An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations

In this paper, we propose a new two-level implicit difference scheme of O ( k 2 h l - 1 + kh l + h l 3 ) for the solution of non-linear parabolic equation εu xx = ϕ( x, t, u, u x , u t ), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where k &...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 186; no. 1; pp. 219 - 229
Main Author Mohanty, R.K.
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.03.2007
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2006.06.122

Cover

Loading…
Abstract In this paper, we propose a new two-level implicit difference scheme of O ( k 2 h l - 1 + kh l + h l 3 ) for the solution of non-linear parabolic equation εu xx = ϕ( x, t, u, u x , u t ), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where k > 0, h l > 0 are mesh sizes in t- and x-coordinates respectively and ε > 0 is a small parameter. In addition, we also discuss a new explicit variable mesh difference scheme of O ( kh l + h l 3 ) for the estimates of (∂ u/∂ x). In all cases, we require only three spatial variable grid points. The proposed schemes require less algebra and three evaluations of function ϕ. A special technique is required to solve singular parabolic equations. The proposed variable mesh scheme when applied to a linear diffusion equation is shown to be stable for all h l > 0 and k > 0. Computational results are provided to support our derived schemes and analysis.
AbstractList In this paper, we propose a new two-level implicit difference scheme of O ( k 2 h l - 1 + kh l + h l 3 ) for the solution of non-linear parabolic equation εu xx = ϕ( x, t, u, u x , u t ), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where k > 0, h l > 0 are mesh sizes in t- and x-coordinates respectively and ε > 0 is a small parameter. In addition, we also discuss a new explicit variable mesh difference scheme of O ( kh l + h l 3 ) for the estimates of (∂ u/∂ x). In all cases, we require only three spatial variable grid points. The proposed schemes require less algebra and three evaluations of function ϕ. A special technique is required to solve singular parabolic equations. The proposed variable mesh scheme when applied to a linear diffusion equation is shown to be stable for all h l > 0 and k > 0. Computational results are provided to support our derived schemes and analysis.
Author Mohanty, R.K.
Author_xml – sequence: 1
  givenname: R.K.
  surname: Mohanty
  fullname: Mohanty, R.K.
  email: rmohanty@maths.du.ac.in
  organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi 110 007, India
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18642358$$DView record in Pascal Francis
BookMark eNp9kMFq3DAQhkVJoZs0D5CbLjl6O7K8sk1PIW3aQCCX9izG0ig7iy1vJW8gb19ttuTQQ2BAI5jvl-Y7F2dxjiTElYK1AmW-7NY4uXUNYNalVF1_ECvVtbramKY_EyuA3lQaQH8S5znvAKA1qlmJfBMlT_uRHS9yy09bic4dEroX-YyJcRhJTpS3MrstTSTDnKSqvsnyfDVyJEwyc3w6jKXZY8JhLlHHbmEcpecQKFF8vdCfAy48x_xZfAw4Zrr8d16I33fff93-rB4ef9zf3jxUTtftUgXVge-D7nWNrh9MixtNnpB8o70a9NCBbkzXlfV7aMFAY_xG1YqCH6BpOn0hrk-5e8wOx5AwOs52n3jC9GJVZ5pab45z7WnOpTnnRMEWGa9fXRLyaBXYo2O7s8WxPTq2pYrjQqr_yLfwd5ivJ4bK6s9MyWbHFB15TuQW62d-h_4LvPyXLg
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1080_15502287_2020_1853852
crossref_primary_10_1016_j_amc_2015_10_036
crossref_primary_10_1080_00207160902890287
crossref_primary_10_1007_s00366_019_00796_z
crossref_primary_10_1108_EC_08_2019_0359
crossref_primary_10_1007_s12591_018_0427_5
crossref_primary_10_1088_1402_4896_ad79ae
crossref_primary_10_36704_rhp_v1i2_8293
crossref_primary_10_1016_j_amc_2009_03_001
crossref_primary_10_1134_S1995423920010061
crossref_primary_10_1007_s10910_023_01451_1
crossref_primary_10_1515_ijnsns_2017_0227
crossref_primary_10_1186_s13662_016_1048_3
crossref_primary_10_1016_j_amc_2012_08_100
crossref_primary_10_1016_j_asej_2014_10_002
crossref_primary_10_1007_s40324_017_0139_8
Cites_doi 10.1002/num.1690060403
10.1016/0021-9991(84)90015-9
10.1016/0021-9991(78)90031-1
10.1016/0021-9991(88)90181-7
10.1002/1098-2426(200007)16:4<408::AID-NUM5>3.0.CO;2-J
10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H
10.1006/jcph.1994.1149
10.1093/imamat/21.1.83
10.1016/j.cam.2004.11.045
10.1137/0709048
10.1002/nme.1620190311
10.1016/0045-7825(84)90009-4
10.1137/0111015
ContentType Journal Article
Copyright 2006 Elsevier Inc.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier Inc.
– notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2006.06.122
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 229
ExternalDocumentID 18642358
10_1016_j_amc_2006_06_122
S0096300306009325
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c327t-f180d9f3932ac9b67a53edeaed43d1b3b803468801690706046d5121efdb04483
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:13:23 EDT 2025
Tue Jul 01 04:07:01 EDT 2025
Thu Apr 24 23:10:55 EDT 2025
Fri Feb 23 02:29:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Finite difference scheme
Singularity
Singular perturbation
Non-linear parabolic equation
Burgers’ equation
Diffusion equation
Variable mesh
Normal derivative
Difference scheme
Support
Singular equation
Grid
Boundary condition
Partial differential equation
Non linear equation
Function evaluation
Parabolic equation
Accuracy
Linear equation
Addition
Grid pattern
Initial condition
Initial value problem
Burgers equation
Numerical analysis
Boundary value problem
Coordinate
Applied mathematics
Derivative
Burgers' equation
Linear differential equations
Finite difference method
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-f180d9f3932ac9b67a53edeaed43d1b3b803468801690706046d5121efdb04483
PageCount 11
ParticipantIDs pascalfrancis_primary_18642358
crossref_citationtrail_10_1016_j_amc_2006_06_122
crossref_primary_10_1016_j_amc_2006_06_122
elsevier_sciencedirect_doi_10_1016_j_amc_2006_06_122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-01
PublicationDateYYYYMMDD 2007-03-01
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2007
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Rigal (bib2) 1994; 114
Ciment, Leventhal, Weinberg (bib3) 1978; 28
Hageman, Young (bib14) 1981
Reynolds (bib7) 1972; 9
Jacques (bib8) 1983; 19
Varga (bib13) 2000
Mohanty, Jain, Kumar (bib5) 2000; 16
Mohanty (bib9) 1996; 12
Mohanty (bib11) 2005; 182
Chawla (bib15) 1978; 21
Douglas, Jones (bib6) 1963; 11
Stephenson (bib16) 1984; 55
Mohanty, Singh (bib12) 2005; 13
Manohar, Iyengar, Krishnaiah (bib4) 1988; 77
Jain, Iyengar, Subramanyam (bib10) 1984; 42
Jain, Jain, Mohanty (bib1) 1990; 6
Chawla (10.1016/j.amc.2006.06.122_bib15) 1978; 21
Ciment (10.1016/j.amc.2006.06.122_bib3) 1978; 28
Varga (10.1016/j.amc.2006.06.122_bib13) 2000
Jain (10.1016/j.amc.2006.06.122_bib1) 1990; 6
Jain (10.1016/j.amc.2006.06.122_bib10) 1984; 42
Mohanty (10.1016/j.amc.2006.06.122_bib12) 2005; 13
Manohar (10.1016/j.amc.2006.06.122_bib4) 1988; 77
Douglas (10.1016/j.amc.2006.06.122_bib6) 1963; 11
Reynolds (10.1016/j.amc.2006.06.122_bib7) 1972; 9
Jacques (10.1016/j.amc.2006.06.122_bib8) 1983; 19
Rigal (10.1016/j.amc.2006.06.122_bib2) 1994; 114
Mohanty (10.1016/j.amc.2006.06.122_bib9) 1996; 12
Stephenson (10.1016/j.amc.2006.06.122_bib16) 1984; 55
Mohanty (10.1016/j.amc.2006.06.122_bib11) 2005; 182
Hageman (10.1016/j.amc.2006.06.122_bib14) 1981
Mohanty (10.1016/j.amc.2006.06.122_bib5) 2000; 16
References_xml – year: 2000
  ident: bib13
  article-title: Matrix Iterative Analysis
– volume: 114
  start-page: 59
  year: 1994
  end-page: 76
  ident: bib2
  article-title: High order difference schemes for unsteady one-dimensional diffusion–convection problems
  publication-title: J. Comput. Phys.
– volume: 12
  start-page: 579
  year: 1996
  end-page: 583
  ident: bib9
  article-title: An O(
  publication-title: Numer. Methods Partial Differen. Equat.
– volume: 21
  start-page: 83
  year: 1978
  end-page: 93
  ident: bib15
  article-title: A fourth order tri-diagonal finite difference method for general non-linear two point boundary value problems with mixed boundary conditions
  publication-title: J. Inst. Math. Appl.
– volume: 11
  start-page: 195
  year: 1963
  end-page: 204
  ident: bib6
  article-title: Predictor–corrector methods for non-linear parabolic differential equations
  publication-title: J. Soc. Ind. Appl. Math.
– volume: 13
  start-page: 401
  year: 2005
  end-page: 416
  ident: bib12
  article-title: Non-uniform mesh arithmetic average discretization for parabolic initial boundary value problems
  publication-title: Neural Parallel Sci. Comput.
– volume: 42
  start-page: 273
  year: 1984
  end-page: 286
  ident: bib10
  article-title: Variable mesh methods for the numerical solution of two point singular perturbation problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 77
  start-page: 513
  year: 1988
  end-page: 523
  ident: bib4
  article-title: High order difference methods for variable coefficient parabolic equations
  publication-title: J. Comput. Phys.
– volume: 16
  start-page: 408
  year: 2000
  end-page: 415
  ident: bib5
  article-title: Single cell finite difference approximations of O(
  publication-title: Numer. Methods Partial Differen. Equat.
– volume: 9
  start-page: 523
  year: 1972
  end-page: 533
  ident: bib7
  article-title: Convergent finite difference schemes for non-linear parabolic equations
  publication-title: SIAM. J. Numer. Anal.
– volume: 28
  start-page: 135
  year: 1978
  end-page: 166
  ident: bib3
  article-title: The operator compact implicit method for parabolic equations
  publication-title: J. Comput. Phys.
– volume: 182
  start-page: 173
  year: 2005
  end-page: 187
  ident: bib11
  article-title: A family of variable mesh methods for the estimates of (d
  publication-title: J. Comput. Appl. Math.
– volume: 6
  start-page: 311
  year: 1990
  end-page: 319
  ident: bib1
  article-title: A fourth order difference method for the one dimensional general quasi-linear parabolic partial differential equation
  publication-title: Numer. Methods Partial Differen. Equat.
– year: 1981
  ident: bib14
  article-title: Applied Iterative Methods
– volume: 55
  start-page: 65
  year: 1984
  end-page: 80
  ident: bib16
  article-title: Single cell discretizations of order two and four for biharmonic problems
  publication-title: J. Comput. Phys.
– volume: 19
  start-page: 451
  year: 1983
  end-page: 465
  ident: bib8
  article-title: Predictor–corrector methods for parabolic partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
– volume: 6
  start-page: 311
  year: 1990
  ident: 10.1016/j.amc.2006.06.122_bib1
  article-title: A fourth order difference method for the one dimensional general quasi-linear parabolic partial differential equation
  publication-title: Numer. Methods Partial Differen. Equat.
  doi: 10.1002/num.1690060403
– volume: 55
  start-page: 65
  year: 1984
  ident: 10.1016/j.amc.2006.06.122_bib16
  article-title: Single cell discretizations of order two and four for biharmonic problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(84)90015-9
– volume: 28
  start-page: 135
  year: 1978
  ident: 10.1016/j.amc.2006.06.122_bib3
  article-title: The operator compact implicit method for parabolic equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(78)90031-1
– volume: 77
  start-page: 513
  year: 1988
  ident: 10.1016/j.amc.2006.06.122_bib4
  article-title: High order difference methods for variable coefficient parabolic equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90181-7
– volume: 16
  start-page: 408
  year: 2000
  ident: 10.1016/j.amc.2006.06.122_bib5
  article-title: Single cell finite difference approximations of O(kh2+h4) for (∂u/∂x) for one space dimensional non-linear parabolic equations
  publication-title: Numer. Methods Partial Differen. Equat.
  doi: 10.1002/1098-2426(200007)16:4<408::AID-NUM5>3.0.CO;2-J
– volume: 12
  start-page: 579
  year: 1996
  ident: 10.1016/j.amc.2006.06.122_bib9
  article-title: An O(k2+h4) finite difference method for one space Burgers’ equation in polar coordinates
  publication-title: Numer. Methods Partial Differen. Equat.
  doi: 10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H
– volume: 114
  start-page: 59
  year: 1994
  ident: 10.1016/j.amc.2006.06.122_bib2
  article-title: High order difference schemes for unsteady one-dimensional diffusion–convection problems
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1149
– volume: 21
  start-page: 83
  year: 1978
  ident: 10.1016/j.amc.2006.06.122_bib15
  article-title: A fourth order tri-diagonal finite difference method for general non-linear two point boundary value problems with mixed boundary conditions
  publication-title: J. Inst. Math. Appl.
  doi: 10.1093/imamat/21.1.83
– volume: 13
  start-page: 401
  year: 2005
  ident: 10.1016/j.amc.2006.06.122_bib12
  article-title: Non-uniform mesh arithmetic average discretization for parabolic initial boundary value problems
  publication-title: Neural Parallel Sci. Comput.
– volume: 182
  start-page: 173
  year: 2005
  ident: 10.1016/j.amc.2006.06.122_bib11
  article-title: A family of variable mesh methods for the estimates of (du/dr) and the solution of non-linear two point boundary value problems with singularity
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2004.11.045
– volume: 9
  start-page: 523
  year: 1972
  ident: 10.1016/j.amc.2006.06.122_bib7
  article-title: Convergent finite difference schemes for non-linear parabolic equations
  publication-title: SIAM. J. Numer. Anal.
  doi: 10.1137/0709048
– volume: 19
  start-page: 451
  year: 1983
  ident: 10.1016/j.amc.2006.06.122_bib8
  article-title: Predictor–corrector methods for parabolic partial differential equations
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.1620190311
– volume: 42
  start-page: 273
  year: 1984
  ident: 10.1016/j.amc.2006.06.122_bib10
  article-title: Variable mesh methods for the numerical solution of two point singular perturbation problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(84)90009-4
– year: 2000
  ident: 10.1016/j.amc.2006.06.122_bib13
– volume: 11
  start-page: 195
  year: 1963
  ident: 10.1016/j.amc.2006.06.122_bib6
  article-title: Predictor–corrector methods for non-linear parabolic differential equations
  publication-title: J. Soc. Ind. Appl. Math.
  doi: 10.1137/0111015
– year: 1981
  ident: 10.1016/j.amc.2006.06.122_bib14
SSID ssj0007614
Score 1.9618587
Snippet In this paper, we propose a new two-level implicit difference scheme of O ( k 2 h l - 1 + kh l + h l 3 ) for the solution of non-linear parabolic equation εu...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 219
SubjectTerms Burgers’ equation
Diffusion equation
Exact sciences and technology
Finite difference scheme
Functional analysis
Mathematical analysis
Mathematics
Non-linear parabolic equation
Normal derivative
Numerical analysis
Numerical analysis. Scientific computation
Partial differential equations
Partial differential equations, boundary value problems
Partial differential equations, initial value problems and time-dependant initial-boundary value problems
Sciences and techniques of general use
Singular perturbation
Singularity
Variable mesh
Title An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations
URI https://dx.doi.org/10.1016/j.amc.2006.06.122
Volume 186
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LCCEeIpn5YEJKW1iJ44zVjxUQO0EElvkpyiipTQFiYXfzl0eBQYYkDIkUZxYd875zv7uO0JOLDc2tGkYRLGKIUARPpAO_iumrdTS61hITBTuD0TvLr6-T-4XyFmTC4Owytr2Vza9tNb1nU4tzc5kOMQc3wz5osDnxbCcJYtkmfFMwNBe7l7d9AZzgwyRekXGnCHMK-TN5mYJ81IjU29JiHbE2G_T09pEFSA0X1W7-DYFXW6Q9dp3pN2qe5tkwY23yGp_TrxabJOiO6bDEiQ-nFGkIqbKmNepMu_0DaJizJOiI1c8UAhq3chRcFlpFJzT8fM4QIdTTSkuHiA2lSIruEbaYDwDQ_BEm2oq5YV7qVjCix1yd3lxe9YL6roKgeEsnQU-kqHNPAehKZNpkaqEO-uUszG3keZahhx0JJGoJSzZdYQFvyBy3uoQwjm-S5agW26PUJ5oEUmXMpfZWCgvtU-NV46lLs084_skbMSZm5p0HGtfPOUNuuwxBw1gMUyRwwEa2Cen8yaTinHjr4fjRkf5j2GTw4zwV7PWD31-fUhCPMYTefC_9x6SlWrtFzFqR2RpNn11x-C0zHSLLLY_olY9ND8BsN7r9g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHAAhxCrK6gMnpEASJ45zrFhUlvZUJG6RV1HUltK0SFz4dmaysBzggJRDEmWxZuzxjP3mDSHHhmnjm8T3gkhGEKBw5wkL4ypURijhVMQFJgp3urx9H908xA9z5LzOhUFYZWX7S5teWOvqzlklzbNxv485vinyRYHPi2F5GM-ThQiGL47O0_cvnAfE6SUVc4ogL5_VW5sFyEsOdbUhwU-DMPxtcloZyxxE5spaF98moKs1slp5jrRVNm6dzNnRBlnufNKu5pskb41ov4CI96cUiYip1Ho2kfqNvkJMjFlSdGjzRwohrR1aCg4rDbwLOnoeeehuygnFpQNEplLkBFdIGoxnYAYGtK6lUlzYl5IjPN8i91eXvfO2V1VV8DQLk6nnAuGb1DEQmdSp4omMmTVWWhMxEyimhM9AQwJpWvyCW4cb8AoC64zyIZhj26QBzbI7hLJY8UDYJLSpibh0QrlEO2nDxCapC1mT-LU4M11RjmPli0FWY8ueMtAAlsLkGRyggSY5-XxlXPJt_PVwVOso-9FpMpgP_nrt8Ic-v34kIBpjsdj933ePyGK717nL7q67t3tkqVwFRrTaPmlMJzN7AO7LVB0W3fMDnGnsug
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+implicit+high+accuracy+variable+mesh+scheme+for+1-D+non-linear+singular+parabolic+partial+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Mohanty%2C+R.K.&rft.date=2007-03-01&rft.issn=0096-3003&rft.volume=186&rft.issue=1&rft.spage=219&rft.epage=229&rft_id=info:doi/10.1016%2Fj.amc.2006.06.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2006_06_122
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon