Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation

For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 128; no. 8
Main Authors Zhou, Chenchen, Wang, Qingdong, Pu, Shifu, Li, Yuzhi, Guo, Gepu, Chu, Hongyan, Ma, Qingyu, Tu, Juan, Zhang, Dong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 28.08.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens, numerical simulations show that an FAV with considerable pressure gain and strengthened acoustic gradient force (AGF) can be produced by the effective concentration of acoustic waves. The performance of rotational object trapping is shown by the axial and radial distributions of the AGF for FAVs of different orders. Elastic objects of nanometer, micrometer, millimeter, and even larger-than-wavelength size can be captured with the trapping radius determined by the topological charge. With the established 16-channel experimental system, FAVs of different orders are verified by their clear pressure circles and phase spirals. The trapping radius and rotation speed of object capture are demonstrated using polyethylene particles of various sizes and FAVs of different orders. The favorable results provide an experimentally applicable method of FAV generation using the simplified circular transducer array to accomplish more accurate, stable, and flexible object manipulations with strengthened AGFs. Also, FAVs could offer an efficient means of high-intensity focused ultrasound therapy to improve the therapeutic effect of tumor treatments by accumulating drug particles, thereby enabling more potential applications in clinical practice.
AbstractList For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens, numerical simulations show that an FAV with considerable pressure gain and strengthened acoustic gradient force (AGF) can be produced by the effective concentration of acoustic waves. The performance of rotational object trapping is shown by the axial and radial distributions of the AGF for FAVs of different orders. Elastic objects of nanometer, micrometer, millimeter, and even larger-than-wavelength size can be captured with the trapping radius determined by the topological charge. With the established 16-channel experimental system, FAVs of different orders are verified by their clear pressure circles and phase spirals. The trapping radius and rotation speed of object capture are demonstrated using polyethylene particles of various sizes and FAVs of different orders. The favorable results provide an experimentally applicable method of FAV generation using the simplified circular transducer array to accomplish more accurate, stable, and flexible object manipulations with strengthened AGFs. Also, FAVs could offer an efficient means of high-intensity focused ultrasound therapy to improve the therapeutic effect of tumor treatments by accumulating drug particles, thereby enabling more potential applications in clinical practice.
Author Pu, Shifu
Zhang, Dong
Wang, Qingdong
Ma, Qingyu
Li, Yuzhi
Guo, Gepu
Tu, Juan
Chu, Hongyan
Zhou, Chenchen
Author_xml – sequence: 1
  givenname: Chenchen
  surname: Zhou
  fullname: Zhou, Chenchen
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 2
  givenname: Qingdong
  surname: Wang
  fullname: Wang, Qingdong
  organization: College of Ocean Science and Engineering, Shandong University of Science and Technology
– sequence: 3
  givenname: Shifu
  surname: Pu
  fullname: Pu, Shifu
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 4
  givenname: Yuzhi
  surname: Li
  fullname: Li, Yuzhi
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 5
  givenname: Gepu
  surname: Guo
  fullname: Guo, Gepu
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 6
  givenname: Hongyan
  surname: Chu
  fullname: Chu, Hongyan
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 7
  givenname: Qingyu
  surname: Ma
  fullname: Ma, Qingyu
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 8
  givenname: Juan
  surname: Tu
  fullname: Tu, Juan
  organization: Institute of Acoustics, Nanjing University
– sequence: 9
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Institute of Acoustics, Nanjing University
BookMark eNp9kc9KJDEQxoOMsOPoYd8g4EnZ1kqn00kfRXZ2Fwb2oucmnT-SoU3aJC3Og_i-Gx0XQXY9FVX1q6-or47QwgdvEPpK4IJASy_ZBQC0HOgBWhIQXcUZgwVaAtSkEh3vvqCjlLYAhAjaLdHzOqg5GY2lCnPKTuHHELN5wnfGmyhz6Qw7LLFyUc2jjFjGKHc4WDyN0pc8GZVDxDlKn_SsTEx4Ts7fYenfNUfj07dS0djlhOU0jU7J7ILHzuMwbIsGvpfeTWXFS_kYHVo5JnPyFlfodv395vpntfn949f11aZStOa5MqIT1rRc2UHztlzUUmFY3QyEtK0Vgx46xqyyXGnBOddg6gZqGGTTDEx0mq7Q6V53iuFhNin32zBHX1b2dUN53QJlpFBne0rFkFI0tp-iu5dx1xPoX1zvWf_memEvP7DK5debikNu_OfE-X4i_SU_lf8vXP72DvaTtvQPQ3ykdA
CODEN JAPIAU
CitedBy_id crossref_primary_10_1063_5_0058213
crossref_primary_10_1088_1742_6596_2822_1_012166
crossref_primary_10_1016_j_apacoust_2022_109053
crossref_primary_10_1016_j_apacoust_2024_110022
crossref_primary_10_1016_j_ijmecsci_2025_110044
crossref_primary_10_1109_TUFFC_2024_3456083
crossref_primary_10_3390_mi15020186
crossref_primary_10_1063_5_0201781
crossref_primary_10_1109_TBME_2023_3342093
crossref_primary_10_1063_5_0213089
crossref_primary_10_1063_5_0054889
crossref_primary_10_1109_TUFFC_2021_3120285
crossref_primary_10_1016_j_ultrasmedbio_2022_06_008
crossref_primary_10_1088_1674_1056_ad5aef
crossref_primary_10_1016_j_ultsonch_2025_107314
crossref_primary_10_1109_TUFFC_2023_3277854
crossref_primary_10_1121_10_0025688
crossref_primary_10_3390_w16202954
crossref_primary_10_1063_5_0070249
crossref_primary_10_1063_5_0130015
crossref_primary_10_1103_PhysRevApplied_22_054012
crossref_primary_10_1121_10_0034361
crossref_primary_10_1016_j_eng_2024_01_032
crossref_primary_10_1063_5_0107785
crossref_primary_10_1121_10_0017106
Cites_doi 10.1073/pnas.1813047115
10.1063/1.4803078
10.1063/1.4958309
10.1063/1.4941992
10.1063/1.5029424
10.1016/j.ultrasmedbio.2006.05.021
10.1063/1.4981122
10.1121/1.4802076
10.1134/S1063771011030067
10.1021/nn305826j
10.1063/1.4801894
10.1103/PhysRevLett.120.044301
10.1364/OE.19.024067
10.1103/PhysRevLett.100.024302
10.1143/JJAP.48.07GL04
10.1063/1.5004752
10.1088/1367-2630/10/1/013018
10.1063/1.4919802
10.1016/j.phpro.2015.08.108
10.1103/PhysRevLett.114.214301
10.1038/s41598-017-07477-1
10.1063/1.4870489
10.1121/1.4770256
10.1038/ncomms12998
10.1103/PhysRevLett.109.034301
10.1119/1.3056580
10.1103/PhysRevB.84.024305
10.1038/srep35929
10.1121/1.428184
10.1109/TUFFC.2011.1992
10.1103/PhysRevA.54.1593
10.1103/PhysRevLett.116.024301
10.1038/ncomms9661
10.1103/PhysRevApplied.4.034004
10.1063/1.4949337
10.1103/PhysRevApplied.11.014055
10.1364/OL.22.000052
10.1103/PhysRevLett.117.034301
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0006703
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0006703
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11974187
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11934009
  funderid: https://doi.org/10.13039/501100001809
– fundername: Practice and Innovation Project of Postgraduates in Jiangsu Province
  grantid: KYCX19_0812
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-e898fe67cfbd76118638e524b1166f8bdb955fcf7cd8777d0e24020ba44b589d3
ISSN 0021-8979
IngestDate Mon Jun 30 02:26:59 EDT 2025
Tue Jul 01 02:01:20 EDT 2025
Thu Apr 24 23:02:22 EDT 2025
Fri Jun 21 00:14:24 EDT 2024
Wed Nov 11 00:05:25 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License 0021-8979/2020/128(8)/084901/12/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-e898fe67cfbd76118638e524b1166f8bdb955fcf7cd8777d0e24020ba44b589d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5339-2218
PQID 2437260351
PQPubID 2050677
PageCount 12
ParticipantIDs scitation_primary_10_1063_5_0006703
crossref_citationtrail_10_1063_5_0006703
crossref_primary_10_1063_5_0006703
proquest_journals_2437260351
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200828
2020-08-28
PublicationDateYYYYMMDD 2020-08-28
PublicationDate_xml – month: 08
  year: 2020
  text: 20200828
  day: 28
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Baresch, Thomas, Marchiano (c9) 2013
Volke-Sepúlveda, Santillán, Boullosa (c10) 2008
Pazos-Ospina, Quiceno, Ealo, Muelas (c25) 2015
Skeldon, Wilson, Edgar, Padgett (c19) 2008
Baresch, Thomas, Marchiano (c37) 2016
Smith, Roddewig, Strovink, Scales (c27) 2013
Wang, Li, Ma, Guo, Tu, Zhang (c15) 2018
Zigoneanu, Popa, Cummer (c30) 2011
Anhäuser, Wunenburger, Brasselet (c39) 2012
Fan, Zhang (c24) 2019
Yang, Ma, Tu, Zhang (c12) 2013
Hong, Yin, Zhai, Yan, Wang, Zhang, Drinkwater (c22) 2017
Kaya, Cicek, Ulug (c31) 2011
Schmiegelow, Schulz, Kaufmann, Ruster (c5) 2016
Song, Huang, Dong, Cheng, Cui (c29) 2016
Kotlyar, Kovalev, Porfirev (c6) 2016
Friese, Enger, Rubinsztein-Dunlop, Heckenberg (c1) 1996
Santillan, Volke-Sepulveda (c7) 2009
Courtney, Demore, Wu, Grinenko, Wilcox, Cochran, Drinkwater (c20) 2014
Jiang, Li, Liang, Cheng, Zhang (c18) 2016
Riaud, Thomas, Charron, Bussonnière, Bou Matar, Baudoin (c13) 2015
Hefner, Marston (c11) 1999
Jiménez, Romero-García, García-Raffi, Camarena (c26) 2018
Gao, Gu, Liang, Zou, Yang, Cheng (c32) 2016
Ealo (c16) 2011
Gor'Kov (c36) 1962
Jiang, Zhao, Liu, Liang, Zou, Yang, Qiu, Cheng (c17) 2016
Lee, Shung (c34) 2006
Marzo, Seah, Drinkwater, Sahoo (c8) 2015
Marzo, Caleap, Drinkwater (c23) 2018
Li, Guo, Ma, Tu, Zhang (c14) 2017
Lin, Crozier (c4) 2013
Sato, Mizutani, Wakatsuki, Nakamura (c40) 2009
Hong, Zhang, Drinkwater (c21) 2015
Marzo, Drinkwater (c41) 2019
Baresch, Thomas, Marchiano (c38) 2013
Hwang, Cheon, Shin, Kim, Lee (c28) 2015
Simpson, Dholakia, Allen, Padgett (c2) 1997
Guo, Sui, Weng, Dong, Hu, Zhuang (c3) 2011
(2023070323254675500_c2) 1997; 22
(2023070323254675500_c38) 2013; 133
(2023070323254675500_c17) 2016; 108
(2023070323254675500_c41) 2019; 116
(2023070323254675500_c26) 2018; 112
(2023070323254675500_c33) 2012
(2023070323254675500_c18) 2016; 117
(2023070323254675500_c12) 2013; 113
(2023070323254675500_c8) 2015; 6
(2023070323254675500_c11) 1999; 106
(2023070323254675500_c15) 2018; 123
(2023070323254675500_c3) 2011; 19
(2023070323254675500_c10) 2008; 100
(2023070323254675500_c32) 2016; 108
(2023070323254675500_c27) 2013; 9
(2023070323254675500_c28) 2015; 106
(2023070323254675500_c9) 2013; 113
(2023070323254675500_c21) 2015; 114
(2023070323254675500_c4) 2013; 7
(2023070323254675500_c20) 2014; 104
(2023070323254675500_c7) 2009; 77
(2023070323254675500_c30) 2011; 84
(2023070323254675500_c22) 2017; 7
(2023070323254675500_c19) 2008; 10
(2023070323254675500_c35) 2005
(2023070323254675500_c24) 2019; 11
(2023070323254675500_c31) 2011; 57
(2023070323254675500_c13) 2015; 4
(2023070323254675500_c16) 2011; 58
(2023070323254675500_c1) 1996; 54
(2023070323254675500_c23) 2018; 120
(2023070323254675500_c25) 2015; 70
(2023070323254675500_c34) 2006; 32
(2023070323254675500_c36) 1962; 6
(2023070323254675500_c29) 2016; 6
(2023070323254675500_c6) 2016; 120
(2023070323254675500_c37) 2016; 116
(2023070323254675500_c40) 2009; 48
(2023070323254675500_c14) 2017; 121
(2023070323254675500_c39) 2012; 109
(2023070323254675500_c5) 2016; 7
References_xml – start-page: 22
  year: 2013
  ident: c27
  publication-title: Acoust. Today
– start-page: 034301
  year: 2016
  ident: c18
  publication-title: Phys. Rev. Lett.
– start-page: 044301
  year: 2018
  ident: c23
  publication-title: Phys. Rev. Lett.
– start-page: 023101
  year: 2016
  ident: c6
  publication-title: J. Appl. Phys.
– start-page: 209
  year: 2009
  ident: c7
  publication-title: Am. J. Phys.
– start-page: 073501
  year: 2016
  ident: c32
  publication-title: Appl. Phys. Lett.
