Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries
Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standi...
Saved in:
Published in | Applied physics letters Vol. 122; no. 4 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
23.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standing challenge. Herein, we report that an additive level (0.05 M) of LiPF6 is introduced to a polymeric concentrated quasi-solid electrolyte (10 M LiFSI in poly-1,3-dioxolane [poly-DOL], ethylene carbonate [EC], and ethyl methyl carbonate [EMC]) to build in situ a fluorine-regulated cathode electrolyte interphase (CEI) on a highly catalytic LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The CEI with a conformal thickness of ∼7 nm features a fluorine-rich outer layer and manipulative LiF/organofluorine species, which mitigates the detrimental side reactions between the quasi-solid electrolyte and NCM cathode and maintains the structure of cycled NCM, as demonstrated by the characterizations of SEM, TEM, XRD, Raman spectroscopy, AFM, EDS, and XPS. As a result, the LiPF6-contained polymeric concentrated quasi-solid electrolyte not only provides a superior ionic conductivity of 3.1 × 10−4 S cm−1 at 25 °C and a remarkable electrochemical stability window of 5.5 V vs Li/Li+, but also achieves an excellent capacity retention of 74% after 100 cycles for LiǁNCM811 quasi-solid-state LMB, bringing a quasi-solid electrolyte design strategy of engineered CEI chemistry for LMBs. |
---|---|
AbstractList | Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standing challenge. Herein, we report that an additive level (0.05 M) of LiPF6 is introduced to a polymeric concentrated quasi-solid electrolyte (10 M LiFSI in poly-1,3-dioxolane [poly-DOL], ethylene carbonate [EC], and ethyl methyl carbonate [EMC]) to build in situ a fluorine-regulated cathode electrolyte interphase (CEI) on a highly catalytic LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The CEI with a conformal thickness of ∼7 nm features a fluorine-rich outer layer and manipulative LiF/organofluorine species, which mitigates the detrimental side reactions between the quasi-solid electrolyte and NCM cathode and maintains the structure of cycled NCM, as demonstrated by the characterizations of SEM, TEM, XRD, Raman spectroscopy, AFM, EDS, and XPS. As a result, the LiPF6-contained polymeric concentrated quasi-solid electrolyte not only provides a superior ionic conductivity of 3.1 × 10−4 S cm−1 at 25 °C and a remarkable electrochemical stability window of 5.5 V vs Li/Li+, but also achieves an excellent capacity retention of 74% after 100 cycles for LiǁNCM811 quasi-solid-state LMB, bringing a quasi-solid electrolyte design strategy of engineered CEI chemistry for LMBs. |
Author | Ouyang, Chuying Song, Shufeng Hou, Wangshu Liang, Xiao Liu, Chengyong Zhai, Yanfang Chen, Zongyuan Paoprasert, Peerasak Hu, Ning |
Author_xml | – sequence: 1 givenname: Wangshu surname: Hou fullname: Hou, Wangshu organization: College of Aerospace Engineering, Chongqing University – sequence: 2 givenname: Yanfang surname: Zhai fullname: Zhai, Yanfang organization: College of Aerospace Engineering, Chongqing University – sequence: 3 givenname: Zongyuan surname: Chen fullname: Chen, Zongyuan organization: College of Aerospace Engineering, Chongqing University – sequence: 4 givenname: Chengyong surname: Liu fullname: Liu, Chengyong organization: Fujian Science and Technology Innovation Laboratory for Energy Devices of China (21C-LAB) – sequence: 5 givenname: Chuying surname: Ouyang fullname: Ouyang, Chuying organization: Fujian Science and Technology Innovation Laboratory for Energy Devices of China (21C-LAB) – sequence: 6 givenname: Ning surname: Hu fullname: Hu, Ning organization: State Key Laboratory of Reliability and Intelligence Electrical Equipment, and School of Mechanical Engineering, Hebei University of Technology – sequence: 7 givenname: Xiao surname: Liang fullname: Liang, Xiao organization: College of Chemistry and Chemical Engineering, Hunan University – sequence: 8 givenname: Peerasak surname: Paoprasert fullname: Paoprasert, Peerasak organization: Department of Chemistry, Faculty of Science and Technology, Thammasat University – sequence: 9 givenname: Shufeng surname: Song fullname: Song, Shufeng organization: College of Aerospace Engineering, Chongqing University |
BookMark | eNqdkE1LAzEQhoNUsK0e_AcBTwpp87Ef7VGKVaHgRc9LNpl0U9JNm2SF_nu3tCKIJ0_DzDzvO8M7QoPWt4DQLaMTRgsxzSeUiSwrsws0ZLQsiWBsNkBDSqkgxTxnV2gU46Zvcy7EEPml63ywLZAA687JBBormRqvAYMDlYJ3hwTYtgnCrpGxH7eydhBxY9cNgRbC-oD3nYyWRO-sJjH1LtjZ1Nhui7eQpMO1TL3eQrxGl0a6CDfnOkYfy6f3xQtZvT2_Lh5XRAleJmIKBRqEKg3TNDfA5oXinHGgmmdMlvVxp2o-q02mGJMFByG4FrpWhhkwYozuTr674PcdxFRtfBfa_mTFy2KW5_O8yHpqeqJU8DEGMJWy_ffWtylI6ypGq2OqVV6dU-0V978Uu2C3Mhz-ZB9ObPx2_R_86cMPWO20EV-cFJhv |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_jmat_2024_03_009 crossref_primary_10_1007_s40820_024_01482_6 crossref_primary_10_1039_D4SE01421A crossref_primary_10_1039_D4TA06771A crossref_primary_10_1002_eem2_12736 crossref_primary_10_1016_j_mtener_2024_101512 |
Cites_doi | 10.1016/j.jechem.2021.05.049 10.1038/28818 10.1002/aenm.201701682 10.1016/j.ssi.2013.07.023 10.1002/advs.202105448 10.1002/advs.202200390 10.1016/j.jallcom.2017.03.225 10.1016/j.apenergy.2022.119282 10.1021/acsenergylett.0c00643 10.1039/D1CS00450F 10.1002/advs.202000587 10.1021/acsaem.1c03096 10.1021/acs.chemrev.9b00531 10.1002/adfm.201909887 10.1021/ja3091438 10.1002/aenm.202100836 10.1016/j.jechem.2021.10.003 10.1016/j.chempr.2017.10.017 10.1002/asia.202000522 10.1126/sciadv.aat5383 10.1016/j.jpowsour.2016.04.017 10.1021/acsaem.1c01281 10.1021/cr030203g 10.1002/anie.202114805 10.1038/s41560-019-0474-3 10.1021/cr800344k 10.1002/adma.201905629 10.1021/acs.jpcc.6b12885 10.1016/S0378-7753(99)00221-9 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0134474 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0134474 apl |
GrantInformation_xml | – fundername: Fujian Science & Technology Innovation Laboratory for Energy Devices of China grantid: 21C-OP-202110 – fundername: Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China grantid: 2021YFE0109700 – fundername: Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure grantid: SKL202106SIC – fundername: Fundamental Research Funds for the Central Universities grantid: 2022CDJXY-012 – fundername: Graduate Research and Innovation Foundation of Chongqing, China grantid: CYS22044 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-f6cede3c7f1d05fe196c2212e0d241a7be3c7cb28bf4c11a62e332d3dbcf1fef3 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 07:08:26 EDT 2025 Tue Jul 01 01:08:25 EDT 2025 Thu Apr 24 23:11:55 EDT 2025 Tue Jul 04 19:18:44 EDT 2023 Fri Jun 21 00:19:07 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-f6cede3c7f1d05fe196c2212e0d241a7be3c7cb28bf4c11a62e332d3dbcf1fef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8686-7809 0000-0002-6350-9512 0000-0001-9049-8305 |
PQID | 2768559564 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0134474 scitation_primary_10_1063_5_0134474 proquest_journals_2768559564 crossref_primary_10_1063_5_0134474 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230123 2023-01-23 |
PublicationDateYYYYMMDD | 2023-01-23 |
PublicationDate_xml | – month: 01 year: 2023 text: 20230123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Aktekin, Hernandez, Younesi, Brandell, Edstrom (c25) 2022 Goodenough, Park (c1) 2013 Lu, Zhou, Svensson, Fossdal, Sheridan, Lu, VullumBruer (c21) 2013 Liu, Zhang, Ji, Zhang, Zhou, Cao, Zhou, Yan, Qian (c2) 2022 Holoubek, Yu, Yu, Li, Wu, Xia, Bhaladhare, Gonzalez, Pascal, Liu, Chen (c27) 2020 Didwal, Verma, Nguyen, Ramasamy, Lee, Park (c4) 2022 Hadjean, Pereira-Ramos (c22) 2010 Zhao, Zhao, Liu, Zheng, Stalin, Zhang, Archer (c15) 2020 Xiang, Shi, Bhattacharya, Chen, Mei, Bowden, Zhang, Xu (c24) 2016 Li, Wang, Meng, Ning, Zhang, Fu (c28) 2022 Zhang, Zhao, Wang, Liang, Wang, Wang, Zhang, Adair, Li, Li, Duan, Zhao, Yu, Li, Huang, Zhang, Zhao, Lu, Sham, Mo, Sun (c23) 2021 Fan, Ji, Chen, Chen, Deng, Han, Yue, Piao, Wang, Zhou, Xiao, Chen, Wang (c26) 2019 Yan, Xu, Xiao, Ding, Xu, Li, Huang (c6) 2020 Nan, Zhang, Zhu, Wang, Wang, Wang, Chu, Wang, Tang (c3) 2020 Liu, Yu, Lee (c20) 1999 Chen, Tao, Qi, Zeng, Wu, Liang, Yao, Lu, Chen (c18) 2017 Xu (c9) 2004 Fan, Chen, Ji, Deng, Hou, Chen, Zheng, Wang, Jiang, Xu, Wang (c8) 2018 Croce, Appetecchi, Persi, Scrosati (c13) 1998 Schipper, Bouzaglo, Dixit, Erickson, Weigel, Talianker, Grinblat, Burstein, Schmidt, Lampert, Erk, Markovsky, Major, Aurbach (c16) 2018 Wang, Gu, Li, Zhao, Guo, Du, Luo, Wu (c19) 2020 Liu, Wang, Yin, Zhang, Shi, Wang, Zhang, Zheng, Zhou, Li, Guo (c12) 2018 Qi, Wang, Dong, Liu, Tian, Qi, Wu (c29) 2022 Li, Wang, Xu, Zhou, Ma, Zhang, Du, Cui, Zhou, Cui (c7) 2022 Kondrakov, Schmidt, Xu, Gesswein, Monig, Hartmann, Sommer, Brezesinski, Janek (c17) 2017 Li, Wang, Chen, Xu, Lu (c10) 2020 Zhai, Yang, Zeng, Song, Li, Hu, Tang, Wen, Lu, Molenda (c11) 2021 Li, Gao, Tian, Li, He, Li, Wang, Li, Li, Qiu, Zhou (c14) 2022 Fan, Wang (c5) 2021 (2023081020461428300_c23) 2021; 11 (2023081020461428300_c17) 2017; 121 (2023081020461428300_c18) 2017; 709 (2023081020461428300_c14) 2022; 61 (2023081020461428300_c4) 2022; 9 (2023081020461428300_c6) 2020; 30 (2023081020461428300_c21) 2013; 249 (2023081020461428300_c11) 2021; 4 (2023081020461428300_c12) 2018; 4 (2023081020461428300_c22) 2010; 110 (2023081020461428300_c8) 2018; 4 (2023081020461428300_c27) 2020; 5 (2023081020461428300_c15) 2020; 32 (2023081020461428300_c28) 2022; 67 (2023081020461428300_c13) 1998; 394 (2023081020461428300_c1) 2013; 135 (2023081020461428300_c25) 2022; 5 (2023081020461428300_c3) 2020; 7 (2023081020461428300_c19) 2020; 15 (2023081020461428300_c9) 2004; 104 (2023081020461428300_c2) 2022; 9 (2023081020461428300_c7) 2022; 65 (2023081020461428300_c24) 2016; 318 (2023081020461428300_c5) 2021; 50 (2023081020461428300_c10) 2020; 120 (2023081020461428300_c29) 2022; 320 (2023081020461428300_c20) 1999; 81 (2023081020461428300_c16) 2018; 8 (2023081020461428300_c26) 2019; 4 |
References_xml | – start-page: 2803 year: 2020 ident: c19 publication-title: Chem. Asian J. – start-page: 1438 year: 2020 ident: c27 publication-title: ACS Energy Lett. – start-page: 280 year: 2022 ident: c7 publication-title: J. Energy Chem. – start-page: 2200390 year: 2022 ident: c2 publication-title: Adv. Sci. – start-page: 1909887 year: 2020 ident: c6 publication-title: Adv. Funct. Mater. – start-page: 4303 year: 2004 ident: c9 publication-title: Chem. Rev. – start-page: 585 year: 2022 ident: c25 publication-title: ACS Appl. Energy Mater. – start-page: 1167 year: 2013 ident: c1 publication-title: J. Am. Chem. Soc. – start-page: 2000587 year: 2020 ident: c3 publication-title: Adv. Sci. – start-page: 456 year: 1998 ident: c13 publication-title: Nature – start-page: 10486 year: 2021 ident: c5 publication-title: Chem. Soc. Rev. – start-page: 174 year: 2018 ident: c8 publication-title: Chem – start-page: 1278 year: 2010 ident: c22 publication-title: Chem. Rev. – start-page: 416 year: 1999 ident: c20 publication-title: J. Power Sources – start-page: eaat5383 year: 2018 ident: c12 publication-title: Sci. Adv. – start-page: 1905629 year: 2020 ident: c15 publication-title: Adv. Mater. – start-page: 105 year: 2013 ident: c21 publication-title: Solid State Ionics – start-page: 170 year: 2016 ident: c24 publication-title: J. Power Sources – start-page: 718 year: 2022 ident: c28 publication-title: J. Energy Chem. – start-page: 882 year: 2019 ident: c26 publication-title: Nat. Energy – start-page: 2100836 year: 2021 ident: c23 publication-title: Adv. Energy Mater. – start-page: 708 year: 2017 ident: c18 publication-title: J. Alloys Compd. – start-page: 3286 year: 2017 ident: c17 publication-title: J. Phys. Chem. C – start-page: 2105448 year: 2022 ident: c4 publication-title: Adv. Sci. – start-page: e202114805 year: 2022 ident: c14 publication-title: Angew. Chem., Int. Ed. Engl. – start-page: 7973 year: 2021 ident: c11 publication-title: ACS Appl. Energy Mater. – start-page: 6783 year: 2020 ident: c10 publication-title: Chem. Rev. – start-page: 1701682 year: 2018 ident: c16 publication-title: Adv. Energy Mater. – start-page: 119282 year: 2022 ident: c29 publication-title: Appl. Energy – volume: 65 start-page: 280 year: 2022 ident: 2023081020461428300_c7 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.05.049 – volume: 394 start-page: 456 year: 1998 ident: 2023081020461428300_c13 publication-title: Nature doi: 10.1038/28818 – volume: 8 start-page: 1701682 year: 2018 ident: 2023081020461428300_c16 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201701682 – volume: 249 start-page: 105 year: 2013 ident: 2023081020461428300_c21 publication-title: Solid State Ionics doi: 10.1016/j.ssi.2013.07.023 – volume: 9 start-page: 2105448 year: 2022 ident: 2023081020461428300_c4 publication-title: Adv. Sci. doi: 10.1002/advs.202105448 – volume: 9 start-page: 2200390 year: 2022 ident: 2023081020461428300_c2 publication-title: Adv. Sci. doi: 10.1002/advs.202200390 – volume: 709 start-page: 708 year: 2017 ident: 2023081020461428300_c18 publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.03.225 – volume: 320 start-page: 119282 year: 2022 ident: 2023081020461428300_c29 publication-title: Appl. Energy doi: 10.1016/j.apenergy.2022.119282 – volume: 5 start-page: 1438 year: 2020 ident: 2023081020461428300_c27 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.0c00643 – volume: 50 start-page: 10486 year: 2021 ident: 2023081020461428300_c5 publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00450F – volume: 7 start-page: 2000587 year: 2020 ident: 2023081020461428300_c3 publication-title: Adv. Sci. doi: 10.1002/advs.202000587 – volume: 5 start-page: 585 year: 2022 ident: 2023081020461428300_c25 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c03096 – volume: 120 start-page: 6783 year: 2020 ident: 2023081020461428300_c10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00531 – volume: 30 start-page: 1909887 year: 2020 ident: 2023081020461428300_c6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201909887 – volume: 135 start-page: 1167 year: 2013 ident: 2023081020461428300_c1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3091438 – volume: 11 start-page: 2100836 year: 2021 ident: 2023081020461428300_c23 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202100836 – volume: 67 start-page: 718 year: 2022 ident: 2023081020461428300_c28 publication-title: J. Energy Chem. doi: 10.1016/j.jechem.2021.10.003 – volume: 4 start-page: 174 year: 2018 ident: 2023081020461428300_c8 publication-title: Chem doi: 10.1016/j.chempr.2017.10.017 – volume: 15 start-page: 2803 year: 2020 ident: 2023081020461428300_c19 publication-title: Chem. Asian J. doi: 10.1002/asia.202000522 – volume: 4 start-page: eaat5383 year: 2018 ident: 2023081020461428300_c12 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat5383 – volume: 318 start-page: 170 year: 2016 ident: 2023081020461428300_c24 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2016.04.017 – volume: 4 start-page: 7973 year: 2021 ident: 2023081020461428300_c11 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.1c01281 – volume: 104 start-page: 4303 year: 2004 ident: 2023081020461428300_c9 publication-title: Chem. Rev. doi: 10.1021/cr030203g – volume: 61 start-page: e202114805 year: 2022 ident: 2023081020461428300_c14 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.202114805 – volume: 4 start-page: 882 year: 2019 ident: 2023081020461428300_c26 publication-title: Nat. Energy doi: 10.1038/s41560-019-0474-3 – volume: 110 start-page: 1278 year: 2010 ident: 2023081020461428300_c22 publication-title: Chem. Rev. doi: 10.1021/cr800344k – volume: 32 start-page: 1905629 year: 2020 ident: 2023081020461428300_c15 publication-title: Adv. Mater. doi: 10.1002/adma.201905629 – volume: 121 start-page: 3286 year: 2017 ident: 2023081020461428300_c17 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b12885 – volume: 81 start-page: 416 year: 1999 ident: 2023081020461428300_c20 publication-title: J. Power Sources doi: 10.1016/S0378-7753(99)00221-9 |
SSID | ssj0005233 |
Score | 2.4600887 |
Snippet | Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Cathodes Chemical compatibility Electrolytes Electromagnetic compatibility Fluorine Ion currents Ions Lithium batteries Molten salt electrolytes Raman spectroscopy Solid electrolytes Solid state X ray photoelectron spectroscopy |
Title | Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries |
URI | http://dx.doi.org/10.1063/5.0134474 https://www.proquest.com/docview/2768559564 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i6gPolWxtcqgPgjL2GQmt30salnEimAL1ZeQubULa9JuEqH-es9cctFdpPoSlmQ2Geb7cuack3NB6FUYFUmQCU4KFmhjoCgyi2VKRCSyTKQzEA_GD3n0KZmfRB9O49PBq2SzSxr-RvzcmFfyP6jCOcDVZMn-A7L9TeEE_AZ84QgIw_FaGB8uWxM_p8jKdZQH5dGUYa2kmvr2NsurRtmSELCcsF9NlU2VqqemSjFRLu_vsi3qBYGZLiSx-UUmL_l80X437aUBQW5LcHbBhl3FWq-9Os9IPV3atKBeQZ9XrY3eK8qz-rwdeadt8MDXotSF3zJtaIGTfd-q8uyqHQUJLVoXEaDgfOXHew8FNfFZxCUR91KXkWTmC8sqJ2iD1PhHveztJDGlI8pFGyU8qFQAi6m1amoVRsM21n26_2N362MO7df2hOVx7v96E21RsC3oBG0dvDv6-GUUGcRY12jRTLsrSJWw_f65v6sxg21yGxQXF0MxUlOO76N73r7AB44sD9ANVW6ju6Oqk9vo1meH2UNUrRMIewLhEYHwQCDsCYRHBMJrBMKeQNgSCPcEeoRODt8fv50T34GDCEbThuhEKKmYSHUog1grENeCgrKjAgmaX5Fyc01wmnEdiTAsEqoYo5JJLnSolWaP0aSsSvUE4TjMdBEVIuGzLIqo4pyBrisjKsFi0kzsoNfdgubdEpouKct8Dbgd9KIfeuFqsmwatNehkvtXts4pGNdgQscJXH7ZI_W3m2wY9aNaDSPyC6l3rzOfp-jO8G7soUmzatUz0Gcb_tzz7xen_qX8 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorine-regulated+cathode+electrolyte+interphase+enables+high-energy+quasi-solid-state+lithium+metal+batteries&rft.jtitle=Applied+physics+letters&rft.au=Hou%2C+Wangshu&rft.au=Zhai%2C+Yanfang&rft.au=Chen%2C+Zongyuan&rft.au=Liu%2C+Chengyong&rft.date=2023-01-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=4&rft_id=info:doi/10.1063%2F5.0134474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0134474 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |