Taylor–Couette flows undergoing orthogonal rotation subject to thermal stratification

The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 33; no. 3
Main Authors Khawar, Obaidullah, Baig, M. F., Sanghi, Sanjeev
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.03.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number ( R e = U θ D ν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events).
AbstractList The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number ( R e = U θ D ν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events).
The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number (Re=UθDν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events).
Author Baig, M. F.
Sanghi, Sanjeev
Khawar, Obaidullah
Author_xml – sequence: 1
  givenname: Obaidullah
  surname: Khawar
  fullname: Khawar, Obaidullah
  email: obaidullahkhawar@gmail.com
  organization: Department of Applied Mechanics, Indian Institute of Technology Delhi
– sequence: 2
  givenname: M. F.
  surname: Baig
  fullname: Baig, M. F.
  email: mfbaig.me@amu.ac.in
  organization: Mechanical Engineering Department, Z. H. College of Engineering and Technology, Aligarh Muslim University
– sequence: 3
  givenname: Sanjeev
  surname: Sanghi
  fullname: Sanghi, Sanjeev
  organization: Department of Applied Mechanics, Indian Institute of Technology Delhi
BookMark eNqdkM1KAzEUhYNUsFYXvsGAK4Vpk8lMJrOU4h8U3FRchkzmpp0yndQko3TnO_iGPompUxHElat74H73cM49RoPWtIDQGcFjghmdZGOMaZal7AANCeZFnDPGBjud45gxSo7QsXMrHKgiYUP0NJfbxtiPt_ep6cB7iHRjXl3UtRXYhanbRWSsX5qFaWUTWeOlr00bua5cgfKRN5Ffgl2HnfM27HStvogTdKhl4-B0P0fo8eZ6Pr2LZw-399OrWaxokvsYNKsqSTkwmQYNWvGSKq6qnGjIFNE6I4qTiqcckpwVkqQlTmWqIDRQpaYjdN77bqx57sB5sTKdDVmdSNIiY5jThARq0lPKGucsaKHqvkkIXTeCYLH7nsjE_nvh4uLXxcbWa2m3f7KXPeu-Xf8Hvxj7A4pNpeknePuQrw
CODEN PHFLE6
CitedBy_id crossref_primary_10_1016_j_ijheatmasstransfer_2023_123920
crossref_primary_10_1063_5_0190826
crossref_primary_10_1063_5_0251841
crossref_primary_10_1080_14685248_2022_2109653
crossref_primary_10_1016_j_ijheatmasstransfer_2024_125395
crossref_primary_10_1063_5_0049459
crossref_primary_10_1063_5_0084515
crossref_primary_10_1016_j_ijheatfluidflow_2022_108980
crossref_primary_10_1063_5_0223091
crossref_primary_10_1063_5_0234772
crossref_primary_10_1063_5_0193286
crossref_primary_10_1063_5_0086971
crossref_primary_10_1063_5_0142862
Cites_doi 10.1017/jfm.2012.618
10.1016/j.euromechflu.2007.10.005
10.1016/0017-9310(89)90073-2
10.1016/j.compfluid.2014.05.025
10.1115/1.3446944
10.1098/rsta.1923.0008
10.1063/1.4913231
10.1080/10407788608913495
10.1063/1.4863312
10.1017/s0022112082003024
10.1007/3-540-13319-4
10.1017/s0022112088003337
10.1016/0017-9310(95)90015-2
10.1017/s0022112007005629
10.1007/bf02084936
10.1063/1.1711076
10.1146/annurev-fluid-122414-034550
10.1017/s0022112086002513
10.1002/fld.1650210103
10.2514/6.1999-3405
10.1017/s0022112007007367
10.1146/annurev-fluid-122414-034353
10.1243/jmes_jour_1979_021_070_02
10.1115/1.1833370
10.1017/s0022112006003806
10.1098/rsta.2005.1552
10.1016/0017-9310(92)90197-z
10.1017/s0022112076002012
10.1063/1.5116316
10.1017/s0022112065000241
10.1017/s0022112008003716
10.1017/s0022112007004971
10.1063/1.5125640
10.1063/1.5003173
10.18869/acadpub.jafm.68.236.24429
10.1063/1.869400
10.1063/1.4935700
10.1016/j.ijheatfluidflow.2013.05.018
10.1016/j.ijheatfluidflow.2016.07.003
10.1016/j.ijheatmasstransfer.2015.10.068
10.2514/6.2019-1139
10.1017/s0022112005006506
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0035546
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0035546
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
UCJ
WH7
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-ef6dda38e6a4ef6efc8b3c8cd71fe5c1ff51c81d848e2769a14b04a4ce000cbf3
ISSN 1070-6631
IngestDate Mon Jun 30 13:03:27 EDT 2025
Thu Apr 24 23:12:59 EDT 2025
Tue Jul 01 02:44:19 EDT 2025
Fri Jun 21 00:13:53 EDT 2024
Thu Jun 23 13:45:01 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Published under license by AIP Publishing.
1070-6631/2021/33(3)/035107/21/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-ef6dda38e6a4ef6efc8b3c8cd71fe5c1ff51c81d848e2769a14b04a4ce000cbf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4400-5201
0000-0003-4021-3628
0000-0002-7324-2006
PQID 2495608321
PQPubID 2050667
PageCount 21
ParticipantIDs proquest_journals_2495608321
scitation_primary_10_1063_5_0035546
crossref_citationtrail_10_1063_5_0035546
crossref_primary_10_1063_5_0035546
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210301
2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 20210301
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Ostilla-Mónico, Van Der Poel, Verzicco, Grossmann, Lohse (c15) 2014
Ostilla-Mónico, Verzicco, Lohse (c19) 2015
Pirro, Quadrio (c16) 2008
Wendt (c37) 1933
Chernyshenko, Baig (c39) 2005
Fuaad, Baig, Khan (c32) 2016
Hasan, Sanghi (c35) 2004
Bilson, Bremhorst (c3) 2007
Leng, Kolesnikov, Krasnov, Li (c41) 2018
Viazzo, Poncet (c25) 2014
Kuehn, Goldstein (c26) 1976
Hasan, Sanghi (c27) 2007
Eckhardt, Grossmann, Lohse (c17) 2007
Coles (c5) 1965
Snyder, Karlsson (c21) 1964
Brauckmann, Eckhardt (c18) 2013
Bilgen, Boulos (c38) 1973
Ball, Farouk (c24) 1988
Poncet, Da Soghe, Bianchini, Viazzo, Aubert (c14) 2013
Dong (c20) 2008
Grossmann, Lohse, Sun (c8) 2016
Sorour, Coney (c22) 1979
Andereck, Liu, Swinney (c6) 1986
Chernyshenko, Baig (c40) 2005
Smith, Townsend (c9) 1982
Fuaad, Baig, Ahmad (c33) 2016
Razzak, Khoo, Lua (c13) 2019
Choi, Kim (c29) 1995
Yang, Farouk (c11) 1992
Naim, Baig (c34) 2019
Taylor (c1) 1923
Ball, Farouk, Dixit (c23) 1989
Kuo, Ball (c10) 1997
Dong (c2) 2007
Wallace (c42) 2016
Fusegi, Farouk, Ball (c28) 1986
Cheng, Armfield (c30) 1995
Kahveci (c12) 2016
Teng, Liu, Lu, Khomami (c4) 2015
(2024031518292468400_c4) 2015; 27
(2024031518292468400_c26) 1976; 74
(2024031518292468400_c29) 1995; 38
(2024031518292468400_c15) 2014; 26
(2024031518292468400_c10) 1997; 9
(2024031518292468400_c25) 2014; 101
(2024031518292468400_c36) 2019
(2024031518292468400_c22) 1979; 21
(2024031518292468400_c39) 2005; 544
(2024031518292468400_c19) 2015; 27
(2024031518292468400_c38) 1973; 95
(2024031518292468400_c11) 1992; 35
(2024031518292468400_c37) 1933; 4
(2024031518292468400_c9) 1982; 123
(2024031518292468400_c24) 1988; 197
(2024031518292468400_c17) 2007; 581
(2024031518292468400_c41) 2018; 30
(2024031518292468400_c30) 1995; 21
(2024031518292468400_c42) 2016; 48
Swinney (2024031518292468400_c7) 1985
(2024031518292468400_c2) 2007; 587
(2024031518292468400_c34) 2019; 31
(2024031518292468400_c5) 1965; 21
(2024031518292468400_c8) 2016; 48
(2024031518292468400_c20) 2008; 615
(2024031518292468400_c6) 1986; 164
(2024031518292468400_c13) 2019; 31
(2024031518292468400_c18) 2013; 718
(2024031518292468400_c31) 1999
(2024031518292468400_c23) 1989; 32
(2024031518292468400_c35) 2004; 126
(2024031518292468400_c40) 2005; 363
(2024031518292468400_c21) 1964; 7
(2024031518292468400_c14) 2013; 44
(2024031518292468400_c12) 2016; 9
(2024031518292468400_c3) 2007; 579
(2024031518292468400_c32) 2016; 61
(2024031518292468400_c28) 1986; 9
(2024031518292468400_c27) 2007; 573
(2024031518292468400_c33) 2016; 93
(2024031518292468400_c1) 1923; 223
(2024031518292468400_c16) 2008; 27
References_xml – start-page: 187
  year: 1982
  ident: c9
  article-title: Turbulent Couette flow between concentric cylinders at large Taylor numbers
  publication-title: J. Fluid Mech.
– start-page: 403
  year: 1979
  ident: c22
  article-title: The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders
  publication-title: J. Mech. Eng. Sci.
– start-page: 229
  year: 2013
  ident: c14
  article-title: Turbulent Couette-Taylor flows with endwall effects: A numerical benchmark
  publication-title: Int. J. Heat Fluid Flow
– start-page: 371
  year: 2008
  ident: c20
  article-title: Turbulent flow between counter-rotating concentric cylinders: A direct numerical simulation study
  publication-title: J. Fluid Mech.
– start-page: 577
  year: 1933
  ident: c37
  article-title: Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern
  publication-title: Arch. Appl. Mech.
– start-page: 2872
  year: 1997
  ident: c10
  article-title: Taylor–Couette flow with buoyancy: Onset of spiral flow
  publication-title: Phys. Fluids
– start-page: 373
  year: 2007
  ident: c2
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: J. Fluid Mech.
– start-page: 025110
  year: 2015
  ident: c19
  article-title: Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder
  publication-title: Phys. Fluids
– start-page: 99
  year: 2005
  ident: c39
  article-title: The mechanism of streak formation in near-wall turbulence
  publication-title: J. Fluid Mech.
– start-page: 585
  year: 2016
  ident: c32
  article-title: Turbulent drag reduction using active control of buoyancy forces
  publication-title: Int. J. Heat Fluid Flow
– start-page: 963
  year: 2004
  ident: c35
  article-title: The dynamics of two-dimensional buoyancy driven convection in a horizontal rotating cylinder
  publication-title: J. Heat Transfer
– start-page: 479
  year: 1988
  ident: c24
  article-title: Bifurcation phenomena in Taylor–Couette flow with buoyancy effects
  publication-title: J. Fluid Mech.
– start-page: 15
  year: 2014
  ident: c25
  article-title: Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient
  publication-title: Comput. Fluids
– start-page: 53
  year: 2016
  ident: c8
  article-title: High-Reynolds number Taylor-Couette turbulence
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 125101
  year: 2015
  ident: c4
  article-title: Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
  publication-title: Phys. Fluids
– start-page: 15
  year: 1995
  ident: c30
  article-title: A simplified marker and cell method for unsteady flows on non-staggered grids
  publication-title: Int. J. Numer. Methods Fluids
– start-page: 385
  year: 1965
  ident: c5
  article-title: Transition in circular Couette flow
  publication-title: J. Fluid Mech.
– start-page: 398
  year: 2013
  ident: c18
  article-title: Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000
  publication-title: J. Fluid Mech.
– start-page: 2141
  year: 2016
  ident: c12
  article-title: Stability of unsteady mixed convection in a horizontal concentric annulus
  publication-title: J. Appl. Fluid Mech.
– start-page: 155
  year: 1986
  ident: c6
  article-title: Flow regimes in a circular Couette system with independently rotating cylinders
  publication-title: J. Fluid Mech.
– start-page: 1947
  year: 1992
  ident: c11
  article-title: Three-dimensional mixed convection flows in a horizontal annulus with a heated rotating inner circular cylinder
  publication-title: Int. J. Heat Mass Transfer
– start-page: 289
  year: 1923
  ident: c1
  article-title: Stability of a viscous liquid contained between two rotating cylinders
  publication-title: Philos. Trans. R. Soc., A
– start-page: 265
  year: 2007
  ident: c27
  article-title: Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder
  publication-title: J. Fluid Mech.
– start-page: 221
  year: 2007
  ident: c17
  article-title: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders
  publication-title: J. Fluid Mech.
– start-page: 1696
  year: 1964
  ident: c21
  article-title: Experiments on the stability of Couette motion with a radial thermal gradient
  publication-title: Phys. Fluids
– start-page: 275
  year: 1995
  ident: c29
  article-title: Three-dimensional linear stability of mixed-convective flow between rotating horizontal concentric cylinders
  publication-title: Int. J. Heat Mass Transfer
– start-page: 122
  year: 1973
  ident: c38
  article-title: Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers
  publication-title: J. Fluids Eng.
– start-page: 591
  year: 1986
  ident: c28
  article-title: Mixed-convection flows within a horizontal concentric annulus with a heated rotating inner cylinder
  publication-title: Numer. Heat Transfer, Part A
– start-page: 015114
  year: 2014
  ident: c15
  article-title: Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow
  publication-title: Phys. Fluids
– start-page: 113606
  year: 2019
  ident: c13
  article-title: Numerical study on wide gap Taylor Couette flow with flow transition
  publication-title: Phys. Fluids
– start-page: 131
  year: 2016
  ident: c42
  article-title: Quadrant analysis in turbulence research: History and evolution
  publication-title: Annu. Rev. Fluid Mech.
– start-page: 227
  year: 2007
  ident: c3
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: J. Fluid Mech.
– start-page: 1517
  year: 1989
  ident: c23
  article-title: An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder
  publication-title: Int. J. Heat Mass Transfer
– start-page: 552
  year: 2008
  ident: c16
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: Eur. J. Mech.: B/Fluids
– start-page: 095108
  year: 2019
  ident: c34
  article-title: Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations
  publication-title: Phys. Fluids
– start-page: 1020
  year: 2016
  ident: c33
  article-title: Drag-reduction in buoyant and neutrally-buoyant turbulent flows over super-hydrophobic surfaces in transverse orientation
  publication-title: Int. J. Heat Mass Transfer
– start-page: 695
  year: 1976
  ident: c26
  article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders
  publication-title: J. Fluid Mech.
– start-page: 015107
  year: 2018
  ident: c41
  article-title: Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number
  publication-title: Phys. Fluids
– start-page: 1097
  year: 2005
  ident: c40
  article-title: Streaks and vortices in near-wall turbulence
  publication-title: Philos. Trans. R. Soc., A
– volume: 718
  start-page: 398
  year: 2013
  ident: 2024031518292468400_c18
  article-title: Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2012.618
– volume: 27
  start-page: 552
  year: 2008
  ident: 2024031518292468400_c16
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: Eur. J. Mech.: B/Fluids
  doi: 10.1016/j.euromechflu.2007.10.005
– volume: 32
  start-page: 1517
  year: 1989
  ident: 2024031518292468400_c23
  article-title: An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(89)90073-2
– volume: 101
  start-page: 15
  year: 2014
  ident: 2024031518292468400_c25
  article-title: Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2014.05.025
– volume: 95
  start-page: 122
  year: 1973
  ident: 2024031518292468400_c38
  article-title: Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3446944
– volume: 223
  start-page: 289
  year: 1923
  ident: 2024031518292468400_c1
  article-title: Stability of a viscous liquid contained between two rotating cylinders
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.1923.0008
– volume: 27
  start-page: 025110
  year: 2015
  ident: 2024031518292468400_c19
  article-title: Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder
  publication-title: Phys. Fluids
  doi: 10.1063/1.4913231
– volume: 9
  start-page: 591
  year: 1986
  ident: 2024031518292468400_c28
  article-title: Mixed-convection flows within a horizontal concentric annulus with a heated rotating inner cylinder
  publication-title: Numer. Heat Transfer, Part A
  doi: 10.1080/10407788608913495
– volume: 26
  start-page: 015114
  year: 2014
  ident: 2024031518292468400_c15
  article-title: Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.4863312
– volume: 123
  start-page: 187
  year: 1982
  ident: 2024031518292468400_c9
  article-title: Turbulent Couette flow between concentric cylinders at large Taylor numbers
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112082003024
– start-page: 139
  volume-title: Hydrodynamic Instabilities and the Transition to Turbulence
  year: 1985
  ident: 2024031518292468400_c7
  article-title: Instabilities and transition in flow between concentric rotating cylinders
  doi: 10.1007/3-540-13319-4
– volume: 197
  start-page: 479
  year: 1988
  ident: 2024031518292468400_c24
  article-title: Bifurcation phenomena in Taylor–Couette flow with buoyancy effects
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112088003337
– volume: 38
  start-page: 275
  year: 1995
  ident: 2024031518292468400_c29
  article-title: Three-dimensional linear stability of mixed-convective flow between rotating horizontal concentric cylinders
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(95)90015-2
– volume: 581
  start-page: 221
  year: 2007
  ident: 2024031518292468400_c17
  article-title: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112007005629
– volume: 4
  start-page: 577
  year: 1933
  ident: 2024031518292468400_c37
  article-title: Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern
  publication-title: Arch. Appl. Mech.
  doi: 10.1007/bf02084936
– volume: 7
  start-page: 1696
  year: 1964
  ident: 2024031518292468400_c21
  article-title: Experiments on the stability of Couette motion with a radial thermal gradient
  publication-title: Phys. Fluids
  doi: 10.1063/1.1711076
– volume: 48
  start-page: 131
  year: 2016
  ident: 2024031518292468400_c42
  article-title: Quadrant analysis in turbulence research: History and evolution
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034550
– volume: 164
  start-page: 155
  year: 1986
  ident: 2024031518292468400_c6
  article-title: Flow regimes in a circular Couette system with independently rotating cylinders
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112086002513
– volume: 21
  start-page: 15
  year: 1995
  ident: 2024031518292468400_c30
  article-title: A simplified marker and cell method for unsteady flows on non-staggered grids
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.1650210103
– start-page: 3405
  year: 1999
  ident: 2024031518292468400_c31
  article-title: Unsteady flow simulation and its visualization
  doi: 10.2514/6.1999-3405
– volume: 587
  start-page: 373
  year: 2007
  ident: 2024031518292468400_c2
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112007007367
– volume: 48
  start-page: 53
  year: 2016
  ident: 2024031518292468400_c8
  article-title: High-Reynolds number Taylor-Couette turbulence
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-122414-034353
– volume: 21
  start-page: 403
  year: 1979
  ident: 2024031518292468400_c22
  article-title: The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders
  publication-title: J. Mech. Eng. Sci.
  doi: 10.1243/jmes_jour_1979_021_070_02
– volume: 126
  start-page: 963
  year: 2004
  ident: 2024031518292468400_c35
  article-title: The dynamics of two-dimensional buoyancy driven convection in a horizontal rotating cylinder
  publication-title: J. Heat Transfer
  doi: 10.1115/1.1833370
– volume: 573
  start-page: 265
  year: 2007
  ident: 2024031518292468400_c27
  article-title: Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112006003806
– volume: 363
  start-page: 1097
  year: 2005
  ident: 2024031518292468400_c40
  article-title: Streaks and vortices in near-wall turbulence
  publication-title: Philos. Trans. R. Soc., A
  doi: 10.1098/rsta.2005.1552
– volume: 35
  start-page: 1947
  year: 1992
  ident: 2024031518292468400_c11
  article-title: Three-dimensional mixed convection flows in a horizontal annulus with a heated rotating inner circular cylinder
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/0017-9310(92)90197-z
– volume: 74
  start-page: 695
  year: 1976
  ident: 2024031518292468400_c26
  article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112076002012
– volume: 31
  start-page: 095108
  year: 2019
  ident: 2024031518292468400_c34
  article-title: Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations
  publication-title: Phys. Fluids
  doi: 10.1063/1.5116316
– volume: 21
  start-page: 385
  year: 1965
  ident: 2024031518292468400_c5
  article-title: Transition in circular Couette flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112065000241
– volume: 615
  start-page: 371
  year: 2008
  ident: 2024031518292468400_c20
  article-title: Turbulent flow between counter-rotating concentric cylinders: A direct numerical simulation study
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112008003716
– volume: 579
  start-page: 227
  year: 2007
  ident: 2024031518292468400_c3
  article-title: Direct numerical simulation of turbulent Taylor-Couette flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112007004971
– volume: 31
  start-page: 113606
  year: 2019
  ident: 2024031518292468400_c13
  article-title: Numerical study on wide gap Taylor Couette flow with flow transition
  publication-title: Phys. Fluids
  doi: 10.1063/1.5125640
– volume: 30
  start-page: 015107
  year: 2018
  ident: 2024031518292468400_c41
  article-title: Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number
  publication-title: Phys. Fluids
  doi: 10.1063/1.5003173
– volume: 9
  start-page: 2141
  year: 2016
  ident: 2024031518292468400_c12
  article-title: Stability of unsteady mixed convection in a horizontal concentric annulus
  publication-title: J. Appl. Fluid Mech.
  doi: 10.18869/acadpub.jafm.68.236.24429
– volume: 9
  start-page: 2872
  year: 1997
  ident: 2024031518292468400_c10
  article-title: Taylor–Couette flow with buoyancy: Onset of spiral flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.869400
– volume: 27
  start-page: 125101
  year: 2015
  ident: 2024031518292468400_c4
  article-title: Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient
  publication-title: Phys. Fluids
  doi: 10.1063/1.4935700
– volume: 44
  start-page: 229
  year: 2013
  ident: 2024031518292468400_c14
  article-title: Turbulent Couette-Taylor flows with endwall effects: A numerical benchmark
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2013.05.018
– volume: 61
  start-page: 585
  year: 2016
  ident: 2024031518292468400_c32
  article-title: Turbulent drag reduction using active control of buoyancy forces
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2016.07.003
– volume: 93
  start-page: 1020
  year: 2016
  ident: 2024031518292468400_c33
  article-title: Drag-reduction in buoyant and neutrally-buoyant turbulent flows over super-hydrophobic surfaces in transverse orientation
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2015.10.068
– start-page: 1139
  year: 2019
  ident: 2024031518292468400_c36
  article-title: Turbulent drag reduction in Taylor-Couette flows using super-hydrophobic surfaces and liquid-infused surfaces
  doi: 10.2514/6.2019-1139
– volume: 544
  start-page: 99
  year: 2005
  ident: 2024031518292468400_c39
  article-title: The mechanism of streak formation in near-wall turbulence
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112005006506
SSID ssj0003926
Score 2.4061022
Snippet The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Aspect ratio
Computational fluid dynamics
Couette flow
Cylinders
Direct numerical simulation
Domains
Finite difference method
Fluid dynamics
Fluid flow
Heating
Physics
Reynolds number
Rotation
Shear stress
Thermal stratification
Turbulence
Turbulent flow
Title Taylor–Couette flows undergoing orthogonal rotation subject to thermal stratification
URI http://dx.doi.org/10.1063/5.0035546
https://www.proquest.com/docview/2495608321
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFYJLgQJiS0EWcEBaZduNHcc5lkJVAQsHWtFb5M920WpTZbOtxIn_wD_klzCxnWQLESpcIsdyspHfy-TN7NiD0MtYpImwlEbSmjgCBU4jLmUCxlAlOiZ21-h6cfLkIzs8pu9OkpOuXKpbXVLJkfrWu67kf1CFPsC1XiX7D8i2N4UOaAO-cASE4Xg9jL27HfIVyH6xrBN3hnZWXC5cgdvytHBZzWV1Vpy6mF9ZhPTCxVLWIZigPcE8u3UjwqUOdWgF2eryRJXL-rCz5VT7_Z2yjK4EEt6fiUufrf1JiqkG17YLNb8WU2dSJqPhwagN6oi5Lyk8hNZXYy5WIxDxSgpWMJpgNiJQLr7LhD6eRSnzFVUaS-u3vAiMIr0GHBQTzHod56qFUM8m2b99vNqUQvdnOiN5kodLb6L1GFwHsH3re28mHz6332dQhMxnovqnbvabYmSn_d2rKqVzPW6DLvEwraiQo3toI7gPeM9z4T66Yeab6G5wJXAw1ItNdCsg9gB98ST5-f1HoAd29MAdPXBHD9zQAwd64KrAgR74Kj0eouODt0f7h1GophEpEqdVZCzTWhBumKDQNlZxSRRXOh1bk6ixtclYgffCKTdxyjIxpnKXCqoMzJmSljxCa_Nibh4jzGo3WzPw1KmGQYynmmjJicgEnAg-QK-a2cub-aornszyP1AaoOft0HO_v0rfoO0Ggjy8fos8dq59XWhrgF60sPztJj2jLoqyG5Gfa7t1ned5gu5078E2WqvKpXkK2rSSzwLZfgG0Ao9c
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taylor%E2%80%93Couette+flows+undergoing+orthogonal+rotation+subject+to+thermal+stratification&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Khawar%2C+Obaidullah&rft.au=Baig%2C+M.+F.&rft.au=Sanghi%2C+Sanjeev&rft.date=2021-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=3&rft_id=info:doi/10.1063%2F5.0035546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0035546
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon