Taylor–Couette flows undergoing orthogonal rotation subject to thermal stratification
The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a...
Saved in:
Published in | Physics of fluids (1994) Vol. 33; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.03.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number (
R
e
=
U
θ
D
ν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events). |
---|---|
AbstractList | The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number (
R
e
=
U
θ
D
ν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events). The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are perpendicular) subject to thermal stratification in the radial direction. The simulations were performed based on the finite-difference approach for a radius ratio (η) = 0.5 and an aspect ratio (Γ) = 2π, with Reynolds number (Re=UθDν) ranging from 1000 to 5000. For this wide gap, the role of spatially varying buoyancy forces (Ri ranging from 0 to 0.3) in flow physics has been explored using flow statistics, flow dynamics, near-wall coherent structures, and quadrant analysis. It is observed that near-wall streaks are concentrated at the outflow boundaries of Taylor vortex cells with uniform axial spacing, which decreases with the increasing Reynolds number. Heating of the outer cylinder results in more intense streaks and coherent structures in the half-circumferential domain due to unstable stratification aiding turbulence, while in the other half-domain, stable stratification mitigates turbulence. Quadrant contribution of ur′ and uθ′ reveals that on heating the outer cylinder, there is an increase in turbulence near both the walls due to the enhanced generation of Reynolds shear stresses (sweep and ejection events). |
Author | Baig, M. F. Sanghi, Sanjeev Khawar, Obaidullah |
Author_xml | – sequence: 1 givenname: Obaidullah surname: Khawar fullname: Khawar, Obaidullah email: obaidullahkhawar@gmail.com organization: Department of Applied Mechanics, Indian Institute of Technology Delhi – sequence: 2 givenname: M. F. surname: Baig fullname: Baig, M. F. email: mfbaig.me@amu.ac.in organization: Mechanical Engineering Department, Z. H. College of Engineering and Technology, Aligarh Muslim University – sequence: 3 givenname: Sanjeev surname: Sanghi fullname: Sanghi, Sanjeev organization: Department of Applied Mechanics, Indian Institute of Technology Delhi |
BookMark | eNqdkM1KAzEUhYNUsFYXvsGAK4Vpk8lMJrOU4h8U3FRchkzmpp0yndQko3TnO_iGPompUxHElat74H73cM49RoPWtIDQGcFjghmdZGOMaZal7AANCeZFnDPGBjud45gxSo7QsXMrHKgiYUP0NJfbxtiPt_ep6cB7iHRjXl3UtRXYhanbRWSsX5qFaWUTWeOlr00bua5cgfKRN5Ffgl2HnfM27HStvogTdKhl4-B0P0fo8eZ6Pr2LZw-399OrWaxokvsYNKsqSTkwmQYNWvGSKq6qnGjIFNE6I4qTiqcckpwVkqQlTmWqIDRQpaYjdN77bqx57sB5sTKdDVmdSNIiY5jThARq0lPKGucsaKHqvkkIXTeCYLH7nsjE_nvh4uLXxcbWa2m3f7KXPeu-Xf8Hvxj7A4pNpeknePuQrw |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_ijheatmasstransfer_2023_123920 crossref_primary_10_1063_5_0190826 crossref_primary_10_1063_5_0251841 crossref_primary_10_1080_14685248_2022_2109653 crossref_primary_10_1016_j_ijheatmasstransfer_2024_125395 crossref_primary_10_1063_5_0049459 crossref_primary_10_1063_5_0084515 crossref_primary_10_1016_j_ijheatfluidflow_2022_108980 crossref_primary_10_1063_5_0223091 crossref_primary_10_1063_5_0234772 crossref_primary_10_1063_5_0193286 crossref_primary_10_1063_5_0086971 crossref_primary_10_1063_5_0142862 |
Cites_doi | 10.1017/jfm.2012.618 10.1016/j.euromechflu.2007.10.005 10.1016/0017-9310(89)90073-2 10.1016/j.compfluid.2014.05.025 10.1115/1.3446944 10.1098/rsta.1923.0008 10.1063/1.4913231 10.1080/10407788608913495 10.1063/1.4863312 10.1017/s0022112082003024 10.1007/3-540-13319-4 10.1017/s0022112088003337 10.1016/0017-9310(95)90015-2 10.1017/s0022112007005629 10.1007/bf02084936 10.1063/1.1711076 10.1146/annurev-fluid-122414-034550 10.1017/s0022112086002513 10.1002/fld.1650210103 10.2514/6.1999-3405 10.1017/s0022112007007367 10.1146/annurev-fluid-122414-034353 10.1243/jmes_jour_1979_021_070_02 10.1115/1.1833370 10.1017/s0022112006003806 10.1098/rsta.2005.1552 10.1016/0017-9310(92)90197-z 10.1017/s0022112076002012 10.1063/1.5116316 10.1017/s0022112065000241 10.1017/s0022112008003716 10.1017/s0022112007004971 10.1063/1.5125640 10.1063/1.5003173 10.18869/acadpub.jafm.68.236.24429 10.1063/1.869400 10.1063/1.4935700 10.1016/j.ijheatfluidflow.2013.05.018 10.1016/j.ijheatfluidflow.2016.07.003 10.1016/j.ijheatmasstransfer.2015.10.068 10.2514/6.2019-1139 10.1017/s0022112005006506 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0035546 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0035546 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 UCJ WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-ef6dda38e6a4ef6efc8b3c8cd71fe5c1ff51c81d848e2769a14b04a4ce000cbf3 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 13:03:27 EDT 2025 Thu Apr 24 23:12:59 EDT 2025 Tue Jul 01 02:44:19 EDT 2025 Fri Jun 21 00:13:53 EDT 2024 Thu Jun 23 13:45:01 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | Published under license by AIP Publishing. 1070-6631/2021/33(3)/035107/21/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-ef6dda38e6a4ef6efc8b3c8cd71fe5c1ff51c81d848e2769a14b04a4ce000cbf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4400-5201 0000-0003-4021-3628 0000-0002-7324-2006 |
PQID | 2495608321 |
PQPubID | 2050667 |
PageCount | 21 |
ParticipantIDs | proquest_journals_2495608321 scitation_primary_10_1063_5_0035546 crossref_citationtrail_10_1063_5_0035546 crossref_primary_10_1063_5_0035546 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210301 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 20210301 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Ostilla-Mónico, Van Der Poel, Verzicco, Grossmann, Lohse (c15) 2014 Ostilla-Mónico, Verzicco, Lohse (c19) 2015 Pirro, Quadrio (c16) 2008 Wendt (c37) 1933 Chernyshenko, Baig (c39) 2005 Fuaad, Baig, Khan (c32) 2016 Hasan, Sanghi (c35) 2004 Bilson, Bremhorst (c3) 2007 Leng, Kolesnikov, Krasnov, Li (c41) 2018 Viazzo, Poncet (c25) 2014 Kuehn, Goldstein (c26) 1976 Hasan, Sanghi (c27) 2007 Eckhardt, Grossmann, Lohse (c17) 2007 Coles (c5) 1965 Snyder, Karlsson (c21) 1964 Brauckmann, Eckhardt (c18) 2013 Bilgen, Boulos (c38) 1973 Ball, Farouk (c24) 1988 Poncet, Da Soghe, Bianchini, Viazzo, Aubert (c14) 2013 Dong (c20) 2008 Grossmann, Lohse, Sun (c8) 2016 Sorour, Coney (c22) 1979 Andereck, Liu, Swinney (c6) 1986 Chernyshenko, Baig (c40) 2005 Smith, Townsend (c9) 1982 Fuaad, Baig, Ahmad (c33) 2016 Razzak, Khoo, Lua (c13) 2019 Choi, Kim (c29) 1995 Yang, Farouk (c11) 1992 Naim, Baig (c34) 2019 Taylor (c1) 1923 Ball, Farouk, Dixit (c23) 1989 Kuo, Ball (c10) 1997 Dong (c2) 2007 Wallace (c42) 2016 Fusegi, Farouk, Ball (c28) 1986 Cheng, Armfield (c30) 1995 Kahveci (c12) 2016 Teng, Liu, Lu, Khomami (c4) 2015 (2024031518292468400_c4) 2015; 27 (2024031518292468400_c26) 1976; 74 (2024031518292468400_c29) 1995; 38 (2024031518292468400_c15) 2014; 26 (2024031518292468400_c10) 1997; 9 (2024031518292468400_c25) 2014; 101 (2024031518292468400_c36) 2019 (2024031518292468400_c22) 1979; 21 (2024031518292468400_c39) 2005; 544 (2024031518292468400_c19) 2015; 27 (2024031518292468400_c38) 1973; 95 (2024031518292468400_c11) 1992; 35 (2024031518292468400_c37) 1933; 4 (2024031518292468400_c9) 1982; 123 (2024031518292468400_c24) 1988; 197 (2024031518292468400_c17) 2007; 581 (2024031518292468400_c41) 2018; 30 (2024031518292468400_c30) 1995; 21 (2024031518292468400_c42) 2016; 48 Swinney (2024031518292468400_c7) 1985 (2024031518292468400_c2) 2007; 587 (2024031518292468400_c34) 2019; 31 (2024031518292468400_c5) 1965; 21 (2024031518292468400_c8) 2016; 48 (2024031518292468400_c20) 2008; 615 (2024031518292468400_c6) 1986; 164 (2024031518292468400_c13) 2019; 31 (2024031518292468400_c18) 2013; 718 (2024031518292468400_c31) 1999 (2024031518292468400_c23) 1989; 32 (2024031518292468400_c35) 2004; 126 (2024031518292468400_c40) 2005; 363 (2024031518292468400_c21) 1964; 7 (2024031518292468400_c14) 2013; 44 (2024031518292468400_c12) 2016; 9 (2024031518292468400_c3) 2007; 579 (2024031518292468400_c32) 2016; 61 (2024031518292468400_c28) 1986; 9 (2024031518292468400_c27) 2007; 573 (2024031518292468400_c33) 2016; 93 (2024031518292468400_c1) 1923; 223 (2024031518292468400_c16) 2008; 27 |
References_xml | – start-page: 187 year: 1982 ident: c9 article-title: Turbulent Couette flow between concentric cylinders at large Taylor numbers publication-title: J. Fluid Mech. – start-page: 403 year: 1979 ident: c22 article-title: The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders publication-title: J. Mech. Eng. Sci. – start-page: 229 year: 2013 ident: c14 article-title: Turbulent Couette-Taylor flows with endwall effects: A numerical benchmark publication-title: Int. J. Heat Fluid Flow – start-page: 371 year: 2008 ident: c20 article-title: Turbulent flow between counter-rotating concentric cylinders: A direct numerical simulation study publication-title: J. Fluid Mech. – start-page: 577 year: 1933 ident: c37 article-title: Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern publication-title: Arch. Appl. Mech. – start-page: 2872 year: 1997 ident: c10 article-title: Taylor–Couette flow with buoyancy: Onset of spiral flow publication-title: Phys. Fluids – start-page: 373 year: 2007 ident: c2 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: J. Fluid Mech. – start-page: 025110 year: 2015 ident: c19 article-title: Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder publication-title: Phys. Fluids – start-page: 99 year: 2005 ident: c39 article-title: The mechanism of streak formation in near-wall turbulence publication-title: J. Fluid Mech. – start-page: 585 year: 2016 ident: c32 article-title: Turbulent drag reduction using active control of buoyancy forces publication-title: Int. J. Heat Fluid Flow – start-page: 963 year: 2004 ident: c35 article-title: The dynamics of two-dimensional buoyancy driven convection in a horizontal rotating cylinder publication-title: J. Heat Transfer – start-page: 479 year: 1988 ident: c24 article-title: Bifurcation phenomena in Taylor–Couette flow with buoyancy effects publication-title: J. Fluid Mech. – start-page: 15 year: 2014 ident: c25 article-title: Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient publication-title: Comput. Fluids – start-page: 53 year: 2016 ident: c8 article-title: High-Reynolds number Taylor-Couette turbulence publication-title: Annu. Rev. Fluid Mech. – start-page: 125101 year: 2015 ident: c4 article-title: Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient publication-title: Phys. Fluids – start-page: 15 year: 1995 ident: c30 article-title: A simplified marker and cell method for unsteady flows on non-staggered grids publication-title: Int. J. Numer. Methods Fluids – start-page: 385 year: 1965 ident: c5 article-title: Transition in circular Couette flow publication-title: J. Fluid Mech. – start-page: 398 year: 2013 ident: c18 article-title: Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000 publication-title: J. Fluid Mech. – start-page: 2141 year: 2016 ident: c12 article-title: Stability of unsteady mixed convection in a horizontal concentric annulus publication-title: J. Appl. Fluid Mech. – start-page: 155 year: 1986 ident: c6 article-title: Flow regimes in a circular Couette system with independently rotating cylinders publication-title: J. Fluid Mech. – start-page: 1947 year: 1992 ident: c11 article-title: Three-dimensional mixed convection flows in a horizontal annulus with a heated rotating inner circular cylinder publication-title: Int. J. Heat Mass Transfer – start-page: 289 year: 1923 ident: c1 article-title: Stability of a viscous liquid contained between two rotating cylinders publication-title: Philos. Trans. R. Soc., A – start-page: 265 year: 2007 ident: c27 article-title: Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder publication-title: J. Fluid Mech. – start-page: 221 year: 2007 ident: c17 article-title: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders publication-title: J. Fluid Mech. – start-page: 1696 year: 1964 ident: c21 article-title: Experiments on the stability of Couette motion with a radial thermal gradient publication-title: Phys. Fluids – start-page: 275 year: 1995 ident: c29 article-title: Three-dimensional linear stability of mixed-convective flow between rotating horizontal concentric cylinders publication-title: Int. J. Heat Mass Transfer – start-page: 122 year: 1973 ident: c38 article-title: Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers publication-title: J. Fluids Eng. – start-page: 591 year: 1986 ident: c28 article-title: Mixed-convection flows within a horizontal concentric annulus with a heated rotating inner cylinder publication-title: Numer. Heat Transfer, Part A – start-page: 015114 year: 2014 ident: c15 article-title: Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow publication-title: Phys. Fluids – start-page: 113606 year: 2019 ident: c13 article-title: Numerical study on wide gap Taylor Couette flow with flow transition publication-title: Phys. Fluids – start-page: 131 year: 2016 ident: c42 article-title: Quadrant analysis in turbulence research: History and evolution publication-title: Annu. Rev. Fluid Mech. – start-page: 227 year: 2007 ident: c3 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: J. Fluid Mech. – start-page: 1517 year: 1989 ident: c23 article-title: An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder publication-title: Int. J. Heat Mass Transfer – start-page: 552 year: 2008 ident: c16 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: Eur. J. Mech.: B/Fluids – start-page: 095108 year: 2019 ident: c34 article-title: Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations publication-title: Phys. Fluids – start-page: 1020 year: 2016 ident: c33 article-title: Drag-reduction in buoyant and neutrally-buoyant turbulent flows over super-hydrophobic surfaces in transverse orientation publication-title: Int. J. Heat Mass Transfer – start-page: 695 year: 1976 ident: c26 article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders publication-title: J. Fluid Mech. – start-page: 015107 year: 2018 ident: c41 article-title: Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number publication-title: Phys. Fluids – start-page: 1097 year: 2005 ident: c40 article-title: Streaks and vortices in near-wall turbulence publication-title: Philos. Trans. R. Soc., A – volume: 718 start-page: 398 year: 2013 ident: 2024031518292468400_c18 article-title: Direct numerical simulations of local and global torque in Taylor-Couette flow up to Re = 30 000 publication-title: J. Fluid Mech. doi: 10.1017/jfm.2012.618 – volume: 27 start-page: 552 year: 2008 ident: 2024031518292468400_c16 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: Eur. J. Mech.: B/Fluids doi: 10.1016/j.euromechflu.2007.10.005 – volume: 32 start-page: 1517 year: 1989 ident: 2024031518292468400_c23 article-title: An experimental study of heat transfer in a vertical annulus with a rotating inner cylinder publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(89)90073-2 – volume: 101 start-page: 15 year: 2014 ident: 2024031518292468400_c25 article-title: Numerical simulation of the flow stability in a high aspect ratio Taylor–Couette system submitted to a radial temperature gradient publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2014.05.025 – volume: 95 start-page: 122 year: 1973 ident: 2024031518292468400_c38 article-title: Functional dependence of torque coefficient of coaxial cylinders on gap width and Reynolds numbers publication-title: J. Fluids Eng. doi: 10.1115/1.3446944 – volume: 223 start-page: 289 year: 1923 ident: 2024031518292468400_c1 article-title: Stability of a viscous liquid contained between two rotating cylinders publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.1923.0008 – volume: 27 start-page: 025110 year: 2015 ident: 2024031518292468400_c19 article-title: Effects of the computational domain size on direct numerical simulations of Taylor-Couette turbulence with stationary outer cylinder publication-title: Phys. Fluids doi: 10.1063/1.4913231 – volume: 9 start-page: 591 year: 1986 ident: 2024031518292468400_c28 article-title: Mixed-convection flows within a horizontal concentric annulus with a heated rotating inner cylinder publication-title: Numer. Heat Transfer, Part A doi: 10.1080/10407788608913495 – volume: 26 start-page: 015114 year: 2014 ident: 2024031518292468400_c15 article-title: Boundary layer dynamics at the transition between the classical and the ultimate regime of Taylor-Couette flow publication-title: Phys. Fluids doi: 10.1063/1.4863312 – volume: 123 start-page: 187 year: 1982 ident: 2024031518292468400_c9 article-title: Turbulent Couette flow between concentric cylinders at large Taylor numbers publication-title: J. Fluid Mech. doi: 10.1017/s0022112082003024 – start-page: 139 volume-title: Hydrodynamic Instabilities and the Transition to Turbulence year: 1985 ident: 2024031518292468400_c7 article-title: Instabilities and transition in flow between concentric rotating cylinders doi: 10.1007/3-540-13319-4 – volume: 197 start-page: 479 year: 1988 ident: 2024031518292468400_c24 article-title: Bifurcation phenomena in Taylor–Couette flow with buoyancy effects publication-title: J. Fluid Mech. doi: 10.1017/s0022112088003337 – volume: 38 start-page: 275 year: 1995 ident: 2024031518292468400_c29 article-title: Three-dimensional linear stability of mixed-convective flow between rotating horizontal concentric cylinders publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(95)90015-2 – volume: 581 start-page: 221 year: 2007 ident: 2024031518292468400_c17 article-title: Torque scaling in turbulent Taylor–Couette flow between independently rotating cylinders publication-title: J. Fluid Mech. doi: 10.1017/s0022112007005629 – volume: 4 start-page: 577 year: 1933 ident: 2024031518292468400_c37 article-title: Turbulente strömungen zwischen zwei rotierenden konaxialen zylindern publication-title: Arch. Appl. Mech. doi: 10.1007/bf02084936 – volume: 7 start-page: 1696 year: 1964 ident: 2024031518292468400_c21 article-title: Experiments on the stability of Couette motion with a radial thermal gradient publication-title: Phys. Fluids doi: 10.1063/1.1711076 – volume: 48 start-page: 131 year: 2016 ident: 2024031518292468400_c42 article-title: Quadrant analysis in turbulence research: History and evolution publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034550 – volume: 164 start-page: 155 year: 1986 ident: 2024031518292468400_c6 article-title: Flow regimes in a circular Couette system with independently rotating cylinders publication-title: J. Fluid Mech. doi: 10.1017/s0022112086002513 – volume: 21 start-page: 15 year: 1995 ident: 2024031518292468400_c30 article-title: A simplified marker and cell method for unsteady flows on non-staggered grids publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.1650210103 – start-page: 3405 year: 1999 ident: 2024031518292468400_c31 article-title: Unsteady flow simulation and its visualization doi: 10.2514/6.1999-3405 – volume: 587 start-page: 373 year: 2007 ident: 2024031518292468400_c2 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: J. Fluid Mech. doi: 10.1017/s0022112007007367 – volume: 48 start-page: 53 year: 2016 ident: 2024031518292468400_c8 article-title: High-Reynolds number Taylor-Couette turbulence publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-122414-034353 – volume: 21 start-page: 403 year: 1979 ident: 2024031518292468400_c22 article-title: The effect of temperature gradient on the stability of flow between vertical, concentric, rotating cylinders publication-title: J. Mech. Eng. Sci. doi: 10.1243/jmes_jour_1979_021_070_02 – volume: 126 start-page: 963 year: 2004 ident: 2024031518292468400_c35 article-title: The dynamics of two-dimensional buoyancy driven convection in a horizontal rotating cylinder publication-title: J. Heat Transfer doi: 10.1115/1.1833370 – volume: 573 start-page: 265 year: 2007 ident: 2024031518292468400_c27 article-title: Proper orthogonal decomposition and low-dimensional modelling of thermally driven two-dimensional flow in a horizontal rotating cylinder publication-title: J. Fluid Mech. doi: 10.1017/s0022112006003806 – volume: 363 start-page: 1097 year: 2005 ident: 2024031518292468400_c40 article-title: Streaks and vortices in near-wall turbulence publication-title: Philos. Trans. R. Soc., A doi: 10.1098/rsta.2005.1552 – volume: 35 start-page: 1947 year: 1992 ident: 2024031518292468400_c11 article-title: Three-dimensional mixed convection flows in a horizontal annulus with a heated rotating inner circular cylinder publication-title: Int. J. Heat Mass Transfer doi: 10.1016/0017-9310(92)90197-z – volume: 74 start-page: 695 year: 1976 ident: 2024031518292468400_c26 article-title: An experimental and theoretical study of natural convection in the annulus between horizontal concentric cylinders publication-title: J. Fluid Mech. doi: 10.1017/s0022112076002012 – volume: 31 start-page: 095108 year: 2019 ident: 2024031518292468400_c34 article-title: Turbulent drag reduction in Taylor-Couette flows using different super-hydrophobic surface configurations publication-title: Phys. Fluids doi: 10.1063/1.5116316 – volume: 21 start-page: 385 year: 1965 ident: 2024031518292468400_c5 article-title: Transition in circular Couette flow publication-title: J. Fluid Mech. doi: 10.1017/s0022112065000241 – volume: 615 start-page: 371 year: 2008 ident: 2024031518292468400_c20 article-title: Turbulent flow between counter-rotating concentric cylinders: A direct numerical simulation study publication-title: J. Fluid Mech. doi: 10.1017/s0022112008003716 – volume: 579 start-page: 227 year: 2007 ident: 2024031518292468400_c3 article-title: Direct numerical simulation of turbulent Taylor-Couette flow publication-title: J. Fluid Mech. doi: 10.1017/s0022112007004971 – volume: 31 start-page: 113606 year: 2019 ident: 2024031518292468400_c13 article-title: Numerical study on wide gap Taylor Couette flow with flow transition publication-title: Phys. Fluids doi: 10.1063/1.5125640 – volume: 30 start-page: 015107 year: 2018 ident: 2024031518292468400_c41 article-title: Numerical simulation of turbulent Taylor-Couette flow between conducting cylinders in an axial magnetic field at low magnetic Reynolds number publication-title: Phys. Fluids doi: 10.1063/1.5003173 – volume: 9 start-page: 2141 year: 2016 ident: 2024031518292468400_c12 article-title: Stability of unsteady mixed convection in a horizontal concentric annulus publication-title: J. Appl. Fluid Mech. doi: 10.18869/acadpub.jafm.68.236.24429 – volume: 9 start-page: 2872 year: 1997 ident: 2024031518292468400_c10 article-title: Taylor–Couette flow with buoyancy: Onset of spiral flow publication-title: Phys. Fluids doi: 10.1063/1.869400 – volume: 27 start-page: 125101 year: 2015 ident: 2024031518292468400_c4 article-title: Direct numerical simulation of Taylor-Couette flow subjected to a radial temperature gradient publication-title: Phys. Fluids doi: 10.1063/1.4935700 – volume: 44 start-page: 229 year: 2013 ident: 2024031518292468400_c14 article-title: Turbulent Couette-Taylor flows with endwall effects: A numerical benchmark publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2013.05.018 – volume: 61 start-page: 585 year: 2016 ident: 2024031518292468400_c32 article-title: Turbulent drag reduction using active control of buoyancy forces publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2016.07.003 – volume: 93 start-page: 1020 year: 2016 ident: 2024031518292468400_c33 article-title: Drag-reduction in buoyant and neutrally-buoyant turbulent flows over super-hydrophobic surfaces in transverse orientation publication-title: Int. J. Heat Mass Transfer doi: 10.1016/j.ijheatmasstransfer.2015.10.068 – start-page: 1139 year: 2019 ident: 2024031518292468400_c36 article-title: Turbulent drag reduction in Taylor-Couette flows using super-hydrophobic surfaces and liquid-infused surfaces doi: 10.2514/6.2019-1139 – volume: 544 start-page: 99 year: 2005 ident: 2024031518292468400_c39 article-title: The mechanism of streak formation in near-wall turbulence publication-title: J. Fluid Mech. doi: 10.1017/s0022112005006506 |
SSID | ssj0003926 |
Score | 2.4061022 |
Snippet | The present study involves direct numerical simulation of turbulent Taylor–Couette flow undergoing orthogonal rotation (gravity and rotation axis are... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Aspect ratio Computational fluid dynamics Couette flow Cylinders Direct numerical simulation Domains Finite difference method Fluid dynamics Fluid flow Heating Physics Reynolds number Rotation Shear stress Thermal stratification Turbulence Turbulent flow |
Title | Taylor–Couette flows undergoing orthogonal rotation subject to thermal stratification |
URI | http://dx.doi.org/10.1063/5.0035546 https://www.proquest.com/docview/2495608321 |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFYJLgQJiS0EWcEBaZduNHcc5lkJVAQsHWtFb5M920WpTZbOtxIn_wD_klzCxnWQLESpcIsdyspHfy-TN7NiD0MtYpImwlEbSmjgCBU4jLmUCxlAlOiZ21-h6cfLkIzs8pu9OkpOuXKpbXVLJkfrWu67kf1CFPsC1XiX7D8i2N4UOaAO-cASE4Xg9jL27HfIVyH6xrBN3hnZWXC5cgdvytHBZzWV1Vpy6mF9ZhPTCxVLWIZigPcE8u3UjwqUOdWgF2eryRJXL-rCz5VT7_Z2yjK4EEt6fiUufrf1JiqkG17YLNb8WU2dSJqPhwagN6oi5Lyk8hNZXYy5WIxDxSgpWMJpgNiJQLr7LhD6eRSnzFVUaS-u3vAiMIr0GHBQTzHod56qFUM8m2b99vNqUQvdnOiN5kodLb6L1GFwHsH3re28mHz6332dQhMxnovqnbvabYmSn_d2rKqVzPW6DLvEwraiQo3toI7gPeM9z4T66Yeab6G5wJXAw1ItNdCsg9gB98ST5-f1HoAd29MAdPXBHD9zQAwd64KrAgR74Kj0eouODt0f7h1GophEpEqdVZCzTWhBumKDQNlZxSRRXOh1bk6ixtclYgffCKTdxyjIxpnKXCqoMzJmSljxCa_Nibh4jzGo3WzPw1KmGQYynmmjJicgEnAg-QK-a2cub-aornszyP1AaoOft0HO_v0rfoO0Ggjy8fos8dq59XWhrgF60sPztJj2jLoqyG5Gfa7t1ned5gu5078E2WqvKpXkK2rSSzwLZfgG0Ao9c |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Taylor%E2%80%93Couette+flows+undergoing+orthogonal+rotation+subject+to+thermal+stratification&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Khawar%2C+Obaidullah&rft.au=Baig%2C+M.+F.&rft.au=Sanghi%2C+Sanjeev&rft.date=2021-03-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=33&rft.issue=3&rft_id=info:doi/10.1063%2F5.0035546&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0035546 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |