An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations
In this paper, we propose a new two-level implicit difference scheme of O ( k 2 h l - 1 + kh l + h l 3 ) for the solution of non-linear parabolic equation εu xx = ϕ( x, t, u, u x , u t ), 0 < x < 1, t > 0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where k &...
Saved in:
Published in | Applied mathematics and computation Vol. 186; no. 1; pp. 219 - 229 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
01.03.2007
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2006.06.122 |
Cover
Loading…
Abstract | In this paper, we propose a new two-level implicit difference scheme of
O
(
k
2
h
l
-
1
+
kh
l
+
h
l
3
)
for the solution of non-linear parabolic equation
εu
xx
=
ϕ(
x,
t,
u,
u
x
,
u
t
), 0
<
x
<
1,
t
>
0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where
k
>
0,
h
l
>
0 are mesh sizes in
t- and
x-coordinates respectively and
ε
>
0 is a small parameter. In addition, we also discuss a new explicit variable mesh difference scheme of
O
(
kh
l
+
h
l
3
)
for the estimates of (∂
u/∂
x). In all cases, we require only three spatial variable grid points. The proposed schemes require less algebra and three evaluations of function
ϕ. A special technique is required to solve singular parabolic equations. The proposed variable mesh scheme when applied to a linear diffusion equation is shown to be stable for all
h
l
>
0 and
k
>
0. Computational results are provided to support our derived schemes and analysis. |
---|---|
AbstractList | In this paper, we propose a new two-level implicit difference scheme of
O
(
k
2
h
l
-
1
+
kh
l
+
h
l
3
)
for the solution of non-linear parabolic equation
εu
xx
=
ϕ(
x,
t,
u,
u
x
,
u
t
), 0
<
x
<
1,
t
>
0 subject to appropriate initial and Dirichlet boundary conditions prescribed, where
k
>
0,
h
l
>
0 are mesh sizes in
t- and
x-coordinates respectively and
ε
>
0 is a small parameter. In addition, we also discuss a new explicit variable mesh difference scheme of
O
(
kh
l
+
h
l
3
)
for the estimates of (∂
u/∂
x). In all cases, we require only three spatial variable grid points. The proposed schemes require less algebra and three evaluations of function
ϕ. A special technique is required to solve singular parabolic equations. The proposed variable mesh scheme when applied to a linear diffusion equation is shown to be stable for all
h
l
>
0 and
k
>
0. Computational results are provided to support our derived schemes and analysis. |
Author | Mohanty, R.K. |
Author_xml | – sequence: 1 givenname: R.K. surname: Mohanty fullname: Mohanty, R.K. email: rmohanty@maths.du.ac.in organization: Department of Mathematics, Faculty of Mathematical Sciences, University of Delhi, Delhi 110 007, India |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18642358$$DView record in Pascal Francis |
BookMark | eNp9kMFq3DAQhkVJoZs0D5CbLjl6O7K8sk1PIW3aQCCX9izG0ig7iy1vJW8gb19ttuTQQ2BAI5jvl-Y7F2dxjiTElYK1AmW-7NY4uXUNYNalVF1_ECvVtbramKY_EyuA3lQaQH8S5znvAKA1qlmJfBMlT_uRHS9yy09bic4dEroX-YyJcRhJTpS3MrstTSTDnKSqvsnyfDVyJEwyc3w6jKXZY8JhLlHHbmEcpecQKFF8vdCfAy48x_xZfAw4Zrr8d16I33fff93-rB4ef9zf3jxUTtftUgXVge-D7nWNrh9MixtNnpB8o70a9NCBbkzXlfV7aMFAY_xG1YqCH6BpOn0hrk-5e8wOx5AwOs52n3jC9GJVZ5pab45z7WnOpTnnRMEWGa9fXRLyaBXYo2O7s8WxPTq2pYrjQqr_yLfwd5ivJ4bK6s9MyWbHFB15TuQW62d-h_4LvPyXLg |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_1080_15502287_2020_1853852 crossref_primary_10_1016_j_amc_2015_10_036 crossref_primary_10_1080_00207160902890287 crossref_primary_10_1007_s00366_019_00796_z crossref_primary_10_1108_EC_08_2019_0359 crossref_primary_10_1007_s12591_018_0427_5 crossref_primary_10_1088_1402_4896_ad79ae crossref_primary_10_36704_rhp_v1i2_8293 crossref_primary_10_1016_j_amc_2009_03_001 crossref_primary_10_1134_S1995423920010061 crossref_primary_10_1007_s10910_023_01451_1 crossref_primary_10_1515_ijnsns_2017_0227 crossref_primary_10_1186_s13662_016_1048_3 crossref_primary_10_1016_j_amc_2012_08_100 crossref_primary_10_1016_j_asej_2014_10_002 crossref_primary_10_1007_s40324_017_0139_8 |
Cites_doi | 10.1002/num.1690060403 10.1016/0021-9991(84)90015-9 10.1016/0021-9991(78)90031-1 10.1016/0021-9991(88)90181-7 10.1002/1098-2426(200007)16:4<408::AID-NUM5>3.0.CO;2-J 10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H 10.1006/jcph.1994.1149 10.1093/imamat/21.1.83 10.1016/j.cam.2004.11.045 10.1137/0709048 10.1002/nme.1620190311 10.1016/0045-7825(84)90009-4 10.1137/0111015 |
ContentType | Journal Article |
Copyright | 2006 Elsevier Inc. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier Inc. – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.amc.2006.06.122 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 229 |
ExternalDocumentID | 18642358 10_1016_j_amc_2006_06_122 S0096300306009325 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c327t-f180d9f3932ac9b67a53edeaed43d1b3b803468801690706046d5121efdb04483 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:13:23 EDT 2025 Tue Jul 01 04:07:01 EDT 2025 Thu Apr 24 23:10:55 EDT 2025 Fri Feb 23 02:29:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Finite difference scheme Singularity Singular perturbation Non-linear parabolic equation Burgers’ equation Diffusion equation Variable mesh Normal derivative Difference scheme Support Singular equation Grid Boundary condition Partial differential equation Non linear equation Function evaluation Parabolic equation Accuracy Linear equation Addition Grid pattern Initial condition Initial value problem Burgers equation Numerical analysis Boundary value problem Coordinate Applied mathematics Derivative Burgers' equation Linear differential equations Finite difference method |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-f180d9f3932ac9b67a53edeaed43d1b3b803468801690706046d5121efdb04483 |
PageCount | 11 |
ParticipantIDs | pascalfrancis_primary_18642358 crossref_citationtrail_10_1016_j_amc_2006_06_122 crossref_primary_10_1016_j_amc_2006_06_122 elsevier_sciencedirect_doi_10_1016_j_amc_2006_06_122 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-01 |
PublicationDateYYYYMMDD | 2007-03-01 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2007 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Rigal (bib2) 1994; 114 Ciment, Leventhal, Weinberg (bib3) 1978; 28 Hageman, Young (bib14) 1981 Reynolds (bib7) 1972; 9 Jacques (bib8) 1983; 19 Varga (bib13) 2000 Mohanty, Jain, Kumar (bib5) 2000; 16 Mohanty (bib9) 1996; 12 Mohanty (bib11) 2005; 182 Chawla (bib15) 1978; 21 Douglas, Jones (bib6) 1963; 11 Stephenson (bib16) 1984; 55 Mohanty, Singh (bib12) 2005; 13 Manohar, Iyengar, Krishnaiah (bib4) 1988; 77 Jain, Iyengar, Subramanyam (bib10) 1984; 42 Jain, Jain, Mohanty (bib1) 1990; 6 Chawla (10.1016/j.amc.2006.06.122_bib15) 1978; 21 Ciment (10.1016/j.amc.2006.06.122_bib3) 1978; 28 Varga (10.1016/j.amc.2006.06.122_bib13) 2000 Jain (10.1016/j.amc.2006.06.122_bib1) 1990; 6 Jain (10.1016/j.amc.2006.06.122_bib10) 1984; 42 Mohanty (10.1016/j.amc.2006.06.122_bib12) 2005; 13 Manohar (10.1016/j.amc.2006.06.122_bib4) 1988; 77 Douglas (10.1016/j.amc.2006.06.122_bib6) 1963; 11 Reynolds (10.1016/j.amc.2006.06.122_bib7) 1972; 9 Jacques (10.1016/j.amc.2006.06.122_bib8) 1983; 19 Rigal (10.1016/j.amc.2006.06.122_bib2) 1994; 114 Mohanty (10.1016/j.amc.2006.06.122_bib9) 1996; 12 Stephenson (10.1016/j.amc.2006.06.122_bib16) 1984; 55 Mohanty (10.1016/j.amc.2006.06.122_bib11) 2005; 182 Hageman (10.1016/j.amc.2006.06.122_bib14) 1981 Mohanty (10.1016/j.amc.2006.06.122_bib5) 2000; 16 |
References_xml | – year: 2000 ident: bib13 article-title: Matrix Iterative Analysis – volume: 114 start-page: 59 year: 1994 end-page: 76 ident: bib2 article-title: High order difference schemes for unsteady one-dimensional diffusion–convection problems publication-title: J. Comput. Phys. – volume: 12 start-page: 579 year: 1996 end-page: 583 ident: bib9 article-title: An O( publication-title: Numer. Methods Partial Differen. Equat. – volume: 21 start-page: 83 year: 1978 end-page: 93 ident: bib15 article-title: A fourth order tri-diagonal finite difference method for general non-linear two point boundary value problems with mixed boundary conditions publication-title: J. Inst. Math. Appl. – volume: 11 start-page: 195 year: 1963 end-page: 204 ident: bib6 article-title: Predictor–corrector methods for non-linear parabolic differential equations publication-title: J. Soc. Ind. Appl. Math. – volume: 13 start-page: 401 year: 2005 end-page: 416 ident: bib12 article-title: Non-uniform mesh arithmetic average discretization for parabolic initial boundary value problems publication-title: Neural Parallel Sci. Comput. – volume: 42 start-page: 273 year: 1984 end-page: 286 ident: bib10 article-title: Variable mesh methods for the numerical solution of two point singular perturbation problems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 77 start-page: 513 year: 1988 end-page: 523 ident: bib4 article-title: High order difference methods for variable coefficient parabolic equations publication-title: J. Comput. Phys. – volume: 16 start-page: 408 year: 2000 end-page: 415 ident: bib5 article-title: Single cell finite difference approximations of O( publication-title: Numer. Methods Partial Differen. Equat. – volume: 9 start-page: 523 year: 1972 end-page: 533 ident: bib7 article-title: Convergent finite difference schemes for non-linear parabolic equations publication-title: SIAM. J. Numer. Anal. – volume: 28 start-page: 135 year: 1978 end-page: 166 ident: bib3 article-title: The operator compact implicit method for parabolic equations publication-title: J. Comput. Phys. – volume: 182 start-page: 173 year: 2005 end-page: 187 ident: bib11 article-title: A family of variable mesh methods for the estimates of (d publication-title: J. Comput. Appl. Math. – volume: 6 start-page: 311 year: 1990 end-page: 319 ident: bib1 article-title: A fourth order difference method for the one dimensional general quasi-linear parabolic partial differential equation publication-title: Numer. Methods Partial Differen. Equat. – year: 1981 ident: bib14 article-title: Applied Iterative Methods – volume: 55 start-page: 65 year: 1984 end-page: 80 ident: bib16 article-title: Single cell discretizations of order two and four for biharmonic problems publication-title: J. Comput. Phys. – volume: 19 start-page: 451 year: 1983 end-page: 465 ident: bib8 article-title: Predictor–corrector methods for parabolic partial differential equations publication-title: Int. J. Numer. Methods Eng. – volume: 6 start-page: 311 year: 1990 ident: 10.1016/j.amc.2006.06.122_bib1 article-title: A fourth order difference method for the one dimensional general quasi-linear parabolic partial differential equation publication-title: Numer. Methods Partial Differen. Equat. doi: 10.1002/num.1690060403 – volume: 55 start-page: 65 year: 1984 ident: 10.1016/j.amc.2006.06.122_bib16 article-title: Single cell discretizations of order two and four for biharmonic problems publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(84)90015-9 – volume: 28 start-page: 135 year: 1978 ident: 10.1016/j.amc.2006.06.122_bib3 article-title: The operator compact implicit method for parabolic equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(78)90031-1 – volume: 77 start-page: 513 year: 1988 ident: 10.1016/j.amc.2006.06.122_bib4 article-title: High order difference methods for variable coefficient parabolic equations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90181-7 – volume: 16 start-page: 408 year: 2000 ident: 10.1016/j.amc.2006.06.122_bib5 article-title: Single cell finite difference approximations of O(kh2+h4) for (∂u/∂x) for one space dimensional non-linear parabolic equations publication-title: Numer. Methods Partial Differen. Equat. doi: 10.1002/1098-2426(200007)16:4<408::AID-NUM5>3.0.CO;2-J – volume: 12 start-page: 579 year: 1996 ident: 10.1016/j.amc.2006.06.122_bib9 article-title: An O(k2+h4) finite difference method for one space Burgers’ equation in polar coordinates publication-title: Numer. Methods Partial Differen. Equat. doi: 10.1002/(SICI)1098-2426(199609)12:5<579::AID-NUM3>3.0.CO;2-H – volume: 114 start-page: 59 year: 1994 ident: 10.1016/j.amc.2006.06.122_bib2 article-title: High order difference schemes for unsteady one-dimensional diffusion–convection problems publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1149 – volume: 21 start-page: 83 year: 1978 ident: 10.1016/j.amc.2006.06.122_bib15 article-title: A fourth order tri-diagonal finite difference method for general non-linear two point boundary value problems with mixed boundary conditions publication-title: J. Inst. Math. Appl. doi: 10.1093/imamat/21.1.83 – volume: 13 start-page: 401 year: 2005 ident: 10.1016/j.amc.2006.06.122_bib12 article-title: Non-uniform mesh arithmetic average discretization for parabolic initial boundary value problems publication-title: Neural Parallel Sci. Comput. – volume: 182 start-page: 173 year: 2005 ident: 10.1016/j.amc.2006.06.122_bib11 article-title: A family of variable mesh methods for the estimates of (du/dr) and the solution of non-linear two point boundary value problems with singularity publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2004.11.045 – volume: 9 start-page: 523 year: 1972 ident: 10.1016/j.amc.2006.06.122_bib7 article-title: Convergent finite difference schemes for non-linear parabolic equations publication-title: SIAM. J. Numer. Anal. doi: 10.1137/0709048 – volume: 19 start-page: 451 year: 1983 ident: 10.1016/j.amc.2006.06.122_bib8 article-title: Predictor–corrector methods for parabolic partial differential equations publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.1620190311 – volume: 42 start-page: 273 year: 1984 ident: 10.1016/j.amc.2006.06.122_bib10 article-title: Variable mesh methods for the numerical solution of two point singular perturbation problems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(84)90009-4 – year: 2000 ident: 10.1016/j.amc.2006.06.122_bib13 – volume: 11 start-page: 195 year: 1963 ident: 10.1016/j.amc.2006.06.122_bib6 article-title: Predictor–corrector methods for non-linear parabolic differential equations publication-title: J. Soc. Ind. Appl. Math. doi: 10.1137/0111015 – year: 1981 ident: 10.1016/j.amc.2006.06.122_bib14 |
SSID | ssj0007614 |
Score | 1.9618587 |
Snippet | In this paper, we propose a new two-level implicit difference scheme of
O
(
k
2
h
l
-
1
+
kh
l
+
h
l
3
)
for the solution of non-linear parabolic equation
εu... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 219 |
SubjectTerms | Burgers’ equation Diffusion equation Exact sciences and technology Finite difference scheme Functional analysis Mathematical analysis Mathematics Non-linear parabolic equation Normal derivative Numerical analysis Numerical analysis. Scientific computation Partial differential equations Partial differential equations, boundary value problems Partial differential equations, initial value problems and time-dependant initial-boundary value problems Sciences and techniques of general use Singular perturbation Singularity Variable mesh |
Title | An implicit high accuracy variable mesh scheme for 1-D non-linear singular parabolic partial differential equations |
URI | https://dx.doi.org/10.1016/j.amc.2006.06.122 |
Volume | 186 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZ4LCCEeIpn5YEJKW1iJ44zVjxUQO0EElvkpyiipTQFiYXfzl0eBQYYkDIkUZxYd875zv7uO0JOLDc2tGkYRLGKIUARPpAO_iumrdTS61hITBTuD0TvLr6-T-4XyFmTC4Owytr2Vza9tNb1nU4tzc5kOMQc3wz5osDnxbCcJYtkmfFMwNBe7l7d9AZzgwyRekXGnCHMK-TN5mYJ81IjU29JiHbE2G_T09pEFSA0X1W7-DYFXW6Q9dp3pN2qe5tkwY23yGp_TrxabJOiO6bDEiQ-nFGkIqbKmNepMu_0DaJizJOiI1c8UAhq3chRcFlpFJzT8fM4QIdTTSkuHiA2lSIruEbaYDwDQ_BEm2oq5YV7qVjCix1yd3lxe9YL6roKgeEsnQU-kqHNPAehKZNpkaqEO-uUszG3keZahhx0JJGoJSzZdYQFvyBy3uoQwjm-S5agW26PUJ5oEUmXMpfZWCgvtU-NV46lLs084_skbMSZm5p0HGtfPOUNuuwxBw1gMUyRwwEa2Cen8yaTinHjr4fjRkf5j2GTw4zwV7PWD31-fUhCPMYTefC_9x6SlWrtFzFqR2RpNn11x-C0zHSLLLY_olY9ND8BsN7r9g |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgHAAhxCrK6gMnpEASJ45zrFhUlvZUJG6RV1HUltK0SFz4dmaysBzggJRDEmWxZuzxjP3mDSHHhmnjm8T3gkhGEKBw5wkL4ypURijhVMQFJgp3urx9H908xA9z5LzOhUFYZWX7S5teWOvqzlklzbNxv485vinyRYHPi2F5GM-ThQiGL47O0_cvnAfE6SUVc4ogL5_VW5sFyEsOdbUhwU-DMPxtcloZyxxE5spaF98moKs1slp5jrRVNm6dzNnRBlnufNKu5pskb41ov4CI96cUiYip1Ho2kfqNvkJMjFlSdGjzRwohrR1aCg4rDbwLOnoeeehuygnFpQNEplLkBFdIGoxnYAYGtK6lUlzYl5IjPN8i91eXvfO2V1VV8DQLk6nnAuGb1DEQmdSp4omMmTVWWhMxEyimhM9AQwJpWvyCW4cb8AoC64zyIZhj26QBzbI7hLJY8UDYJLSpibh0QrlEO2nDxCapC1mT-LU4M11RjmPli0FWY8ueMtAAlsLkGRyggSY5-XxlXPJt_PVwVOso-9FpMpgP_nrt8Ic-v34kIBpjsdj933ePyGK717nL7q67t3tkqVwFRrTaPmlMJzN7AO7LVB0W3fMDnGnsug |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+implicit+high+accuracy+variable+mesh+scheme+for+1-D+non-linear+singular+parabolic+partial+differential+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Mohanty%2C+R.K.&rft.date=2007-03-01&rft.issn=0096-3003&rft.volume=186&rft.issue=1&rft.spage=219&rft.epage=229&rft_id=info:doi/10.1016%2Fj.amc.2006.06.122&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2006_06_122 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |