Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries

Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standi...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 4
Main Authors Hou, Wangshu, Zhai, Yanfang, Chen, Zongyuan, Liu, Chengyong, Ouyang, Chuying, Hu, Ning, Liang, Xiao, Paoprasert, Peerasak, Song, Shufeng
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 23.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standing challenge. Herein, we report that an additive level (0.05 M) of LiPF6 is introduced to a polymeric concentrated quasi-solid electrolyte (10 M LiFSI in poly-1,3-dioxolane [poly-DOL], ethylene carbonate [EC], and ethyl methyl carbonate [EMC]) to build in situ a fluorine-regulated cathode electrolyte interphase (CEI) on a highly catalytic LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The CEI with a conformal thickness of ∼7 nm features a fluorine-rich outer layer and manipulative LiF/organofluorine species, which mitigates the detrimental side reactions between the quasi-solid electrolyte and NCM cathode and maintains the structure of cycled NCM, as demonstrated by the characterizations of SEM, TEM, XRD, Raman spectroscopy, AFM, EDS, and XPS. As a result, the LiPF6-contained polymeric concentrated quasi-solid electrolyte not only provides a superior ionic conductivity of 3.1 × 10−4 S cm−1 at 25 °C and a remarkable electrochemical stability window of 5.5 V vs Li/Li+, but also achieves an excellent capacity retention of 74% after 100 cycles for LiǁNCM811 quasi-solid-state LMB, bringing a quasi-solid electrolyte design strategy of engineered CEI chemistry for LMBs.
AbstractList Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The limited oxidative stabilization and inferior chemical compatibility of quasi-solid electrolytes toward high-voltage cathodes are a long-standing challenge. Herein, we report that an additive level (0.05 M) of LiPF6 is introduced to a polymeric concentrated quasi-solid electrolyte (10 M LiFSI in poly-1,3-dioxolane [poly-DOL], ethylene carbonate [EC], and ethyl methyl carbonate [EMC]) to build in situ a fluorine-regulated cathode electrolyte interphase (CEI) on a highly catalytic LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode. The CEI with a conformal thickness of ∼7 nm features a fluorine-rich outer layer and manipulative LiF/organofluorine species, which mitigates the detrimental side reactions between the quasi-solid electrolyte and NCM cathode and maintains the structure of cycled NCM, as demonstrated by the characterizations of SEM, TEM, XRD, Raman spectroscopy, AFM, EDS, and XPS. As a result, the LiPF6-contained polymeric concentrated quasi-solid electrolyte not only provides a superior ionic conductivity of 3.1 × 10−4 S cm−1 at 25 °C and a remarkable electrochemical stability window of 5.5 V vs Li/Li+, but also achieves an excellent capacity retention of 74% after 100 cycles for LiǁNCM811 quasi-solid-state LMB, bringing a quasi-solid electrolyte design strategy of engineered CEI chemistry for LMBs.
Author Ouyang, Chuying
Song, Shufeng
Hou, Wangshu
Liang, Xiao
Liu, Chengyong
Zhai, Yanfang
Chen, Zongyuan
Paoprasert, Peerasak
Hu, Ning
Author_xml – sequence: 1
  givenname: Wangshu
  surname: Hou
  fullname: Hou, Wangshu
  organization: College of Aerospace Engineering, Chongqing University
– sequence: 2
  givenname: Yanfang
  surname: Zhai
  fullname: Zhai, Yanfang
  organization: College of Aerospace Engineering, Chongqing University
– sequence: 3
  givenname: Zongyuan
  surname: Chen
  fullname: Chen, Zongyuan
  organization: College of Aerospace Engineering, Chongqing University
– sequence: 4
  givenname: Chengyong
  surname: Liu
  fullname: Liu, Chengyong
  organization: Fujian Science and Technology Innovation Laboratory for Energy Devices of China (21C-LAB)
– sequence: 5
  givenname: Chuying
  surname: Ouyang
  fullname: Ouyang, Chuying
  organization: Fujian Science and Technology Innovation Laboratory for Energy Devices of China (21C-LAB)
– sequence: 6
  givenname: Ning
  surname: Hu
  fullname: Hu, Ning
  organization: State Key Laboratory of Reliability and Intelligence Electrical Equipment, and School of Mechanical Engineering, Hebei University of Technology
– sequence: 7
  givenname: Xiao
  surname: Liang
  fullname: Liang, Xiao
  organization: College of Chemistry and Chemical Engineering, Hunan University
– sequence: 8
  givenname: Peerasak
  surname: Paoprasert
  fullname: Paoprasert, Peerasak
  organization: Department of Chemistry, Faculty of Science and Technology, Thammasat University
– sequence: 9
  givenname: Shufeng
  surname: Song
  fullname: Song, Shufeng
  organization: College of Aerospace Engineering, Chongqing University
BookMark eNqdkE1LAzEQhoNUsK0e_AcBTwpp87Ef7VGKVaHgRc9LNpl0U9JNm2SF_nu3tCKIJ0_DzDzvO8M7QoPWt4DQLaMTRgsxzSeUiSwrsws0ZLQsiWBsNkBDSqkgxTxnV2gU46Zvcy7EEPml63ywLZAA687JBBormRqvAYMDlYJ3hwTYtgnCrpGxH7eydhBxY9cNgRbC-oD3nYyWRO-sJjH1LtjZ1Nhui7eQpMO1TL3eQrxGl0a6CDfnOkYfy6f3xQtZvT2_Lh5XRAleJmIKBRqEKg3TNDfA5oXinHGgmmdMlvVxp2o-q02mGJMFByG4FrpWhhkwYozuTr674PcdxFRtfBfa_mTFy2KW5_O8yHpqeqJU8DEGMJWy_ffWtylI6ypGq2OqVV6dU-0V978Uu2C3Mhz-ZB9ObPx2_R_86cMPWO20EV-cFJhv
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_jmat_2024_03_009
crossref_primary_10_1007_s40820_024_01482_6
crossref_primary_10_1039_D4SE01421A
crossref_primary_10_1039_D4TA06771A
crossref_primary_10_1002_eem2_12736
crossref_primary_10_1016_j_mtener_2024_101512
Cites_doi 10.1016/j.jechem.2021.05.049
10.1038/28818
10.1002/aenm.201701682
10.1016/j.ssi.2013.07.023
10.1002/advs.202105448
10.1002/advs.202200390
10.1016/j.jallcom.2017.03.225
10.1016/j.apenergy.2022.119282
10.1021/acsenergylett.0c00643
10.1039/D1CS00450F
10.1002/advs.202000587
10.1021/acsaem.1c03096
10.1021/acs.chemrev.9b00531
10.1002/adfm.201909887
10.1021/ja3091438
10.1002/aenm.202100836
10.1016/j.jechem.2021.10.003
10.1016/j.chempr.2017.10.017
10.1002/asia.202000522
10.1126/sciadv.aat5383
10.1016/j.jpowsour.2016.04.017
10.1021/acsaem.1c01281
10.1021/cr030203g
10.1002/anie.202114805
10.1038/s41560-019-0474-3
10.1021/cr800344k
10.1002/adma.201905629
10.1021/acs.jpcc.6b12885
10.1016/S0378-7753(99)00221-9
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0134474
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0134474
apl
GrantInformation_xml – fundername: Fujian Science & Technology Innovation Laboratory for Energy Devices of China
  grantid: 21C-OP-202110
– fundername: Key Program for International Science and Technology Cooperation Projects of the Ministry of Science and Technology of China
  grantid: 2021YFE0109700
– fundername: Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructure
  grantid: SKL202106SIC
– fundername: Fundamental Research Funds for the Central Universities
  grantid: 2022CDJXY-012
– fundername: Graduate Research and Innovation Foundation of Chongqing, China
  grantid: CYS22044
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-f6cede3c7f1d05fe196c2212e0d241a7be3c7cb28bf4c11a62e332d3dbcf1fef3
ISSN 0003-6951
IngestDate Mon Jun 30 07:08:26 EDT 2025
Tue Jul 01 01:08:25 EDT 2025
Thu Apr 24 23:11:55 EDT 2025
Tue Jul 04 19:18:44 EDT 2023
Fri Jun 21 00:19:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-f6cede3c7f1d05fe196c2212e0d241a7be3c7cb28bf4c11a62e332d3dbcf1fef3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8686-7809
0000-0002-6350-9512
0000-0001-9049-8305
PQID 2768559564
PQPubID 2050678
PageCount 7
ParticipantIDs crossref_citationtrail_10_1063_5_0134474
scitation_primary_10_1063_5_0134474
proquest_journals_2768559564
crossref_primary_10_1063_5_0134474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230123
2023-01-23
PublicationDateYYYYMMDD 2023-01-23
PublicationDate_xml – month: 01
  year: 2023
  text: 20230123
  day: 23
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Aktekin, Hernandez, Younesi, Brandell, Edstrom (c25) 2022
Goodenough, Park (c1) 2013
Lu, Zhou, Svensson, Fossdal, Sheridan, Lu, VullumBruer (c21) 2013
Liu, Zhang, Ji, Zhang, Zhou, Cao, Zhou, Yan, Qian (c2) 2022
Holoubek, Yu, Yu, Li, Wu, Xia, Bhaladhare, Gonzalez, Pascal, Liu, Chen (c27) 2020
Didwal, Verma, Nguyen, Ramasamy, Lee, Park (c4) 2022
Hadjean, Pereira-Ramos (c22) 2010
Zhao, Zhao, Liu, Zheng, Stalin, Zhang, Archer (c15) 2020
Xiang, Shi, Bhattacharya, Chen, Mei, Bowden, Zhang, Xu (c24) 2016
Li, Wang, Meng, Ning, Zhang, Fu (c28) 2022
Zhang, Zhao, Wang, Liang, Wang, Wang, Zhang, Adair, Li, Li, Duan, Zhao, Yu, Li, Huang, Zhang, Zhao, Lu, Sham, Mo, Sun (c23) 2021
Fan, Ji, Chen, Chen, Deng, Han, Yue, Piao, Wang, Zhou, Xiao, Chen, Wang (c26) 2019
Yan, Xu, Xiao, Ding, Xu, Li, Huang (c6) 2020
Nan, Zhang, Zhu, Wang, Wang, Wang, Chu, Wang, Tang (c3) 2020
Liu, Yu, Lee (c20) 1999
Chen, Tao, Qi, Zeng, Wu, Liang, Yao, Lu, Chen (c18) 2017
Xu (c9) 2004
Fan, Chen, Ji, Deng, Hou, Chen, Zheng, Wang, Jiang, Xu, Wang (c8) 2018
Croce, Appetecchi, Persi, Scrosati (c13) 1998
Schipper, Bouzaglo, Dixit, Erickson, Weigel, Talianker, Grinblat, Burstein, Schmidt, Lampert, Erk, Markovsky, Major, Aurbach (c16) 2018
Wang, Gu, Li, Zhao, Guo, Du, Luo, Wu (c19) 2020
Liu, Wang, Yin, Zhang, Shi, Wang, Zhang, Zheng, Zhou, Li, Guo (c12) 2018
Qi, Wang, Dong, Liu, Tian, Qi, Wu (c29) 2022
Li, Wang, Xu, Zhou, Ma, Zhang, Du, Cui, Zhou, Cui (c7) 2022
Kondrakov, Schmidt, Xu, Gesswein, Monig, Hartmann, Sommer, Brezesinski, Janek (c17) 2017
Li, Wang, Chen, Xu, Lu (c10) 2020
Zhai, Yang, Zeng, Song, Li, Hu, Tang, Wen, Lu, Molenda (c11) 2021
Li, Gao, Tian, Li, He, Li, Wang, Li, Li, Qiu, Zhou (c14) 2022
Fan, Wang (c5) 2021
(2023081020461428300_c23) 2021; 11
(2023081020461428300_c17) 2017; 121
(2023081020461428300_c18) 2017; 709
(2023081020461428300_c14) 2022; 61
(2023081020461428300_c4) 2022; 9
(2023081020461428300_c6) 2020; 30
(2023081020461428300_c21) 2013; 249
(2023081020461428300_c11) 2021; 4
(2023081020461428300_c12) 2018; 4
(2023081020461428300_c22) 2010; 110
(2023081020461428300_c8) 2018; 4
(2023081020461428300_c27) 2020; 5
(2023081020461428300_c15) 2020; 32
(2023081020461428300_c28) 2022; 67
(2023081020461428300_c13) 1998; 394
(2023081020461428300_c1) 2013; 135
(2023081020461428300_c25) 2022; 5
(2023081020461428300_c3) 2020; 7
(2023081020461428300_c19) 2020; 15
(2023081020461428300_c9) 2004; 104
(2023081020461428300_c2) 2022; 9
(2023081020461428300_c7) 2022; 65
(2023081020461428300_c24) 2016; 318
(2023081020461428300_c5) 2021; 50
(2023081020461428300_c10) 2020; 120
(2023081020461428300_c29) 2022; 320
(2023081020461428300_c20) 1999; 81
(2023081020461428300_c16) 2018; 8
(2023081020461428300_c26) 2019; 4
References_xml – start-page: 2803
  year: 2020
  ident: c19
  publication-title: Chem. Asian J.
– start-page: 1438
  year: 2020
  ident: c27
  publication-title: ACS Energy Lett.
– start-page: 280
  year: 2022
  ident: c7
  publication-title: J. Energy Chem.
– start-page: 2200390
  year: 2022
  ident: c2
  publication-title: Adv. Sci.
– start-page: 1909887
  year: 2020
  ident: c6
  publication-title: Adv. Funct. Mater.
– start-page: 4303
  year: 2004
  ident: c9
  publication-title: Chem. Rev.
– start-page: 585
  year: 2022
  ident: c25
  publication-title: ACS Appl. Energy Mater.
– start-page: 1167
  year: 2013
  ident: c1
  publication-title: J. Am. Chem. Soc.
– start-page: 2000587
  year: 2020
  ident: c3
  publication-title: Adv. Sci.
– start-page: 456
  year: 1998
  ident: c13
  publication-title: Nature
– start-page: 10486
  year: 2021
  ident: c5
  publication-title: Chem. Soc. Rev.
– start-page: 174
  year: 2018
  ident: c8
  publication-title: Chem
– start-page: 1278
  year: 2010
  ident: c22
  publication-title: Chem. Rev.
– start-page: 416
  year: 1999
  ident: c20
  publication-title: J. Power Sources
– start-page: eaat5383
  year: 2018
  ident: c12
  publication-title: Sci. Adv.
– start-page: 1905629
  year: 2020
  ident: c15
  publication-title: Adv. Mater.
– start-page: 105
  year: 2013
  ident: c21
  publication-title: Solid State Ionics
– start-page: 170
  year: 2016
  ident: c24
  publication-title: J. Power Sources
– start-page: 718
  year: 2022
  ident: c28
  publication-title: J. Energy Chem.
– start-page: 882
  year: 2019
  ident: c26
  publication-title: Nat. Energy
– start-page: 2100836
  year: 2021
  ident: c23
  publication-title: Adv. Energy Mater.
– start-page: 708
  year: 2017
  ident: c18
  publication-title: J. Alloys Compd.
– start-page: 3286
  year: 2017
  ident: c17
  publication-title: J. Phys. Chem. C
– start-page: 2105448
  year: 2022
  ident: c4
  publication-title: Adv. Sci.
– start-page: e202114805
  year: 2022
  ident: c14
  publication-title: Angew. Chem., Int. Ed. Engl.
– start-page: 7973
  year: 2021
  ident: c11
  publication-title: ACS Appl. Energy Mater.
– start-page: 6783
  year: 2020
  ident: c10
  publication-title: Chem. Rev.
– start-page: 1701682
  year: 2018
  ident: c16
  publication-title: Adv. Energy Mater.
– start-page: 119282
  year: 2022
  ident: c29
  publication-title: Appl. Energy
– volume: 65
  start-page: 280
  year: 2022
  ident: 2023081020461428300_c7
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.05.049
– volume: 394
  start-page: 456
  year: 1998
  ident: 2023081020461428300_c13
  publication-title: Nature
  doi: 10.1038/28818
– volume: 8
  start-page: 1701682
  year: 2018
  ident: 2023081020461428300_c16
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201701682
– volume: 249
  start-page: 105
  year: 2013
  ident: 2023081020461428300_c21
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2013.07.023
– volume: 9
  start-page: 2105448
  year: 2022
  ident: 2023081020461428300_c4
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202105448
– volume: 9
  start-page: 2200390
  year: 2022
  ident: 2023081020461428300_c2
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202200390
– volume: 709
  start-page: 708
  year: 2017
  ident: 2023081020461428300_c18
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.03.225
– volume: 320
  start-page: 119282
  year: 2022
  ident: 2023081020461428300_c29
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2022.119282
– volume: 5
  start-page: 1438
  year: 2020
  ident: 2023081020461428300_c27
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.0c00643
– volume: 50
  start-page: 10486
  year: 2021
  ident: 2023081020461428300_c5
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00450F
– volume: 7
  start-page: 2000587
  year: 2020
  ident: 2023081020461428300_c3
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202000587
– volume: 5
  start-page: 585
  year: 2022
  ident: 2023081020461428300_c25
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c03096
– volume: 120
  start-page: 6783
  year: 2020
  ident: 2023081020461428300_c10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00531
– volume: 30
  start-page: 1909887
  year: 2020
  ident: 2023081020461428300_c6
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201909887
– volume: 135
  start-page: 1167
  year: 2013
  ident: 2023081020461428300_c1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3091438
– volume: 11
  start-page: 2100836
  year: 2021
  ident: 2023081020461428300_c23
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202100836
– volume: 67
  start-page: 718
  year: 2022
  ident: 2023081020461428300_c28
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2021.10.003
– volume: 4
  start-page: 174
  year: 2018
  ident: 2023081020461428300_c8
  publication-title: Chem
  doi: 10.1016/j.chempr.2017.10.017
– volume: 15
  start-page: 2803
  year: 2020
  ident: 2023081020461428300_c19
  publication-title: Chem. Asian J.
  doi: 10.1002/asia.202000522
– volume: 4
  start-page: eaat5383
  year: 2018
  ident: 2023081020461428300_c12
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aat5383
– volume: 318
  start-page: 170
  year: 2016
  ident: 2023081020461428300_c24
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2016.04.017
– volume: 4
  start-page: 7973
  year: 2021
  ident: 2023081020461428300_c11
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.1c01281
– volume: 104
  start-page: 4303
  year: 2004
  ident: 2023081020461428300_c9
  publication-title: Chem. Rev.
  doi: 10.1021/cr030203g
– volume: 61
  start-page: e202114805
  year: 2022
  ident: 2023081020461428300_c14
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.202114805
– volume: 4
  start-page: 882
  year: 2019
  ident: 2023081020461428300_c26
  publication-title: Nat. Energy
  doi: 10.1038/s41560-019-0474-3
– volume: 110
  start-page: 1278
  year: 2010
  ident: 2023081020461428300_c22
  publication-title: Chem. Rev.
  doi: 10.1021/cr800344k
– volume: 32
  start-page: 1905629
  year: 2020
  ident: 2023081020461428300_c15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201905629
– volume: 121
  start-page: 3286
  year: 2017
  ident: 2023081020461428300_c17
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b12885
– volume: 81
  start-page: 416
  year: 1999
  ident: 2023081020461428300_c20
  publication-title: J. Power Sources
  doi: 10.1016/S0378-7753(99)00221-9
SSID ssj0005233
Score 2.4600887
Snippet Lithium metal batteries (LMBs) enabled by quasi-solid electrolytes are under consideration for their prospect of reliable safety and high energy density. The...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Cathodes
Chemical compatibility
Electrolytes
Electromagnetic compatibility
Fluorine
Ion currents
Ions
Lithium batteries
Molten salt electrolytes
Raman spectroscopy
Solid electrolytes
Solid state
X ray photoelectron spectroscopy
Title Fluorine-regulated cathode electrolyte interphase enables high-energy quasi-solid-state lithium metal batteries
URI http://dx.doi.org/10.1063/5.0134474
https://www.proquest.com/docview/2768559564
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i6gPolWxtcqgPgjL2GQmt30salnEimAL1ZeQubULa9JuEqH-es9cctFdpPoSlmQ2Geb7cuack3NB6FUYFUmQCU4KFmhjoCgyi2VKRCSyTKQzEA_GD3n0KZmfRB9O49PBq2SzSxr-RvzcmFfyP6jCOcDVZMn-A7L9TeEE_AZ84QgIw_FaGB8uWxM_p8jKdZQH5dGUYa2kmvr2NsurRtmSELCcsF9NlU2VqqemSjFRLu_vsi3qBYGZLiSx-UUmL_l80X437aUBQW5LcHbBhl3FWq-9Os9IPV3atKBeQZ9XrY3eK8qz-rwdeadt8MDXotSF3zJtaIGTfd-q8uyqHQUJLVoXEaDgfOXHew8FNfFZxCUR91KXkWTmC8sqJ2iD1PhHveztJDGlI8pFGyU8qFQAi6m1amoVRsM21n26_2N362MO7df2hOVx7v96E21RsC3oBG0dvDv6-GUUGcRY12jRTLsrSJWw_f65v6sxg21yGxQXF0MxUlOO76N73r7AB44sD9ANVW6ju6Oqk9vo1meH2UNUrRMIewLhEYHwQCDsCYRHBMJrBMKeQNgSCPcEeoRODt8fv50T34GDCEbThuhEKKmYSHUog1grENeCgrKjAgmaX5Fyc01wmnEdiTAsEqoYo5JJLnSolWaP0aSsSvUE4TjMdBEVIuGzLIqo4pyBrisjKsFi0kzsoNfdgubdEpouKct8Dbgd9KIfeuFqsmwatNehkvtXts4pGNdgQscJXH7ZI_W3m2wY9aNaDSPyC6l3rzOfp-jO8G7soUmzatUz0Gcb_tzz7xen_qX8
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluorine-regulated+cathode+electrolyte+interphase+enables+high-energy+quasi-solid-state+lithium+metal+batteries&rft.jtitle=Applied+physics+letters&rft.au=Hou%2C+Wangshu&rft.au=Zhai%2C+Yanfang&rft.au=Chen%2C+Zongyuan&rft.au=Liu%2C+Chengyong&rft.date=2023-01-23&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=4&rft_id=info:doi/10.1063%2F5.0134474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0134474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon