A measured data correlation-based strain estimation technique for building structures using convolutional neural network

A machine learning-based strain estimation method for structural members in a building is presented The relationship between the strain responses of structural members is determined using a convolutional neural network (CNN) For accurate strain estimation, correlation analysis is introduced to selec...

Full description

Saved in:
Bibliographic Details
Published inIntegrated computer-aided engineering Vol. 30; no. 4; pp. 395 - 412
Main Authors Oh, Byung Kwan, Yoo, Sang Hoon, Park, Hyo Seon
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 31.08.2023
Sage Publications Ltd
Subjects
Online AccessGet full text
ISSN1069-2509
1875-8835
DOI10.3233/ICA-230714

Cover

Abstract A machine learning-based strain estimation method for structural members in a building is presented The relationship between the strain responses of structural members is determined using a convolutional neural network (CNN) For accurate strain estimation, correlation analysis is introduced to select the optimal CNN model among responses from multiple structural members. The optimal CNN model trained using the response of the structural member with a high degree of correlation with the response of the target structural member is utilized to estimate the strain of the target structural member The proposed correlation-based technique can also provide the next best CNN model in case of defects in the sensors used to construct the optimal CNN. Validity is examined through the application of the presented technique to a numerical study on a three-dimensional steel structure and an experimental study on a steel frame specimen.
AbstractList A machine learning-based strain estimation method for structural members in a building is presented The relationship between the strain responses of structural members is determined using a convolutional neural network (CNN) For accurate strain estimation, correlation analysis is introduced to select the optimal CNN model among responses from multiple structural members. The optimal CNN model trained using the response of the structural member with a high degree of correlation with the response of the target structural member is utilized to estimate the strain of the target structural member The proposed correlation-based technique can also provide the next best CNN model in case of defects in the sensors used to construct the optimal CNN. Validity is examined through the application of the presented technique to a numerical study on a three-dimensional steel structure and an experimental study on a steel frame specimen.
Author Yoo, Sang Hoon
Oh, Byung Kwan
Park, Hyo Seon
Author_xml – sequence: 1
  givenname: Byung Kwan
  surname: Oh
  fullname: Oh, Byung Kwan
  organization: Department of Architectural Engineering
– sequence: 2
  givenname: Sang Hoon
  surname: Yoo
  fullname: Yoo, Sang Hoon
  organization: Department of Architectural Engineering
– sequence: 3
  givenname: Hyo Seon
  surname: Park
  fullname: Park, Hyo Seon
  email: hspark@yonsei.ac.kr
  organization: Department of Architectural Engineering
BookMark eNptkEtLAzEUhYNUsK1u_AUBF4IwmkkmM5llKb6g4EbXQ15Tp06TmoePf2-mIwjS1b0cvnM598zAxFijATjP0TXBhNw8LhcZJqjKiyMwzVlFM8YInaQdlXWGKapPwMz7DUKIIlxNwdcCbjX30WkFFQ8cSuuc7nnorMkE90n2wfHOQO1Dt93rMGj5arr3qGFrHRSx61Vn1gMYZUinPIx-EKQ1H7aPg4f30Ojo9iN8Wvd2Co5b3nt99jvn4OXu9nn5kK2e7tMXq0wSXIWslVghrrQgWCCat4xSUZSU1pXSpK7LUpWiZqzCoiJYI9SSnComCkESK2RO5uBivLtzNiX2odnY6FIe32BGGWFFailRVyMlnfXe6bbZufSt-25y1AzNNilTMzabYPQPll3YNzM01R-2XI4Wz9f6L8EB8gcKEYuj
CitedBy_id crossref_primary_10_3390_app14188556
crossref_primary_10_3233_ICA_240734
crossref_primary_10_1111_mice_13132
crossref_primary_10_3233_ICA_230728
crossref_primary_10_3390_buildings14092995
crossref_primary_10_3233_ICA_240738
crossref_primary_10_1111_mice_13336
crossref_primary_10_1111_mice_13301
crossref_primary_10_1142_S0129065724500631
Cites_doi 10.1002/tal.1400
10.1111/mice.12565
10.1111/mice.12783
10.1111/0885-9507.00219
10.1016/j.engstruct.2023.116063
10.1109/JSEN.2015.2512846
10.1016/j.neucom.2017.09.069
10.1111/mice.12846
10.1016/j.jsv.2018.03.008
10.1142/S0129065721500350
10.1111/mice.12652
10.1016/j.engstruct.2017.05.054
10.1016/j.autcon.2022.104262
10.1016/j.dsp.2015.06.013
10.1111/mice.12569
10.1061/(ASCE)0733-9399(2004)130:1(3)
10.1002/stc.2575
10.1007/s00521-019-04359-7
10.1016/j.sna.2007.01.015
10.1111/mice.12044
10.1111/mice.12666
10.1061/(ASCE)EM.1943-7889.0000718
10.1111/mice.12799
10.1515/revneuro-2020-0043
10.1111/mice.12653
10.3846/13923730.2014.897976
10.1111/mice.12761
10.1061/(ASCE)CO.1943-7862.0001047
10.1088/0964-1726/24/6/065034
10.1111/exsy.12845
10.1142/S0129065721500222
10.1016/S0143-974X(99)00043-7
10.1016/j.measurement.2019.03.024
10.1111/mice.12602
10.1002/tal.1312
10.1016/j.autcon.2022.104367
10.3390/app7030243
10.1177/1475921718788703
10.1016/j.ymssp.2017.01.018
10.1016/j.aei.2013.03.002
10.1002/stc.2519
10.1016/j.engappai.2015.10.005
10.1016/j.engstruct.2017.01.014
10.1111/mice.12812
10.1016/j.asoc.2017.05.029
10.1016/j.engstruct.2018.10.065
ContentType Journal Article
Copyright 2023 – The authors. Published by IOS Press.
Copyright IOS Press BV 2023
Copyright_xml – notice: 2023 – The authors. Published by IOS Press.
– notice: Copyright IOS Press BV 2023
DBID AFRWT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.3233/ICA-230714
DatabaseName Sage Journals GOLD Open Access 2024
CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
Database_xml – sequence: 1
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1875-8835
EndPage 412
ExternalDocumentID 10_3233_ICA_230714
10.3233_ICA-230714
GroupedDBID .4S
.DC
0R~
29J
4.4
5GY
AAGLT
AAOTM
AAQXI
ABDBF
ABJNI
ABUBZ
ABUJY
ACGFS
ACIWK
ACPQW
ACUHS
ADMLS
ADZMO
AEJQA
AENEX
AFRHK
AFRWT
AFYTF
AHDMH
AJNRN
ALMA_UNASSIGNED_HOLDINGS
APPIZ
ARCSS
ASPBG
AVWKF
CAG
COF
DU5
EAD
EAP
EBS
EDO
EJD
EMK
EPL
EST
ESX
FEDTE
HZ~
I-F
IL9
IOS
J8X
MET
MIO
MK~
ML~
MV1
NGNOM
O9-
P2P
PQQKQ
Q1R
RIG
SAUOL
SCNPE
SFC
TUS
AAYXX
AJGYC
CITATION
7SC
7TB
8FD
AAPII
FR3
H13
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c327t-fc2d0adeb32b051f855b465597de39966d6b98872b732e00f315d8b4b31f8bc13
IEDL.DBID AFRWT
ISSN 1069-2509
IngestDate Fri Jul 25 10:04:01 EDT 2025
Tue Jul 01 05:28:22 EDT 2025
Thu Apr 24 23:10:03 EDT 2025
Tue Jun 17 22:31:09 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords building structure
Structural health monitoring
strain estimation
correlation coefficient
convolutional neural network
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-fc2d0adeb32b051f855b465597de39966d6b98872b732e00f315d8b4b31f8bc13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://journals.sagepub.com/doi/full/10.3233/ICA-230714?utm_source=summon&utm_medium=discovery-provider
PQID 2858384875
PQPubID 2046400
PageCount 18
ParticipantIDs proquest_journals_2858384875
crossref_primary_10_3233_ICA_230714
crossref_citationtrail_10_3233_ICA_230714
sage_journals_10_3233_ICA_230714
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-08-31
PublicationDateYYYYMMDD 2023-08-31
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-31
  day: 31
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
– name: London
PublicationTitle Integrated computer-aided engineering
PublicationYear 2023
Publisher SAGE Publications
Sage Publications Ltd
Publisher_xml – name: SAGE Publications
– name: Sage Publications Ltd
References Abdeljaber, Avci, Kiranyaz, Boashash, Sodano, Inman 2018; 275
Rafiei, Khushefati, Demirboga, Adeli 2017; 114
Bharadwaj, Sheidaei, Afshar, Baqersad 2019; 139
Yang, Shan, Randall, Hansma, Shi 2014; 140
Nasimi, Moreu 2021; 36
Pereira, Piteri, Souza, Papa, Adeli 2020; 32
Amezquita-Sanchez, Park, Adeli 2017; 147
Rafiei, Adeli 2016; 142
Chen, Tang, Lu, Wang, Liu, Liu, Zhou, Jiang, Yang 2023; 285
Hormozabad, Gutierrez Soto, Adeli 2021; 38
Sun, Peng, Wang, Chen, Zhong, Wu 2022; 140
Oh, Kim, Kim, Park, Adeli 2017; 58
Alam, Siddique, Adeli 2020; 32
Johnson, Lam, Katafygiotis, Beck 2004; 130
Oh, Park, Park 2020; 27
Li, Park, Adeli 2017; 26
Lee, Choi, Jung, Park 2013; 28
Gulgec, Takac, Pakzad 2020; 35
Chen, Li, Bao 2019; 18
Kromanis, Kripakaran 2013; 27
Rafiei, Adeli 2017; 28
Sajedi, Liang 2022; 37
Amezquita-Sanchez, Adeli 2015; 45
Jhao, Hu, Xu, Zuo, Zhong, Li 2022; 37
Amezquita-Sanchez, Valtierra-Rodriguez, Adeli 2018; 25
Wang, Ni 2020; 27
Amezquita-Sanchez, Adeli 2015; 24
Rafiei 2017; 26
Park, Jung, Lee, Kwon, Seo 2007; 137
Shajihan, Hoang, Mechitov, Spencer 2022; 37
Perez-Ramirez, Amezquita-Sanchez, Valtierra-Rodriguez, Adeli, Dominguez-Gonzalez, Romero-Troncoso, Osornio-Rios 2019; 178
Yan, Tan, Mahjoubi, Bao 2022; 139
Hampshire, Adeli 2000; 53
Avci, Abdeljaber, Kiranyaz, Hussein, Inman 2018; 424
Nogay, Adeli 2020; 31
Wang, Song, Mo 2021; 36
Skafte, Kristoffersen, Vestermark, Tygesen, Brincker 2017; 136
Xu, Liu, Han 2021; 36
Adeli 2001; 16
Ngeljaratan, Moustafa, Pekcan 2021; 36
Lu, Teng, Li, Cui 2017; 7
Pavlou 2022; 37
Zhang, Zhang 2021; 36
Yu, Han, Bao, Ou 2016; 16
Choi, Lee, Oh, Park 2016; 22
Xue, Jiang, Neri, Liang 2021; 31
Sarlo 2022; 37
Peng, Xie, Wei 2021; 31
Amezquita-Sanchez (10.3233/ICA-230714_ref1) 2015; 24
Sarlo (10.3233/ICA-230714_ref40) 2022; 37
Wang (10.3233/ICA-230714_ref29) 2020; 27
Hampshire (10.3233/ICA-230714_ref17) 2000; 53
Chen (10.3233/ICA-230714_ref25) 2019; 18
10.3233/ICA-230714_ref46
Yang (10.3233/ICA-230714_ref4) 2014; 140
Oh (10.3233/ICA-230714_ref35) 2017; 58
Hormozabad (10.3233/ICA-230714_ref3) 2021; 38
Amezquita-Sanchez (10.3233/ICA-230714_ref48) 2015; 45
Lu (10.3233/ICA-230714_ref20) 2017; 7
Nasimi (10.3233/ICA-230714_ref7) 2021; 36
Wang (10.3233/ICA-230714_ref37) 2021; 36
Gulgec (10.3233/ICA-230714_ref42) 2020; 35
Pavlou (10.3233/ICA-230714_ref2) 2022; 37
Alam (10.3233/ICA-230714_ref51) 2020; 32
Rafiei (10.3233/ICA-230714_ref31) 2017; 114
Park (10.3233/ICA-230714_ref16) 2007; 137
Abdeljaber (10.3233/ICA-230714_ref45) 2018; 275
Shajihan (10.3233/ICA-230714_ref22) 2022; 37
10.3233/ICA-230714_ref34
Oh (10.3233/ICA-230714_ref47) 2020; 27
Nogay (10.3233/ICA-230714_ref33) 2020; 31
Pereira (10.3233/ICA-230714_ref50) 2020; 32
Sun (10.3233/ICA-230714_ref9) 2022; 140
Peng (10.3233/ICA-230714_ref39) 2021; 31
Zhang (10.3233/ICA-230714_ref14) 2021; 36
Avci (10.3233/ICA-230714_ref23) 2018; 424
Sajedi (10.3233/ICA-230714_ref41) 2022; 37
Rafiei (10.3233/ICA-230714_ref49) 2017; 28
Rafiei (10.3233/ICA-230714_ref30) 2016; 142
Choi (10.3233/ICA-230714_ref19) 2016; 22
Chen (10.3233/ICA-230714_ref43) 2023; 285
10.3233/ICA-230714_ref26
Yan (10.3233/ICA-230714_ref15) 2022; 139
Amezquita-Sanchez (10.3233/ICA-230714_ref21) 2018; 25
Ngeljaratan (10.3233/ICA-230714_ref8) 2021; 36
Jhao (10.3233/ICA-230714_ref6) 2022; 37
Lee (10.3233/ICA-230714_ref18) 2013; 28
Amezquita-Sanchez (10.3233/ICA-230714_ref12) 2017; 147
10.3233/ICA-230714_ref13
Adeli (10.3233/ICA-230714_ref32) 2001; 16
Xu (10.3233/ICA-230714_ref5) 2021; 36
10.3233/ICA-230714_ref11
10.3233/ICA-230714_ref10
Yu (10.3233/ICA-230714_ref24) 2016; 16
Kromanis (10.3233/ICA-230714_ref36) 2013; 27
Skafte (10.3233/ICA-230714_ref27) 2017; 136
Bharadwaj (10.3233/ICA-230714_ref28) 2019; 139
Johnson (10.3233/ICA-230714_ref44) 2004; 130
Xue (10.3233/ICA-230714_ref38) 2021; 31
References_xml – volume: 16
  start-page: 3811
  issue: 10
  year: 2016
  end-page: 18
  article-title: A study on data loss compensation of WiFi-based wireless sensor networks for structural health monitoring
  publication-title: IEEE Sens. J.
– volume: 58
  start-page: 576
  year: 2017
  end-page: 85
  article-title: Evolutionary learning-based sustainable strain sensing model for structural health monitoring of high-rise buildings
  publication-title: Appl. Soft Comput.
– volume: 36
  start-page: 1288
  issue: 10
  year: 2021
  end-page: 1305
  article-title: Blockchain technology and smart contract for civil structural health monitoring system
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 137
  start-page: 6
  issue: 1
  year: 2007
  end-page: 12
  article-title: Analytical models for assessment of the safety of multi-span steel beams based on average strains from long gage optic sensors
  publication-title: Sens. Actuator A Phys.
– volume: 36
  start-page: 289
  issue: 3
  year: 2021
  end-page: 301
  article-title: Shear loading detection of through-bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 37
  start-page: 809
  issue: 7
  year: 2022
  end-page: 31
  article-title: A deterministic algorithm for nonlinear, fatigue-based structural health monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 130
  start-page: 3
  issue: 1
  year: 2004
  end-page: 15
  article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data
  publication-title: J. Eng. Mech.
– volume: 37
  start-page: 1109
  issue: 9
  year: 2022
  end-page: 27
  article-title: Deep Generative Bayesian Optimization for Sensor Placement in Structural Health Monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 36
  start-page: 421
  issue: 4
  year: 2021
  end-page: 37
  article-title: A methodology for measuring the total displacements of structures using a laser-camera system
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 32
  start-page: 8675
  issue: 10
  year: 2020
  end-page: 90
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural. Comput. Appl.
– volume: 37
  start-page: 1070
  issue: 9
  year: 2022
  end-page: 88
  article-title: Wireless smart vision system for synchronized displacement monitoring of railroad bridges
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 37
  start-page: 1128
  issue: 9
  year: 2022
  end-page: 45
  article-title: Toward a general unsupervised novelty detection framework in structural health monitoring, Comput
  publication-title: Civ. Infrastruct. Eng.
– volume: 140
  start-page: 104367
  year: 2022
  article-title: Building displacement measurement and analysis based on UAV images
  publication-title: Autom. Constr.
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 44
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– volume: 45
  start-page: 55
  year: 2015
  end-page: 68
  article-title: A new MUSIC-Empirical wavelet transform methodology for time-frequency analysis of noisy nonlinear and non-stationary signals
  publication-title: Digit. Signal Process
– volume: 136
  start-page: 261
  year: 2017
  end-page: 76
  article-title: Experimental study of strain prediction on wave induced structures using modal decomposition and quasi static Ritz vectors
  publication-title: Eng. Struct.
– volume: 38
  start-page: e12845
  year: 2021
  article-title: Integrating structural control, health monitoring, and energy harvesting for smart cities
  publication-title: Expert Syst.
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  end-page: 42
  article-title: Neural networks in civil engineering: 1989–2000. FEMa: a finite element machine for fast learning
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 37
  start-page: 704
  issue: 6
  year: 2022
  end-page: 25
  article-title: Structure-PoseNet for identification of dense dynamic displacement and 3D poses of structures using a monocular camera
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 53
  start-page: 267
  issue: 3
  year: 2000
  end-page: 81
  article-title: Monitoring the behavior of steel structures using distributed optical fiber sensors
  publication-title: J. Constr. Steel Res.
– volume: 275
  start-page: 1308
  year: 2018
  end-page: 17
  article-title: 1-D CNNS for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing.
– volume: 18
  start-page: 1168
  issue: 4
  year: 2019
  end-page: 88
  article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach
  publication-title: Struct. Health Monit.
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  end-page: 25
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Sci. Iran.
– volume: 140
  start-page: 04014013
  year: 2014
  article-title: Integration of health monitoring and control of building structures during earthquakes J
  publication-title: Eng. Mech.
– volume: 142
  start-page: 04015066
  issue: 2
  year: 2016
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: J. Constr. Eng. Manag.
– volume: 31
  start-page: 2150035
  issue: 9
  year: 2021
  article-title: A multiobjective evolutionary approach based on graph-in-graph for neural architecture search of convolutional neural networks
  publication-title: Int. J. Neural Syst.
– volume: 178
  start-page: 603
  year: 2019
  end-page: 15
  article-title: Recurrent neural network model with Bayesian training and mutual information for response prediction of large buildings
– volume: 424
  start-page: 158
  year: 2018
  end-page: 72
  article-title: Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks
  publication-title: J. Sound Vib.
– volume: 147
  start-page: 148
  year: 2017
  end-page: 59
  article-title: A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform
  publication-title: Eng. Str.
– volume: 27
  start-page: e2519
  issue: 5
  year: 2020
  article-title: Seismic response prediction method for building structures using convolutional neural network
  publication-title: Struct. Control Health Monitor.
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  end-page: 04
  article-title: FEMa: A finite element machine for fast learning, Neural
  publication-title: Comput. Appl.
– volume: 139
  start-page: 104262
  year: 2022
  article-title: Strain transfer effect on measurements with distributed fiber optic sensors
  publication-title: Autom. Constr.
– volume: 31
  start-page: 825
  issue: 8
  year: 2020
  end-page: 41
  article-title: Machine learning for the diagnosis of autism spectrum disorder using brain imaging
  publication-title: Reviews in the Neurosciences
– volume: 139
  start-page: 326
  year: 2019
  end-page: 33
  article-title: Full-field strain prediction using mode shapes measured with digital image correlation
  publication-title: Measurement
– volume: 27
  start-page: e2575
  issue: 8
  year: 2020
  article-title: Bayesian dynamic forecasting of structural strain response using structural health monitoring data
  publication-title: Struct. Control and Health Monit.
– volume: 28
  start-page: 707
  issue: 9
  year: 2013
  end-page: 17
  article-title: Analytical model for estimation of maximum normal stress in steel beam-columns based on wireless measurement of average strains from vibrating wire strain gages
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 7
  start-page: 234
  issue: 3
  year: 2017
  article-title: Reconstruction to sensor measurements based on a correlation model of monitoring data
  publication-title: Appl. Sci.
– volume: 35
  start-page: 1349
  issue: 12
  year: 2020
  end-page: 64
  article-title: Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 31
  start-page: 2150022
  issue: 8
  year: 2021
  article-title: A deep Fourier neural network for seizure prediction using convolutional neural network and ratios of spectral power
  publication-title: Int. J. Neural Syst.
– volume: 24
  start-page: 065034
  year: 2015
  article-title: Synchrosqueezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures
  publication-title: Smart Mater. Struct.
– volume: 285
  start-page: 116063
  year: 2023
  article-title: Reconstruction of long-term strain data for structural health monitoring with a hybrid deep-learning and autoregressive model considering thermal effects
  publication-title: Eng. Struct.
– volume: 36
  start-page: 1203
  issue: 9
  year: 2021
  end-page: 23
  article-title: A compressive sensing method for processing and improving vision-based target-tracking signals for structural health monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 26
  start-page: e1312
  issue: 3
  year: 2017
  article-title: Struct. Design Tall Spec
– volume: 36
  start-page: 109
  issue: 1
  year: 2021
  end-page: 24
  article-title: Internal force monitoring and estimation of a long-span ring beam using long-gauge strain sensing
  publication-title: Comput. Civ. Infrastruct. Eng.
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  end-page: 83
  article-title: A new neural dynamic classification algorithm, IEEE Transactions on Neural Networks and Learning Systems
  publication-title: IEEE T. Neur. Net. Lear.
– volume: 26
  start-page: e1400
  year: 2017
  article-title: Design Tall Spec
– volume: 27
  start-page: 486
  year: 2013
  end-page: 95
  article-title: Support vector regression for anomaly detection from measurement histories
  publication-title: Adv. Eng. Inform.
– volume: 22
  start-page: 86
  issue: 1
  year: 2016
  end-page: 91
  article-title: Analytical models for estimation of the maximum strain of beam structures based on optical fiber Bragg grating sensors
  publication-title: J. Civ. Eng. Manag.
– ident: 10.3233/ICA-230714_ref10
  doi: 10.1002/tal.1400
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017
  ident: 10.3233/ICA-230714_ref49
  article-title: A new neural dynamic classification algorithm, IEEE Transactions on Neural Networks and Learning Systems
  publication-title: IEEE T. Neur. Net. Lear.
– volume: 35
  start-page: 1349
  issue: 12
  year: 2020
  ident: 10.3233/ICA-230714_ref42
  article-title: Structural sensing with deep learning: Strain estimation from acceleration data for fatigue assessment
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12565
– volume: 37
  start-page: 809
  issue: 7
  year: 2022
  ident: 10.3233/ICA-230714_ref2
  article-title: A deterministic algorithm for nonlinear, fatigue-based structural health monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12783
– volume: 16
  start-page: 126
  issue: 2
  year: 2001
  ident: 10.3233/ICA-230714_ref32
  article-title: Neural networks in civil engineering: 1989–2000. FEMa: a finite element machine for fast learning
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/0885-9507.00219
– volume: 285
  start-page: 116063
  year: 2023
  ident: 10.3233/ICA-230714_ref43
  article-title: Reconstruction of long-term strain data for structural health monitoring with a hybrid deep-learning and autoregressive model considering thermal effects
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2023.116063
– volume: 16
  start-page: 3811
  issue: 10
  year: 2016
  ident: 10.3233/ICA-230714_ref24
  article-title: A study on data loss compensation of WiFi-based wireless sensor networks for structural health monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2015.2512846
– volume: 275
  start-page: 1308
  year: 2018
  ident: 10.3233/ICA-230714_ref45
  article-title: 1-D CNNS for structural damage detection: Verification on a structural health monitoring benchmark data
  publication-title: Neurocomputing.
  doi: 10.1016/j.neucom.2017.09.069
– volume: 37
  start-page: 1070
  issue: 9
  year: 2022
  ident: 10.3233/ICA-230714_ref22
  article-title: Wireless smart vision system for synchronized displacement monitoring of railroad bridges
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12846
– volume: 424
  start-page: 158
  year: 2018
  ident: 10.3233/ICA-230714_ref23
  article-title: Wireless and real-time structural damage detection: A novel decentralized method for wireless sensor networks
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.03.008
– volume: 31
  start-page: 2150035
  issue: 9
  year: 2021
  ident: 10.3233/ICA-230714_ref38
  article-title: A multiobjective evolutionary approach based on graph-in-graph for neural architecture search of convolutional neural networks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065721500350
– volume: 36
  start-page: 421
  issue: 4
  year: 2021
  ident: 10.3233/ICA-230714_ref7
  article-title: A methodology for measuring the total displacements of structures using a laser-camera system
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12652
– volume: 147
  start-page: 148
  year: 2017
  ident: 10.3233/ICA-230714_ref12
  article-title: A novel methodology for modal parameters identification of large smart structures using MUSIC, empirical wavelet transform, and Hilbert transform
  publication-title: Eng. Str.
  doi: 10.1016/j.engstruct.2017.05.054
– volume: 139
  start-page: 104262
  year: 2022
  ident: 10.3233/ICA-230714_ref15
  article-title: Strain transfer effect on measurements with distributed fiber optic sensors
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104262
– volume: 45
  start-page: 55
  year: 2015
  ident: 10.3233/ICA-230714_ref48
  article-title: A new MUSIC-Empirical wavelet transform methodology for time-frequency analysis of noisy nonlinear and non-stationary signals
  publication-title: Digit. Signal Process
  doi: 10.1016/j.dsp.2015.06.013
– volume: 36
  start-page: 109
  issue: 1
  year: 2021
  ident: 10.3233/ICA-230714_ref14
  article-title: Internal force monitoring and estimation of a long-span ring beam using long-gauge strain sensing
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12569
– volume: 130
  start-page: 3
  issue: 1
  year: 2004
  ident: 10.3233/ICA-230714_ref44
  article-title: Phase I IASC-ASCE structural health monitoring benchmark problem using simulated data
  publication-title: J. Eng. Mech.
  doi: 10.1061/(ASCE)0733-9399(2004)130:1(3)
– volume: 27
  start-page: e2575
  issue: 8
  year: 2020
  ident: 10.3233/ICA-230714_ref29
  article-title: Bayesian dynamic forecasting of structural strain response using structural health monitoring data
  publication-title: Struct. Control and Health Monit.
  doi: 10.1002/stc.2575
– volume: 32
  start-page: 8675
  issue: 10
  year: 2020
  ident: 10.3233/ICA-230714_ref51
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural. Comput. Appl.
  doi: 10.1007/s00521-019-04359-7
– volume: 137
  start-page: 6
  issue: 1
  year: 2007
  ident: 10.3233/ICA-230714_ref16
  article-title: Analytical models for assessment of the safety of multi-span steel beams based on average strains from long gage optic sensors
  publication-title: Sens. Actuator A Phys.
  doi: 10.1016/j.sna.2007.01.015
– volume: 28
  start-page: 707
  issue: 9
  year: 2013
  ident: 10.3233/ICA-230714_ref18
  article-title: Analytical model for estimation of maximum normal stress in steel beam-columns based on wireless measurement of average strains from vibrating wire strain gages
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12044
– volume: 36
  start-page: 1288
  issue: 10
  year: 2021
  ident: 10.3233/ICA-230714_ref5
  article-title: Blockchain technology and smart contract for civil structural health monitoring system
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12666
– volume: 140
  start-page: 04014013
  year: 2014
  ident: 10.3233/ICA-230714_ref4
  article-title: Integration of health monitoring and control of building structures during earthquakes J
  publication-title: Eng. Mech.
  doi: 10.1061/(ASCE)EM.1943-7889.0000718
– volume: 37
  start-page: 1109
  issue: 9
  year: 2022
  ident: 10.3233/ICA-230714_ref41
  article-title: Deep Generative Bayesian Optimization for Sensor Placement in Structural Health Monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12799
– volume: 25
  start-page: 2913
  issue: 6
  year: 2018
  ident: 10.3233/ICA-230714_ref21
  article-title: Wireless smart sensors for monitoring the health condition of civil infrastructure
  publication-title: Sci. Iran.
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  ident: 10.3233/ICA-230714_ref31
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Mater. J.
– volume: 31
  start-page: 825
  issue: 8
  year: 2020
  ident: 10.3233/ICA-230714_ref33
  article-title: Machine learning for the diagnosis of autism spectrum disorder using brain imaging
  publication-title: Reviews in the Neurosciences
  doi: 10.1515/revneuro-2020-0043
– volume: 36
  start-page: 1203
  issue: 9
  year: 2021
  ident: 10.3233/ICA-230714_ref8
  article-title: A compressive sensing method for processing and improving vision-based target-tracking signals for structural health monitoring
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12653
– volume: 22
  start-page: 86
  issue: 1
  year: 2016
  ident: 10.3233/ICA-230714_ref19
  article-title: Analytical models for estimation of the maximum strain of beam structures based on optical fiber Bragg grating sensors
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2014.897976
– volume: 37
  start-page: 704
  issue: 6
  year: 2022
  ident: 10.3233/ICA-230714_ref6
  article-title: Structure-PoseNet for identification of dense dynamic displacement and 3D poses of structures using a monocular camera
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12761
– volume: 142
  start-page: 04015066
  issue: 2
  year: 2016
  ident: 10.3233/ICA-230714_ref30
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: J. Constr. Eng. Manag.
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– volume: 24
  start-page: 065034
  year: 2015
  ident: 10.3233/ICA-230714_ref1
  article-title: Synchrosqueezed wavelet transform-fractality model for locating, detecting, and quantifying damage in smart highrise building structures
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/6/065034
– volume: 38
  start-page: e12845
  year: 2021
  ident: 10.3233/ICA-230714_ref3
  article-title: Integrating structural control, health monitoring, and energy harvesting for smart cities
  publication-title: Expert Syst.
  doi: 10.1111/exsy.12845
– volume: 31
  start-page: 2150022
  issue: 8
  year: 2021
  ident: 10.3233/ICA-230714_ref39
  article-title: A deep Fourier neural network for seizure prediction using convolutional neural network and ratios of spectral power
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065721500222
– volume: 53
  start-page: 267
  issue: 3
  year: 2000
  ident: 10.3233/ICA-230714_ref17
  article-title: Monitoring the behavior of steel structures using distributed optical fiber sensors
  publication-title: J. Constr. Steel Res.
  doi: 10.1016/S0143-974X(99)00043-7
– volume: 139
  start-page: 326
  year: 2019
  ident: 10.3233/ICA-230714_ref28
  article-title: Full-field strain prediction using mode shapes measured with digital image correlation
  publication-title: Measurement
  doi: 10.1016/j.measurement.2019.03.024
– volume: 36
  start-page: 289
  issue: 3
  year: 2021
  ident: 10.3233/ICA-230714_ref37
  article-title: Shear loading detection of through-bolts in bridge structures using a percussion-based one-dimensional memory-augmented convolutional neural network
  publication-title: Comput. Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12602
– ident: 10.3233/ICA-230714_ref11
  doi: 10.1002/tal.1312
– volume: 140
  start-page: 104367
  year: 2022
  ident: 10.3233/ICA-230714_ref9
  article-title: Building displacement measurement and analysis based on UAV images
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104367
– volume: 7
  start-page: 234
  issue: 3
  year: 2017
  ident: 10.3233/ICA-230714_ref20
  article-title: Reconstruction to sensor measurements based on a correlation model of monitoring data
  publication-title: Appl. Sci.
  doi: 10.3390/app7030243
– volume: 18
  start-page: 1168
  issue: 4
  year: 2019
  ident: 10.3233/ICA-230714_ref25
  article-title: Analyzing and modeling inter-sensor relationships for strain monitoring data and missing data imputation: a copula and functional data-analytic approach
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718788703
– ident: 10.3233/ICA-230714_ref26
  doi: 10.1016/j.ymssp.2017.01.018
– ident: 10.3233/ICA-230714_ref46
– volume: 27
  start-page: 486
  year: 2013
  ident: 10.3233/ICA-230714_ref36
  article-title: Support vector regression for anomaly detection from measurement histories
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2013.03.002
– volume: 27
  start-page: e2519
  issue: 5
  year: 2020
  ident: 10.3233/ICA-230714_ref47
  article-title: Seismic response prediction method for building structures using convolutional neural network
  publication-title: Struct. Control Health Monitor.
  doi: 10.1002/stc.2519
– ident: 10.3233/ICA-230714_ref13
  doi: 10.1016/j.engappai.2015.10.005
– volume: 136
  start-page: 261
  year: 2017
  ident: 10.3233/ICA-230714_ref27
  article-title: Experimental study of strain prediction on wave induced structures using modal decomposition and quasi static Ritz vectors
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.01.014
– volume: 37
  start-page: 1128
  issue: 9
  year: 2022
  ident: 10.3233/ICA-230714_ref40
  article-title: Toward a general unsupervised novelty detection framework in structural health monitoring, Comput
  publication-title: Civ. Infrastruct. Eng.
  doi: 10.1111/mice.12812
– volume: 58
  start-page: 576
  year: 2017
  ident: 10.3233/ICA-230714_ref35
  article-title: Evolutionary learning-based sustainable strain sensing model for structural health monitoring of high-rise buildings
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2017.05.029
– ident: 10.3233/ICA-230714_ref34
  doi: 10.1016/j.engstruct.2018.10.065
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  ident: 10.3233/ICA-230714_ref50
  article-title: FEMa: A finite element machine for fast learning, Neural
  publication-title: Comput. Appl.
SSID ssj0005027
Score 2.3927858
Snippet A machine learning-based strain estimation method for structural members in a building is presented The relationship between the strain responses of structural...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 395
SubjectTerms Artificial neural networks
Correlation analysis
Data correlation
Machine learning
Steel frames
Steel structures
Strain analysis
Structural members
Title A measured data correlation-based strain estimation technique for building structures using convolutional neural network
URI https://journals.sagepub.com/doi/full/10.3233/ICA-230714
https://www.proquest.com/docview/2858384875
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwED4BXWDgjSgUZAkWBkMaO49OqAWqggQDagVbZDsODLQgtUjw77mLnbY8JKZI8clx7Dv7zv78HcBxYWKDBQVXVikuYxXxNJWC5zJKrEi0Sst7a7d3cW8gbx6jxwV4ru7C-B4cnxKsCltUTtZk3bQbTSYuQiHOri_anBDMTXn-Phlmbp-7SqdBb-hg-n1IZ9qGkJCfvLrXtgg1ysKEJlxrd-8f-jM4SFCmd8UIqcXRLWg5KtMfX_u-eM080jkQWLkudddh1TuUrO00YAMW7GgT1rxzybzpjjdhZY55cAs-2mzodgdzRiBRZihLh8PFcVrZcjYus0cwYuFw1xvZlO-VoafLtE-ozRwFLVY1ZoSif2KEZPcajS0jxszyUeLNt2HQvepf9LhPwsCNCJMJL0yYByrHmDvUaMBFGkWaONdaSW4FBUt5rFs4U4U6EaENgkI0ozzVUguU1aYpdmBp9Dqyu8AkuiKBUhaLhRTS6jhqahHZpEDHwaikDidV72bGM5TTr75kGKnQSGTYrsyNRB2OprJvjpfjT6lGNUhZpVlZmNJRMQVqdWA0cLOi3zXs_S-yD8uUg95tNDdgCTvdHqCnMtGHqGSdy0730CvbF1mc6uA
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV07T8MwELZQOwADjwKiUMASLAyGNLaTdIwQVQttB9SKbpHtOCxQkNKBn89d7D54SEwZfLEcn-27c777jpCrwkQGGgqmrFJMREqyJBGc5ULGlsdaJVXe2nAU9SbiYSqnPo8bc2H8DJY3CKuCEVWHtd_dPOT8tn-XMgQvY_HqupCVV1RPu0_P4xWyI6gqtUKw02Fg4TuOlfTH29_t0Mq5XMNzVSamu0d2vG9IU6fMfbJhZw2y6_1E6ndh2SDbaySCB-QzpW_uoi-niPekBgtuOIgbQyOV07IqBEGRUMNlKtIldSsFp5VqXxubOjZZ6KqkCIh_oQhK94sTRobkl9Wjgo4fkkn3fnzXY76eAjM8jOesMGEeqBzC51DDXiwSKTXSp3Xi3HKMe_JId-DQCXXMQxsEBW_LPNFCc5DVps2PSG32PrPHhArwKgKlLDRzwYXVkWxrLm1cgA9gVNwk14vZzYwnG8dPfc0g6EBNZDCuzGmiSS6Xsh-OYuNPqdZCSdlikWRhgn99MeZqEoqKWzX97uHkf5ELstkbDwfZoD96PCVbWFre3R-3SA0UYM_AAZnrc7_gvgDAj9bU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LT8MwDLbQJiE48BggBgMiwYVDoGvS17EaTBsvITQEtyppUi4wkMaBn4_dZBsviVMPcaM0jmM7_fIZ4Kgq4xIbKq6sUlzGKuJpKgU3MkqsSLRK63tr1zfx4F5ePEaP_uiC7sL4GZycEKwKR1Rv1mTdb6YiCxehEKfDXs4JwEwFrJuSiuc2oJn37x5Gc3RHUFdrxYQn4-jlM8dM-uPt775oHmB-wXTVbqa_Bis-PmS5U-g6LNhxC1Z9rMi8JU5asPyFSHADPnL24g77DCPMJyup6IaDuXFyVIZN6mIQjEg13G1FNqNvZRi4Mu3rYzPHKItdTRiB4p8YAdP9AsWREQFm_ajh45tw3z8f9Qbc11TgpQiTd16VoQmUwRQ61GiPVRpFmijUssRYQbmPiXWGG0-oExHaIKhENzKpllqgrC67Ygsa49ex3QYmMbIIlLLYLKSQVsdRV4vIJhXGAaVK2nA8nd2i9ITj9KnPBSYepIkCx1U4TbThcCb75mg2_pTqTJVUTBdKEab055fyrjYwUty86XcPO_-LHMDi7Vm_uBreXO7CElWXd0fIHWjg_Ns9jEHe9b5fb58N3Nft
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+measured+data+correlation-based+strain+estimation+technique+for+building+structures+using+convolutional+neural+network&rft.jtitle=Integrated+computer-aided+engineering&rft.au=Oh%2C+Byung+Kwan&rft.au=Yoo%2C+Sang+Hoon&rft.au=Park%2C+Hyo+Seon&rft.date=2023-08-31&rft.pub=SAGE+Publications&rft.issn=1069-2509&rft.eissn=1875-8835&rft.volume=30&rft.issue=4&rft.spage=395&rft.epage=412&rft_id=info:doi/10.3233%2FICA-230714&rft.externalDocID=10.3233_ICA-230714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-2509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-2509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-2509&client=summon