Recursive algorithm for solving the axial acoustic radiation force exerted on rigid spheres at the focus of acoustic vortex beams

The trapping capability of focused acoustic vortex (FAV) beams along the radial and axial directions has significant potential in biomedical applications. However, analyses based on the acoustic gradient force are only applicable to tiny particles when acoustic scattering is neglected, and the ideal...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 130; no. 6
Main Authors Li, Jiao, Ding, Ning, Ma, Qingyu, Li, Yuzhi, Guo, Gepu, Tu, Juan, Zhang, Dong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 14.08.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The trapping capability of focused acoustic vortex (FAV) beams along the radial and axial directions has significant potential in biomedical applications. However, analyses based on the acoustic gradient force are only applicable to tiny particles when acoustic scattering is neglected, and the ideal Bessel beams are still difficult to implement in experiments. In the present work, the axial acoustic radiation force (A-ARF) exerted on objects at the focus for FAV beams is calculated based on an annular spherical transducer with a continuous phase spiral. Through a partial wave series expansion, a recursive algorithm based on acoustic scattering is proposed to calculate the acoustic field for FAV beams with arbitrary order. The A-ARF distributions exerted on rigid spheres with respect to k0a (the product of the wave number and the sphere radius) are simulated. The results demonstrate that the A-ARF created by on-axis acoustic reflection is mainly manifested as a pushing force for FAV beams of all orders. The pulling force produced by off-axis scattering is more likely to be exerted on spheres with a smaller k0a in higher-order FAV beams constructed by narrower transducers. The A-ARF generated by a ring-array of sectorial transducers with more than 16 sources can be estimated from the equivalent result produced by the continuous model. The favorable results demonstrate the validity of the recursive algorithm for solving the A-ARF of FAV beams and the feasibility of experimental ring-arrays of spherical sources, suggesting the potential for the application of dual-directional object manipulation in biomedical fields.
AbstractList The trapping capability of focused acoustic vortex (FAV) beams along the radial and axial directions has significant potential in biomedical applications. However, analyses based on the acoustic gradient force are only applicable to tiny particles when acoustic scattering is neglected, and the ideal Bessel beams are still difficult to implement in experiments. In the present work, the axial acoustic radiation force (A-ARF) exerted on objects at the focus for FAV beams is calculated based on an annular spherical transducer with a continuous phase spiral. Through a partial wave series expansion, a recursive algorithm based on acoustic scattering is proposed to calculate the acoustic field for FAV beams with arbitrary order. The A-ARF distributions exerted on rigid spheres with respect to k0a (the product of the wave number and the sphere radius) are simulated. The results demonstrate that the A-ARF created by on-axis acoustic reflection is mainly manifested as a pushing force for FAV beams of all orders. The pulling force produced by off-axis scattering is more likely to be exerted on spheres with a smaller k0a in higher-order FAV beams constructed by narrower transducers. The A-ARF generated by a ring-array of sectorial transducers with more than 16 sources can be estimated from the equivalent result produced by the continuous model. The favorable results demonstrate the validity of the recursive algorithm for solving the A-ARF of FAV beams and the feasibility of experimental ring-arrays of spherical sources, suggesting the potential for the application of dual-directional object manipulation in biomedical fields.
Author Zhang, Dong
Ding, Ning
Ma, Qingyu
Li, Yuzhi
Guo, Gepu
Tu, Juan
Li, Jiao
Author_xml – sequence: 1
  givenname: Jiao
  surname: Li
  fullname: Li, Jiao
  organization: School of Computer and Electronic Information, Nanjing Normal University
– sequence: 2
  givenname: Ning
  surname: Ding
  fullname: Ding, Ning
  organization: School of Computer and Electronic Information, Nanjing Normal University
– sequence: 3
  givenname: Qingyu
  surname: Ma
  fullname: Ma, Qingyu
  organization: School of Computer and Electronic Information, Nanjing Normal University
– sequence: 4
  givenname: Yuzhi
  surname: Li
  fullname: Li, Yuzhi
  organization: School of Computer and Electronic Information, Nanjing Normal University
– sequence: 5
  givenname: Gepu
  surname: Guo
  fullname: Guo, Gepu
  organization: School of Computer and Electronic Information, Nanjing Normal University
– sequence: 6
  givenname: Juan
  surname: Tu
  fullname: Tu, Juan
  organization: Institute of Acoustics, Nanjing University
– sequence: 7
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Institute of Acoustics, Nanjing University
BookMark eNp9kMtKAzEUhoNUsK0ufIOAK4VpkxnTTJZSvEFBEF2HTC5tynRSk0ypS9_c9KIFFVeBk-__DufvgU7jGg3AOUYDjEbFkAwQItdlyY5AF6OSZZQQ1AFdhHKclYyyE9ALYY4QxmXBuuDjWcvWB7vSUNRT522cLaBxHgZXr2wzhXGWftZW1FBI14ZoJfRCWRGtazag1FCvtY9awTTwdmoVDMuZ9jpAEbdx42QboDMHw8qlwBpWWizCKTg2og76bP_2wevd7cv4IZs83T-ObyaZLHIaMy2xqtSImWokNJaaIFOJMidEUsoqhlXBiMxRTksjTKWqHEsqDWYVJVJRZIo-uNh5l969tTpEPnetb9JKniyM5BQjnKjhjpLeheC14dLG7bHRC1tzjPimZ074vueUuPyRWHq7EP79T_Zqx4Yv6zecKjmAfKnMf_Bv8yd94J55
CODEN JAPIAU
CitedBy_id crossref_primary_10_1016_j_ultras_2024_107475
crossref_primary_10_1016_j_wavemoti_2024_103305
crossref_primary_10_1063_5_0107785
Cites_doi 10.1016/j.phpro.2015.08.108
10.1121/1.2799501
10.1063/1.4981122
10.1088/1367-2630/10/1/013018
10.1121/1.385616
10.1121/1.393689
10.1038/ncomms9661
10.1063/1.4940961
10.1121/1.394950
10.1103/PhysRevE.84.035601
10.1063/1.4889860
10.1103/PhysRevE.71.066616
10.1121/1.428184
10.1063/1.4801894
10.1080/09500349808231706
10.1103/PhysRevE.77.016605
10.1103/PhysRevLett.91.244302
10.1098/rspa.1974.0012
10.1063/1.4867046
10.1103/PhysRevLett.116.024301
10.1088/1674-1056/ab8210
10.1103/PhysRevLett.100.024302
10.1063/5.0006703
10.1121/1.383950
10.1364/OL.25.001135
10.1063/5.0002327
10.1016/j.aop.2013.12.009
10.1121/1.2360420
10.1109/TUFFC.2010.1564
10.1121/1.2973230
10.1121/1.2404931
10.1121/1.2361185
10.1063/1.4803078
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0054889
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0054889
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 12004187
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11974187
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20200724
  funderid: https://doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 11934009
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-ec1dbd69fb6ae1ce50fba8255c779b91d395c20278fafbdb21c7cf19b75cd70f3
ISSN 0021-8979
IngestDate Mon Jun 30 06:20:38 EDT 2025
Tue Jul 01 02:01:28 EDT 2025
Thu Apr 24 23:03:39 EDT 2025
Thu Jun 23 13:44:54 EDT 2022
Fri Jun 21 00:15:16 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-ec1dbd69fb6ae1ce50fba8255c779b91d395c20278fafbdb21c7cf19b75cd70f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5297-8658
0000-0002-5339-2218
0000-0002-3322-1972
0000-0001-9004-2834
PQID 2559527101
PQPubID 2050677
PageCount 12
ParticipantIDs scitation_primary_10_1063_5_0054889
proquest_journals_2559527101
crossref_primary_10_1063_5_0054889
crossref_citationtrail_10_1063_5_0054889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210814
2021-08-14
PublicationDateYYYYMMDD 2021-08-14
PublicationDate_xml – month: 08
  year: 2021
  text: 20210814
  day: 14
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Hasegawa, Ochi, Matsuzawa (c24) 1980
Hasegawa, Matsuzawa, Inoue (c35) 1986
Li, Wang, Guo, Chu, Ma, Tu, Zhang (c39) 2020
Nye, Berry (c4) 1974
Kang, Yeh (c9) 2010
Hefner, Marston (c12) 1999
Yang, Ma, Tu, Zhang (c14) 2013
Marston (c27) 2008
Berry (c2) 1998
Lekner (c3) 2006
Mitri (c30) 2014
Zhou, Wang, Pu, Li, Guo, Chu, Ma, Tu, Zhang (c18) 2020
Pazos-Ospina, Quiceno, Ealo, Muelas, Camacho (c19) 2015
Zheng, Gao, Ma, Dai, Zhang (c15) 2014
Volke-Sepulveda, Santillan, Boullosa (c13) 2008
Zhang, Marston (c29) 2011
Marston (c25) 2006
Li, Guo, Ma, Tu, Zhang (c17) 2017
Molina-Terriza, Recolons, Torner (c1) 2000
Zhang, Guo, Deng, Huang, Li, Lu, Liu (c11) 2020
Gao, Zheng, Ma, Tu, Zhang (c16) 2014
Marchiano, Thomas (c7) 2005
Hasegawa, Ochi, Matsuzawa (c23) 1981
Baresch, Thomas, Marchiano (c21) 2016
Gor’Kov (c22) 1962
Marstona (c28) 2007
Skeldon, Wilson, Edgar, Padgett (c8) 2008
Ayres, Gaunaurd (c40) 1987
Marston (c26) 2007
Baresch, Thomas, Marchiano (c10) 2013
Marchiano, Coulouvrat, Ganjehi, Thomas (c5) 2008
Marzo, Seah, Drinkwater, Sahoo, Long, Subramanian (c20) 2015
Mitri (c31) 2016
Thomas, Marchiano (c6) 2003
2023092719471371300_c38
(2023092719471371300_c3) 2006; 120
(2023092719471371300_c18) 2020; 128
(2023092719471371300_c9) 2010; 57
(2023092719471371300_c25) 2006; 120
(2023092719471371300_c13) 2008; 100
(2023092719471371300_c21) 2016; 116
(2023092719471371300_c24) 1980; 67
(2023092719471371300_c34) 2011
(2023092719471371300_c8) 2008; 10
(2023092719471371300_c7) 2005; 71
(2023092719471371300_c1) 2000; 25
(2023092719471371300_c6) 2003; 91
(2023092719471371300_c14) 2013; 113
(2023092719471371300_c40) 1987; 81
(2023092719471371300_c10) 2013; 113
(2023092719471371300_c16) 2014; 116
(2023092719471371300_c22) 1962; 6
(2023092719471371300_c32) 1981
(2023092719471371300_c35) 1986; 79
(2023092719471371300_c11) 2020; 116
(2023092719471371300_c30) 2014; 342
(2023092719471371300_c23) 1981; 69
(2023092719471371300_c39) 2020; 29
(2023092719471371300_c15) 2014; 115
(2023092719471371300_c12) 1999; 106
(2023092719471371300_c4) 1974; 336
(2023092719471371300_c20) 2015; 6
(2023092719471371300_c19) 2015; 70
(2023092719471371300_c26) 2007; 122
(2023092719471371300_c28) 2007; 121
(2023092719471371300_c37) 1998
(2023092719471371300_c2) 1998; 45
(2023092719471371300_c36) 2012
(2023092719471371300_c27) 2008; 124
(2023092719471371300_c29) 2011; 84
(2023092719471371300_c5) 2008; 77
(2023092719471371300_c31) 2016; 119
(2023092719471371300_c33) 2010
(2023092719471371300_c17) 2017; 121
References_xml – start-page: 024905
  year: 2014
  ident: c16
  publication-title: J. Appl. Phys.
– start-page: 244302
  year: 2003
  ident: c6
  publication-title: Phys. Rev. Lett.
– start-page: 158
  year: 2014
  ident: c30
  publication-title: Ann. Phys.
– start-page: 164901
  year: 2017
  ident: c17
  publication-title: J. Appl. Phys.
– start-page: 035601
  year: 2011
  ident: c29
  publication-title: Phys. Rev. E
– start-page: 165
  year: 1974
  ident: c4
  publication-title: Proc. R. Soc. London A.
– start-page: 154904
  year: 2013
  ident: c14
  publication-title: J. Appl. Phys.
– start-page: 054302
  year: 2020
  ident: c39
  publication-title: Chin. Phys. B
– start-page: 1135
  year: 2000
  ident: c1
  publication-title: Opt. Lett.
– start-page: 066616
  year: 2005
  ident: c7
  publication-title: Phys. Rev. E
– start-page: 016605
  year: 2008
  ident: c5
  publication-title: Phys. Rev. E
– start-page: 024301
  year: 2016
  ident: c21
  publication-title: Phys. Rev. Lett.
– start-page: 084909
  year: 2014
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 753
  year: 2007
  ident: c28
  publication-title: J. Acoust. Soc. Am.
– start-page: 084901
  year: 2020
  ident: c18
  publication-title: J. Appl. Phys.
– start-page: 064901
  year: 2016
  ident: c31
  publication-title: J. Appl. Phys.
– start-page: 013018
  year: 2008
  ident: c8
  publication-title: New J. Phys.
– start-page: 773
  year: 1962
  ident: c22
  publication-title: Sov. Phys. Dokl.
– start-page: 8661
  year: 2015
  ident: c20
  publication-title: Nat. Commun.
– start-page: 301
  year: 1987
  ident: c40
  publication-title: J. Acoust. Soc. Am.
– start-page: 1845
  year: 1998
  ident: c2
  publication-title: J. Mod. Opt.
– start-page: 3475
  year: 2006
  ident: c3
  publication-title: J. Acoust. Soc. Am.
– start-page: 1451
  year: 2010
  ident: c9
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Frequ. Control
– start-page: 123503
  year: 2020
  ident: c11
  publication-title: Appl. Phys. Lett.
– start-page: 184901
  year: 2013
  ident: c10
  publication-title: J. Appl. Phys.
– start-page: 937
  year: 1981
  ident: c23
  publication-title: J. Acoust. Soc. Am.
– start-page: 024302
  year: 2008
  ident: c13
  publication-title: Phys. Rev. Lett.
– start-page: 2905
  year: 2008
  ident: c27
  publication-title: J. Acoust. Soc. Am.
– start-page: 3313
  year: 1999
  ident: c12
  publication-title: J. Acoust. Soc. Am.
– start-page: 927
  year: 1986
  ident: c35
  publication-title: J. Acoust. Soc. Am.
– start-page: 3518
  year: 2006
  ident: c25
  publication-title: J. Acoust. Soc. Am.
– start-page: 770
  year: 1980
  ident: c24
  publication-title: J. Acoust. Soc. Am.
– start-page: 183
  year: 2015
  ident: c19
  publication-title: Phys. Proc.
– start-page: 3162
  year: 2007
  ident: c26
  publication-title: J. Acoust. Soc. Am.
– volume: 70
  start-page: 183
  year: 2015
  ident: 2023092719471371300_c19
  publication-title: Phys. Proc.
  doi: 10.1016/j.phpro.2015.08.108
– volume: 122
  start-page: 3162
  year: 2007
  ident: 2023092719471371300_c26
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2799501
– volume: 121
  start-page: 164901
  year: 2017
  ident: 2023092719471371300_c17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4981122
– volume: 10
  start-page: 013018
  year: 2008
  ident: 2023092719471371300_c8
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/1/013018
– volume: 69
  start-page: 937
  year: 1981
  ident: 2023092719471371300_c23
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.385616
– volume: 79
  start-page: 927
  year: 1986
  ident: 2023092719471371300_c35
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.393689
– volume-title: Mathematical Methods for Physicists
  year: 2012
  ident: 2023092719471371300_c36
– volume: 6
  start-page: 8661
  year: 2015
  ident: 2023092719471371300_c20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9661
– volume: 119
  start-page: 064901
  year: 2016
  ident: 2023092719471371300_c31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4940961
– volume: 81
  start-page: 301
  year: 1987
  ident: 2023092719471371300_c40
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.394950
– volume: 84
  start-page: 035601
  year: 2011
  ident: 2023092719471371300_c29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.035601
– volume: 116
  start-page: 024905
  year: 2014
  ident: 2023092719471371300_c16
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4889860
– volume: 71
  start-page: 066616
  year: 2005
  ident: 2023092719471371300_c7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.066616
– volume: 106
  start-page: 3313
  year: 1999
  ident: 2023092719471371300_c12
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428184
– volume-title: Principles of Acoustics
  year: 2011
  ident: 2023092719471371300_c34
– volume: 113
  start-page: 154904
  year: 2013
  ident: 2023092719471371300_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801894
– volume-title: Mathematics and Physics
  year: 2010
  ident: 2023092719471371300_c33
– volume: 45
  start-page: 1845
  year: 1998
  ident: 2023092719471371300_c2
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349808231706
– volume: 77
  start-page: 016605
  year: 2008
  ident: 2023092719471371300_c5
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.016605
– volume: 91
  start-page: 244302
  year: 2003
  ident: 2023092719471371300_c6
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.244302
– volume: 336
  start-page: 165
  year: 1974
  ident: 2023092719471371300_c4
  publication-title: Proc. R. Soc. London A.
  doi: 10.1098/rspa.1974.0012
– volume: 115
  start-page: 084909
  year: 2014
  ident: 2023092719471371300_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4867046
– volume: 116
  start-page: 024301
  year: 2016
  ident: 2023092719471371300_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.024301
– volume: 29
  start-page: 054302
  year: 2020
  ident: 2023092719471371300_c39
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab8210
– volume: 100
  start-page: 024302
  year: 2008
  ident: 2023092719471371300_c13
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.024302
– volume: 128
  start-page: 084901
  year: 2020
  ident: 2023092719471371300_c18
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0006703
– volume: 67
  start-page: 770
  year: 1980
  ident: 2023092719471371300_c24
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.383950
– volume-title: Classical Electrodynamics
  year: 1998
  ident: 2023092719471371300_c37
– volume: 6
  start-page: 773
  year: 1962
  ident: 2023092719471371300_c22
  publication-title: Sov. Phys. Dokl.
– volume: 25
  start-page: 1135
  year: 2000
  ident: 2023092719471371300_c1
  publication-title: Opt. Lett.
  doi: 10.1364/OL.25.001135
– volume: 116
  start-page: 123503
  year: 2020
  ident: 2023092719471371300_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0002327
– volume: 342
  start-page: 158
  year: 2014
  ident: 2023092719471371300_c30
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2013.12.009
– volume-title: Mathematics and Physics
  year: 1981
  ident: 2023092719471371300_c32
– volume: 120
  start-page: 3475
  year: 2006
  ident: 2023092719471371300_c3
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2360420
– volume: 57
  start-page: 1451
  year: 2010
  ident: 2023092719471371300_c9
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Frequ. Control
  doi: 10.1109/TUFFC.2010.1564
– volume: 124
  start-page: 2905
  year: 2008
  ident: 2023092719471371300_c27
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2973230
– volume: 121
  start-page: 753
  year: 2007
  ident: 2023092719471371300_c28
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2404931
– volume: 120
  start-page: 3518
  year: 2006
  ident: 2023092719471371300_c25
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2361185
– ident: 2023092719471371300_c38
– volume: 113
  start-page: 184901
  year: 2013
  ident: 2023092719471371300_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4803078
SSID ssj0011839
Score 2.3907633
Snippet The trapping capability of focused acoustic vortex (FAV) beams along the radial and axial directions has significant potential in biomedical applications....
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustic scattering
Acoustics
Algorithms
Arrays
Biomedical materials
Electron beams
Particle beams
Radiation
Scattering
Series expansion
Sound waves
Spheres
Transducers
Title Recursive algorithm for solving the axial acoustic radiation force exerted on rigid spheres at the focus of acoustic vortex beams
URI http://dx.doi.org/10.1063/5.0054889
https://www.proquest.com/docview/2559527101
Volume 130
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB7WFlEfRKviapVBfRCWtMnEZDKPxQultEVtC_UpzNWu1N2lm5TaN_-5Zy6ZbOki1ZewDJOzYb5vJuecnAtCb0jKuAKcwcghYKBUMk-EpiLRAmwBUqqydMWe9_bL7aN3O8fF8WBwsBC11DZiQ14uzSv5H1RhDHC1WbL_gGwUCgPwG_CFKyAM1xth_NU6y138OT_9PgUz_-SnCxuEfz3v0qD4hfWJw7nn2naNzmwtgi6-EPa0bblklU4YsC2y1Ghu6wzoeUhyhFmyddEeUcK5Dc-9GAnNQ6Hz66otD6qtd5tErX3XRQ7sjPk0qs-ho8p-9wJ1vnE78gVGfrVX7_zWXp6MF90UxPldfXpoTBvIkor5zjEb2p-2acUSWvjKs_E4Dt9pxv3heu2YB70KsLHeMDC4Kta_y2KE4Q8-u4VWCdgOcPitbn3Y2z2IH5esUugjf_wTdQWnynwziryqpvS2xx1QTHyMxIIacvgA3Q-LjLc8GR6igZ6soXsLVSXX0O3Pftkfod-RIDgSBAPuOBAEA8LYEQR38OJIEOwIggNBMAw4guBAEMwbd7sjCJ6aXoInCHYEeYyOPn08fL-dhJ4bicwJbRItMyVUyYwouc6kLlIjeAV2p6SUCZapnBXSOswqw41QgmSSSpMxQQupaGryJ2hlMp3opwgrajKdM66JAiu-UrygpqpAeFZInRIxRG-7Ja67RbV9UU5rFxhR5nVRBzSG6FWcOvNVWJZNWu9wqsMmndfWYi4IqNHZEL2O2P1NyJJZsG79jHqmzLMbyXqO7vY7YR2tNGetfgEqbCNeBkr-AWNVojA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recursive+algorithm+for+solving+the+axial+acoustic+radiation+force+exerted+on+rigid+spheres+at+the+focus+of+acoustic+vortex+beams&rft.jtitle=Journal+of+applied+physics&rft.au=Li%2C+Jiao&rft.au=Ding%2C+Ning&rft.au=Ma%2C+Qingyu&rft.au=Li%2C+Yuzhi&rft.date=2021-08-14&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=130&rft.issue=6&rft_id=info:doi/10.1063%2F5.0054889&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon