe21addb200c2f95c74443
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2860407634
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3040351132
proquest_miscellaneous_2860407634
crossref_primary_10_1016_j_scitotenv_2023_166609
elsevier_sciencedirect_doi_10_1016_j_scitotenv_2023_166609
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-12-10
PublicationDateYYYYMMDD 2023-12-10
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-10
  day: 10
PublicationDecade 2020
PublicationTitle The Science of the total environment
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mohamad, Sitinor, Amir Hashim (bb0125) 2013; 16
Rafieian, Hazel, Liu (bb0150) 2014
Andreani, Ménez (bb0005) 2019
Plümper, King, Geisler, Liu, Pabst, Savov, Rost, Zack (bb0145) 2017; 114
Andreani, Muñoz, Marcaillou, Delacour (bb0010) 2013; 178
Klein, Humphris, Guo, Schubotz, Schwarzenbach, Orsi, Karl (bb0085) 2015; 112
Manuella, Scribano, Carbone (bb0095) 2018
Wang, Konhauser, Zhang (bb0200) 2015; 110
Ménez, Pasini, Brunelli (bb0110) 2012; 5
Dodd, Papineau, She, Manikyamba, Wan, O’Neil, Karhu, Rizo, Pirajno (bb0050) 2019; 512
Ménez, Pisapia, Andreani, Jamme, Vanbellingen, Brunelle, Richard, Dumas, Réfrégiers (bb0115) 2018; 564
Durand-Souron, Boulet, Durand (bb0055) 1982; 46
Sun, Wu, Cheng, Zhang, Frost (bb0190) 2014; 117
Fujiwara, Tamura, Nishizawa, Fujioka, Kobayashi, Iwabuchi (bb0060) 2000; 21
Bonnemains, Carlut, Escartín, Mével, Andreani, Debret (bb0025) 2016; 17
Debret, Ménez, Walter, Bouquerel, Bouilhol, Mattielli, Pisapia, Rigaudier, Williams (bb0040) 2022; 8
Michalski, Glotch, Rogers, Niles, Cuadros, Ashley, Johnson (bb0120) 2019; 124
Goto, Sekine, Shimoda, Hein, Aoki, Ishikawa, Suzuki, Gordon, Anbar (bb0065) 2020; 280
Wu, Volponi, Oliver, Parikh, Simmons, Singh (bb0210) 2011; 108
Shneier, Bostelman (bb0170) 2015
Ciliberto, Crisafulli, Manuella, Samperi, Scirè, Scribano, Viccaro, Viscuso (bb0035) 2009; 258
Summons, Sessions, Allwood, Barton, Beaty, Blakkolb, Canham, Clark, Dworkin, Lin, Mathies, Milkovich, Steele (bb0185) 2014; 14
Papineau, de Gregorio, Sagar, Thorogate, Wang, Nittler, Kilcoyne, Marbach, Drost, Thornton (bb0140) 2019; 176
McDermott, Seewald, German, Sylva (bb0105) 2015; 112
Bloise, Ricchiuti, Lanzafame, Punturo (bb0020) 2020; 703
Liu, Liu, Xu, Wang, Zhou (bb0090) 2022; 77
Sforna, Brunelli, Pisapia, Pasini, Malferrari, Ménez (bb0165) 2018; 9
Aswad, Aziz, Koyi (bb0015) 2011; 148
Bouilhol, Debret, Inglis, Warembourg, Grocolas, Rigaudier, Villeneuve, Burton (bb0030) 2022; 13
Socrates (bb0175) 2001
Huang, Daniel, Cardon, Montagnac, Sverjensky (bb0070) 2017; 8
Schrenk, Brazelton, Lang (bb0155) 2013; 75
Marcaillou, Muñoz, Vidal, Parra, Harfouche (bb0100) 2011; 303
Klein, Bach, Humphris, Kahl, Jöns, Moskowitz, Berquó (bb0080) 2014; 42
Deschamps, Godard, Guillot, Hattori (bb0045) 2013
Nan, Peng, Wang, Papineau, She, Guo, Peng, Zhou, Hu, Yao, Zhang, Wang, Tao (bb0135) 2023; 615
Scirè, Ciliberto, Crisafulli, Scribano, Bellatreccia, Ventura (bb0160) 2011; 125
Worman, Pratson, Karson, Schlesinger (bb0205) 2020; 117
Sverjensky, Stagno, Huang (bb0195) 2014; 7
Kleeberger, Bormann, Kraus, Huber (bb0075) 2020; 1
Nan, King, Delen, Meirer, Weckhuysen, Guo, Peng, Plümper (bb0130) 2021; 49
Socrates (bb0180) 2001
Bonnemains (10.1016/j.scitotenv.2023.166609_bb0025) 2016; 17
Huang (10.1016/j.scitotenv.2023.166609_bb0070) 2017; 8
Sverjensky (10.1016/j.scitotenv.2023.166609_bb0195) 2014; 7
Manuella (10.1016/j.scitotenv.2023.166609_bb0095) 2018
Bloise (10.1016/j.scitotenv.2023.166609_bb0020) 2020; 703
Ménez (10.1016/j.scitotenv.2023.166609_bb0110) 2012; 5
Fujiwara (10.1016/j.scitotenv.2023.166609_bb0060) 2000; 21
McDermott (10.1016/j.scitotenv.2023.166609_bb0105) 2015; 112
Wu (10.1016/j.scitotenv.2023.166609_bb0210) 2011; 108
Wang (10.1016/j.scitotenv.2023.166609_bb0200) 2015; 110
Klein (10.1016/j.scitotenv.2023.166609_bb0085) 2015; 112
Worman (10.1016/j.scitotenv.2023.166609_bb0205) 2020; 117
Socrates (10.1016/j.scitotenv.2023.166609_bb0175) 2001
Shneier (10.1016/j.scitotenv.2023.166609_bb0170) 2015
Aswad (10.1016/j.scitotenv.2023.166609_bb0015) 2011; 148
Andreani (10.1016/j.scitotenv.2023.166609_bb0005) 2019
Klein (10.1016/j.scitotenv.2023.166609_bb0080) 2014; 42
Ménez (10.1016/j.scitotenv.2023.166609_bb0115) 2018; 564
Goto (10.1016/j.scitotenv.2023.166609_bb0065) 2020; 280
Socrates (10.1016/j.scitotenv.2023.166609_bb0180) 2001
Nan (10.1016/j.scitotenv.2023.166609_bb0135) 2023; 615
Dodd (10.1016/j.scitotenv.2023.166609_bb0050) 2019; 512
Andreani (10.1016/j.scitotenv.2023.166609_bb0010) 2013; 178
Marcaillou (10.1016/j.scitotenv.2023.166609_bb0100) 2011; 303
Debret (10.1016/j.scitotenv.2023.166609_bb0040) 2022; 8
Sun (10.1016/j.scitotenv.2023.166609_bb0190) 2014; 117
Michalski (10.1016/j.scitotenv.2023.166609_bb0120) 2019; 124
Durand-Souron (10.1016/j.scitotenv.2023.166609_bb0055) 1982; 46
Rafieian (10.1016/j.scitotenv.2023.166609_bb0150) 2014
Kleeberger (10.1016/j.scitotenv.2023.166609_bb0075) 2020; 1
Scirè (10.1016/j.scitotenv.2023.166609_bb0160) 2011; 125
Liu (10.1016/j.scitotenv.2023.166609_bb0090) 2022; 77
Plümper (10.1016/j.scitotenv.2023.166609_bb0145) 2017; 114
Mohamad (10.1016/j.scitotenv.2023.166609_bb0125) 2013; 16
Nan (10.1016/j.scitotenv.2023.166609_bb0130) 2021; 49
Papineau (10.1016/j.scitotenv.2023.166609_bb0140) 2019; 176
Ciliberto (10.1016/j.scitotenv.2023.166609_bb0035) 2009; 258
Deschamps (10.1016/j.scitotenv.2023.166609_bb0045) 2013
Summons (10.1016/j.scitotenv.2023.166609_bb0185) 2014; 14
Bouilhol (10.1016/j.scitotenv.2023.166609_bb0030) 2022; 13
Schrenk (10.1016/j.scitotenv.2023.166609_bb0155) 2013; 75
Sforna (10.1016/j.scitotenv.2023.166609_bb0165) 2018; 9
References_xml – volume: 117
  year: 2014
  ident: bb0190
  article-title: A Raman spectroscopic comparison of calcite and dolomite
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
– volume: 49
  year: 2021
  ident: bb0130
  article-title: The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean
  publication-title: Geology
– start-page: 8022
  year: 2015
  ident: bb0170
  article-title: Literature Review of Mobile Robots for Manufacturing
– volume: 13
  year: 2022
  ident: bb0030
  article-title: Decoupling of inorganic and organic carbon during slab mantle devolatilisation
  publication-title: Nat. Commun.
– volume: 112
  year: 2015
  ident: bb0105
  article-title: Pathways for abiotic organic synthesis at submarine hydrothermal fields
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 46
  year: 1982
  ident: bb0055
  article-title: Formation of methane and hydrocarbons by pyrolysis of immature kerogens
  publication-title: Geochim. Cosmochim. Acta
– volume: 280
  year: 2020
  ident: bb0065
  article-title: A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: insights from modern marine hydrothermal Fe-Mn oxides
  publication-title: Geochim. Cosmochim. Acta
– volume: 1
  year: 2020
  ident: bb0075
  article-title: A survey on learning-based robotic grasping
  publication-title: Curr. Robot. Rep.
– volume: 42
  year: 2014
  ident: bb0080
  article-title: Magnetite in seafloor serpentinite-Some like it hot
  publication-title: Geology
– year: 2019
  ident: bb0005
  article-title: New Perspectives on Abiotic Organic Synthesis and Processing During Hydrothermal Alteration of the Oceanic Lithosphere
  publication-title: Deep Carbon: Past to Present
– volume: 21
  year: 2000
  ident: bb0060
  article-title: Morphology and tectonics of the Yap Trench
  publication-title: Mar. Geophys. Res. (Dordr.)
– volume: 77
  year: 2022
  ident: bb0090
  article-title: Robot learning towards smart robotic manufacturing: a review
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 14
  year: 2014
  ident: bb0185
  article-title: Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover
  publication-title: Astrobiology
– volume: 125
  year: 2011
  ident: bb0160
  article-title: Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily
  publication-title: Lithos
– volume: 7
  year: 2014
  ident: bb0195
  article-title: Important role for organic carbon in subduction-zone fluids in the deep carbon cycle
  publication-title: Nat. Geosci.
– volume: 8
  year: 2017
  ident: bb0070
  article-title: Immiscible hydrocarbon fluids in the deep carbon cycle
  publication-title: Nat. Commun.
– volume: 615
  year: 2023
  ident: bb0135
  article-title: Molecular mechanism of metamorphic alteration on traces of early life in banded iron formations
  publication-title: Earth Planet. Sci. Lett.
– volume: 114
  year: 2017
  ident: bb0145
  article-title: Subduction zone forearc serpentinites as incubators for deep microbial life
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 117
  year: 2020
  ident: bb0205
  article-title: Abiotic hydrogen (H
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 703
  year: 2020
  ident: bb0020
  article-title: X-ray synchrotron microtomography: a new technique for characterizing chrysotile asbestos
  publication-title: Sci. Total Environ.
– volume: 112
  year: 2015
  ident: bb0085
  article-title: Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 564
  year: 2018
  ident: bb0115
  article-title: Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere
  publication-title: Nature
– volume: 124
  year: 2019
  ident: bb0120
  article-title: The geology and astrobiology of McLaughlin Crater, Mars: an ancient Lacustrine Basin containing turbidites, mudstones, and serpentinites
  publication-title: J. Geophys. Res. Planets
– year: 2014
  ident: bb0150
  article-title: Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm
  publication-title: Procedia CIRP
– volume: 8
  year: 2022
  ident: bb0040
  article-title: High-pressure synthesis and storage of solid organic compounds in active subduction zones
  publication-title: Sci. Adv.
– volume: 110
  year: 2015
  ident: bb0200
  article-title: Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China
  publication-title: Econ. Geol.
– start-page: 342
  year: 2001
  ident: bb0180
  article-title: Infrared and Raman characteristic group frequencies
  publication-title: Tables and charts
– volume: 148
  year: 2011
  ident: bb0015
  article-title: Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq
  publication-title: Geol. Mag.
– year: 2018
  ident: bb0095
  article-title: Abyssal serpentinites as gigantic factories of marine salts and oil
  publication-title: Mar. Pet. Geol.
– volume: 303
  start-page: 281
  year: 2011
  end-page: 290
  ident: bb0100
  article-title: Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar
  publication-title: Earth Planet. Sci. Lett.
– volume: 178
  year: 2013
  ident: bb0010
  article-title: μXANES study of iron redox state in serpentine during oceanic serpentinization
  publication-title: Lithos
– start-page: 342
  year: 2001
  ident: bb0175
  article-title: Infrared and Raman Characteristic Group Frequencies. Tables and charts
– volume: 17
  start-page: 2969
  year: 2016
  end-page: 2986
  ident: bb0025
  article-title: Magnetic signatures of serpentinization at ophiolite complexes
  publication-title: Geochem. Geophys. Geosyst.
– volume: 5
  year: 2012
  ident: bb0110
  article-title: Life in the hydrated suboceanic mantle
  publication-title: Nat. Geosci.
– volume: 108
  year: 2011
  ident: bb0210
  article-title: In vivo lipidomics using single-cell Raman spectroscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 176
  year: 2019
  ident: bb0140
  article-title: Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C
  publication-title: J. Geol. Soc. Lond.
– volume: 16
  year: 2013
  ident: bb0125
  article-title: The effect of grounded calcium carbonate on the physical properties of NR vulcanised latex films
  publication-title: J. Rubber Res.
– volume: 75
  year: 2013
  ident: bb0155
  article-title: Serpentinization, carbon, and deep life
  publication-title: Rev. Mineral. Geochem.
– year: 2013
  ident: bb0045
  article-title: Geochemistry of subduction zone serpentinites: a review
  publication-title: Lithos.
– volume: 512
  start-page: 163
  year: 2019
  end-page: 174
  ident: bb0050
  article-title: Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations
  publication-title: Earth Planet. Sci. Lett.
– volume: 9
  year: 2018
  ident: bb0165
  article-title: Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust
  publication-title: Nat. Commun.
– volume: 258
  year: 2009
  ident: bb0035
  article-title: Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system
  publication-title: Chem. Geol.
– volume: 77
  year: 2022
  ident: 10.1016/j.scitotenv.2023.166609_bb0090
  article-title: Robot learning towards smart robotic manufacturing: a review
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2022.102360
– volume: 13
  year: 2022
  ident: 10.1016/j.scitotenv.2023.166609_bb0030
  article-title: Decoupling of inorganic and organic carbon during slab mantle devolatilisation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-27970-0
– volume: 176
  year: 2019
  ident: 10.1016/j.scitotenv.2023.166609_bb0140
  article-title: Fossil biomass preserved as graphitic carbon in a late paleoproterozoic banded iron formation metamorphosed at more than 550°C
  publication-title: J. Geol. Soc. Lond.
  doi: 10.1144/jgs2018-097
– volume: 112
  year: 2015
  ident: 10.1016/j.scitotenv.2023.166609_bb0085
  article-title: Fluid mixing and the deep biosphere of a fossil Lost City-type hydrothermal system at the Iberia Margin
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1504674112
– volume: 117
  year: 2014
  ident: 10.1016/j.scitotenv.2023.166609_bb0190
  article-title: A Raman spectroscopic comparison of calcite and dolomite
  publication-title: Spectrochim. Acta A Mol. Biomol. Spectrosc.
  doi: 10.1016/j.saa.2013.08.014
– year: 2019
  ident: 10.1016/j.scitotenv.2023.166609_bb0005
  article-title: New Perspectives on Abiotic Organic Synthesis and Processing During Hydrothermal Alteration of the Oceanic Lithosphere
  doi: 10.1017/9781108677950.015
– volume: 280
  year: 2020
  ident: 10.1016/j.scitotenv.2023.166609_bb0065
  article-title: A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: insights from modern marine hydrothermal Fe-Mn oxides
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/j.gca.2020.04.017
– volume: 1
  year: 2020
  ident: 10.1016/j.scitotenv.2023.166609_bb0075
  article-title: A survey on learning-based robotic grasping
  publication-title: Curr. Robot. Rep.
  doi: 10.1007/s43154-020-00021-6
– volume: 564
  year: 2018
  ident: 10.1016/j.scitotenv.2023.166609_bb0115
  article-title: Abiotic synthesis of amino acids in the recesses of the oceanic lithosphere
  publication-title: Nature
  doi: 10.1038/s41586-018-0684-z
– volume: 9
  year: 2018
  ident: 10.1016/j.scitotenv.2023.166609_bb0165
  article-title: Abiotic formation of condensed carbonaceous matter in the hydrating oceanic crust
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07385-6
– volume: 117
  year: 2020
  ident: 10.1016/j.scitotenv.2023.166609_bb0205
  article-title: Abiotic hydrogen (H2) sources and sinks near the Mid-Ocean Ridge (MOR) with implications for the subseafloor biosphere
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.2002619117
– year: 2018
  ident: 10.1016/j.scitotenv.2023.166609_bb0095
  article-title: Abyssal serpentinites as gigantic factories of marine salts and oil
  publication-title: Mar. Pet. Geol.
  doi: 10.1016/j.marpetgeo.2018.03.026
– year: 2014
  ident: 10.1016/j.scitotenv.2023.166609_bb0150
  article-title: Regenerative instability of impact-cutting material removal in the grinding process performed by a flexible robot arm
– volume: 110
  year: 2015
  ident: 10.1016/j.scitotenv.2023.166609_bb0200
  article-title: Depositional environment of the Paleoproterozoic Yuanjiacun banded iron formation in Shanxi Province, China
  publication-title: Econ. Geol.
  doi: 10.2113/econgeo.110.6.1515
– volume: 8
  year: 2017
  ident: 10.1016/j.scitotenv.2023.166609_bb0070
  article-title: Immiscible hydrocarbon fluids in the deep carbon cycle
  publication-title: Nat. Commun.
– volume: 615
  year: 2023
  ident: 10.1016/j.scitotenv.2023.166609_bb0135
  article-title: Molecular mechanism of metamorphic alteration on traces of early life in banded iron formations
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2023.118226
– start-page: 342
  year: 2001
  ident: 10.1016/j.scitotenv.2023.166609_bb0180
  article-title: Infrared and Raman characteristic group frequencies
– year: 2013
  ident: 10.1016/j.scitotenv.2023.166609_bb0045
  article-title: Geochemistry of subduction zone serpentinites: a review
  publication-title: Lithos.
  doi: 10.1016/j.lithos.2013.05.019
– volume: 124
  year: 2019
  ident: 10.1016/j.scitotenv.2023.166609_bb0120
  article-title: The geology and astrobiology of McLaughlin Crater, Mars: an ancient Lacustrine Basin containing turbidites, mudstones, and serpentinites
  publication-title: J. Geophys. Res. Planets
  doi: 10.1029/2018JE005796
– volume: 125
  year: 2011
  ident: 10.1016/j.scitotenv.2023.166609_bb0160
  article-title: Asphaltene-bearing mantle xenoliths from Hyblean diatremes, Sicily
  publication-title: Lithos
  doi: 10.1016/j.lithos.2011.05.011
– volume: 114
  year: 2017
  ident: 10.1016/j.scitotenv.2023.166609_bb0145
  article-title: Subduction zone forearc serpentinites as incubators for deep microbial life
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1612147114
– volume: 703
  year: 2020
  ident: 10.1016/j.scitotenv.2023.166609_bb0020
  article-title: X-ray synchrotron microtomography: a new technique for characterizing chrysotile asbestos
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2019.135675
– volume: 258
  year: 2009
  ident: 10.1016/j.scitotenv.2023.166609_bb0035
  article-title: Aliphatic hydrocarbons in metasomatized gabbroic xenoliths from Hyblean diatremes (Sicily): genesis in a serpentinite hydrothermal system
  publication-title: Chem. Geol.
  doi: 10.1016/j.chemgeo.2008.10.029
– volume: 49
  year: 2021
  ident: 10.1016/j.scitotenv.2023.166609_bb0130
  article-title: The nanogeochemistry of abiotic carbonaceous matter in serpentinites from the Yap Trench, western Pacific Ocean
  publication-title: Geology
– start-page: 8022
  year: 2015
  ident: 10.1016/j.scitotenv.2023.166609_bb0170
– volume: 512
  start-page: 163
  year: 2019
  ident: 10.1016/j.scitotenv.2023.166609_bb0050
  article-title: Widespread occurrences of variably crystalline 13C-depleted graphitic carbon in banded iron formations
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2019.01.054
– volume: 14
  year: 2014
  ident: 10.1016/j.scitotenv.2023.166609_bb0185
  article-title: Planning considerations related to the organic contamination of martian samples and implications for the Mars 2020 rover
  publication-title: Astrobiology
– volume: 17
  start-page: 2969
  year: 2016
  ident: 10.1016/j.scitotenv.2023.166609_bb0025
  article-title: Magnetic signatures of serpentinization at ophiolite complexes
  publication-title: Geochem. Geophys. Geosyst.
  doi: 10.1002/2016GC006321
– volume: 42
  year: 2014
  ident: 10.1016/j.scitotenv.2023.166609_bb0080
  article-title: Magnetite in seafloor serpentinite-Some like it hot
  publication-title: Geology
  doi: 10.1130/G35068.1
– volume: 112
  year: 2015
  ident: 10.1016/j.scitotenv.2023.166609_bb0105
  article-title: Pathways for abiotic organic synthesis at submarine hydrothermal fields
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1506295112
– volume: 75
  year: 2013
  ident: 10.1016/j.scitotenv.2023.166609_bb0155
  article-title: Serpentinization, carbon, and deep life
  publication-title: Rev. Mineral. Geochem.
  doi: 10.2138/rmg.2013.75.18
– volume: 7
  year: 2014
  ident: 10.1016/j.scitotenv.2023.166609_bb0195
  article-title: Important role for organic carbon in subduction-zone fluids in the deep carbon cycle
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo2291
– volume: 303
  start-page: 281
  year: 2011
  ident: 10.1016/j.scitotenv.2023.166609_bb0100
  article-title: Mineralogical evidence for H2 degassing during serpentinization at 300°C/300bar
  publication-title: Earth Planet. Sci. Lett.
  doi: 10.1016/j.epsl.2011.01.006
– volume: 108
  year: 2011
  ident: 10.1016/j.scitotenv.2023.166609_bb0210
  article-title: In vivo lipidomics using single-cell Raman spectroscopy
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1009043108
– volume: 46
  year: 1982
  ident: 10.1016/j.scitotenv.2023.166609_bb0055
  article-title: Formation of methane and hydrocarbons by pyrolysis of immature kerogens
  publication-title: Geochim. Cosmochim. Acta
  doi: 10.1016/0016-7037(82)90005-9
– volume: 5
  year: 2012
  ident: 10.1016/j.scitotenv.2023.166609_bb0110
  article-title: Life in the hydrated suboceanic mantle
  publication-title: Nat. Geosci.
  doi: 10.1038/ngeo1359
– volume: 8
  year: 2022
  ident: 10.1016/j.scitotenv.2023.166609_bb0040
  article-title: High-pressure synthesis and storage of solid organic compounds in active subduction zones
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.abo2397
– volume: 148
  year: 2011
  ident: 10.1016/j.scitotenv.2023.166609_bb0015
  article-title: Cr-spinel compositions in serpentinites and their implications for the petrotectonic history of the Zagros Suture Zone, Kurdistan Region, Iraq
  publication-title: Geol. Mag.
  doi: 10.1017/S0016756811000422
– start-page: 342
  year: 2001
  ident: 10.1016/j.scitotenv.2023.166609_bb0175
– volume: 178
  year: 2013
  ident: 10.1016/j.scitotenv.2023.166609_bb0010
  article-title: μXANES study of iron redox state in serpentine during oceanic serpentinization
  publication-title: Lithos
  doi: 10.1016/j.lithos.2013.04.008
– volume: 21
  year: 2000
  ident: 10.1016/j.scitotenv.2023.166609_bb0060
  article-title: Morphology and tectonics of the Yap Trench
  publication-title: Mar. Geophys. Res. (Dordr.)
– volume: 16
  year: 2013
  ident: 10.1016/j.scitotenv.2023.166609_bb0125
  article-title: The effect of grounded calcium carbonate on the physical properties of NR vulcanised latex films
  publication-title: J. Rubber Res.
SSID ssj0000781
Score 2.432162
Snippet Serpentinization of peridotite provides a significant source of energy for the subseafloor biosphere and abiotic organic synthesis. The presence of diverse...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 166609
SubjectTerms biosphere
carbon
Deep carbon cycle
electron microscopy
energy
hydrogen
latex
nylon
Organic contamination
organic matter
Pacific Ocean
Raman spectroscopy
serpentinite
Serpentinites
Serpentinization
Yap
Title Assessing micrometer-scale contamination from organic materials in serpentinite analysis
URI https://dx.doi.org/10.1016/j.scitotenv.2023.166609
https://www.proquest.com/docview/2860407634
https://www.proquest.com/docview/3040351132
Volume 903
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NSysxEB9EEYSHaFWen0R4161tdprdeBNRqgUPorzeQpLNQgW3xVbBi3-7M82uoigePC27TJaQ-cgk85sZgH-pk177kCVSyyJBhZ3EqYCJdtpaJwsuIsZoiyvVv8XLYW-4AKdNLgzDKmvbH2363FrXX47q1TyajEac44u5Vtw1i682kRN-ETOW8vbLO8yDi9nEKDMpNlF_wHjRf2dj8k2f2txFvM0hNEYmfr1DfbLV8w3ofA1Wa89RnMTJrcNCqFqwHHtJPrdg6-w9ZY3Iap2dtuBPvJkTMeFoA4Yxzktblrifo_EYEJNMiVdBMHDdMjiG2SU49UTEtk9ekGcbhVWMKkFyO2GYETuswtZ1TTbh9vzs5rSf1P0VEp_KbJaUoSiy1OddS-cYYpPuYYY9V3SKQH6kSktlizz3mQq6DLJLltCRTnlZ6p7PEDHdgsVqXIW_IGgvDKhpuNIBfTezrkSn-Gzpi1wpuw2dZk3NJJbRMA2-7M68scEwG0xkwzYcN2tvPkiEIWP_8-DDhluG9IWDILYK48epkbkiu0VWFb-nSYmCA6yp3PnNJHZhhd8Y_NLt7MHi7OEx7JMLM3MHcxk9gKWTi0H_ip-D6_-DVxzy9Qw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED50QxREdCr-NoKv1S3N0sa3Icp0uqcJewtJmsIEu-Gm4H_v3dIqiuKDr21Swl3uu0vz3R3AaWy5U84nEVc8i4QUzchKLyJllTGWZ1REjNgWfdl9ELfD9nABLqtcGKJVltgfMH2O1uWT81Ka55PRiHJ8Raokdc2iX5siXYQ6Vadq16Deuel1-5-AnKShcZ5A28YJX2he-OnZGMPT1zNqJH5Gt2hETvzZSX2D67kPul6HtTJ4ZJ2wvg1Y8EUDlkI7ybcGbF99Zq3hsNJspw1YDT_nWMg52oRhuOpFr8We5oQ84sREU1SXZ8RdN8SPIY0xyj5hofOTYxjchv3KRgXDrTshphHFrMyUpU224OH6anDZjcoWC5GLeTKLcp9lSezSlsGjDGpKoQBF22bNzGMoKeNcmixNXSK9yj1vIRhaNCvHc9V2iRAi3oZaMS78DjB0h14onC6VF66VGJsLK-l46bJUSrMLzUqmehIqaeiKYvaoP9SgSQ06qGEXLirZ6y-bQiPe_z35pNKWRpOhexBT-PHLVPNUInQhsIrfx8Q4gu5YY773n0Ucw3J3cH-n7276vX1YoTfEhWk1D6A2e37xhxjRzOxRuWPfAc019ho
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+micrometer-scale+contamination+from+organic+materials+in+serpentinite+analysis&rft.jtitle=The+Science+of+the+total+environment&rft.au=Nan%2C+Jingbo&rft.au=Zhu%2C+Kechen&rft.au=Ren%2C+Jieji&rft.au=Yao%2C+Weiqi&rft.date=2023-12-10&rft.pub=Elsevier+B.V&rft.issn=0048-9697&rft.volume=903&rft_id=info:doi/10.1016%2Fj.scitotenv.2023.166609&rft.externalDocID=S0048969723052348
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-9697&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-9697&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-9697&client=summon