– start-page: 1593
  year: 1996
  ident: c1
  publication-title: Phys. Rev. A
– start-page: 024302
  year: 2008
  ident: c10
  publication-title: Phys. Rev. Lett.
– start-page: 203501
  year: 2016
  ident: c17
  publication-title: Appl. Phys. Lett.
– start-page: 024305
  year: 2011
  ident: c30
  publication-title: Phys. Rev. B
– start-page: 24067
  year: 2011
  ident: c3
  publication-title: Opt. Exp.
– start-page: 07GL04
  year: 2009
  ident: c40
  publication-title: Jpn. J. Appl. Phys.
– start-page: 034901
  year: 2018
  ident: c15
  publication-title: J. Appl. Phys.
– start-page: 184901
  year: 2013
  ident: c9
  publication-title: J. Appl. Phys.
– start-page: 183
  year: 2015
  ident: c25
  publication-title: Phys. Procedia
– start-page: 214301
  year: 2015
  ident: c21
  publication-title: Phys. Rev. Lett.
– start-page: 154103
  year: 2014
  ident: c20
  publication-title: Appl. Phys. Lett.
– start-page: 024301
  year: 2016
  ident: c37
  publication-title: Phys. Rev. Lett.
– start-page: 25
  year: 2013
  ident: c38
  publication-title: J. Acoust. Soc. Am.
– start-page: 3313
  year: 1999
  ident: c11
  publication-title: J. Acoust. Soc. Am.
– start-page: 183704
  year: 2015
  ident: c28
  publication-title: Appl. Phys. Lett.
– start-page: 773
  year: 1962
  ident: c36
  publication-title: Sov. Phys. Dokl.
– start-page: 164901
  year: 2017
  ident: c14
  publication-title: J. Appl. Phys.
– start-page: 154904
  year: 2013
  ident: c12
  publication-title: J. Appl. Phys.
– start-page: 12998
  year: 2016
  ident: c5
  publication-title: Nat. Commun.
– start-page: 204101
  year: 2018
  ident: c26
  publication-title: Appl. Phys. Lett.
– start-page: 013018
  year: 2008
  ident: c19
  publication-title: New J. Phys.
– start-page: 034301
  year: 2012
  ident: c39
  publication-title: Phys. Rev. Lett.
– start-page: 35929
  year: 2016
  ident: c29
  publication-title: Sci. Rep.
– start-page: 84
  year: 2019
  ident: c41
  publication-title: PNAS
– start-page: 1575
  year: 2006
  ident: c34
  publication-title: Ultrasound Med. Biol.
– start-page: 8661
  year: 2015
  ident: c8
  publication-title: Nat. Commun.
– start-page: 7093
  year: 2017
  ident: c22
  publication-title: Sci. Rep.
– start-page: 014055
  year: 2019
  ident: c24
  publication-title: Phys. Rev. Appl.
– start-page: 1651
  year: 2011
  ident: c16
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
– start-page: 52
  year: 1997
  ident: c2
  publication-title: Opt. Lett.
– start-page: 1725
  year: 2013
  ident: c4
  publication-title: ACS Nano
– start-page: 292
  year: 2011
  ident: c31
  publication-title: Acoust. Phys.
– start-page: 034004
  year: 2015
  ident: c13
  publication-title: Phys. Rev. Appl.
– volume: 116
  start-page: 84
  issue: 1
  year: 2019
  ident: 2023070323254675500_c41
  publication-title: PNAS
  doi: 10.1073/pnas.1813047115
– volume: 113
  start-page: 184901
  issue: 18
  year: 2013
  ident: 2023070323254675500_c9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4803078
– volume: 120
  start-page: 023101
  year: 2016
  ident: 2023070323254675500_c6
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4958309
– volume: 108
  start-page: 073501
  issue: 7
  year: 2016
  ident: 2023070323254675500_c32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4941992
– volume: 112
  start-page: 204101
  issue: 20
  year: 2018
  ident: 2023070323254675500_c26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5029424
– volume: 32
  start-page: 1575
  issue: 10
  year: 2006
  ident: 2023070323254675500_c34
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2006.05.021
– volume: 121
  start-page: 164901
  issue: 16
  year: 2017
  ident: 2023070323254675500_c14
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4981122
– volume: 6
  start-page: 773
  year: 1962
  ident: 2023070323254675500_c36
  publication-title: Sov. Phys. Dokl.
– volume: 9
  start-page: 22
  issue: 1
  year: 2013
  ident: 2023070323254675500_c27
  publication-title: Acoust. Today
  doi: 10.1121/1.4802076
– volume: 57
  start-page: 292
  issue: 3
  year: 2011
  ident: 2023070323254675500_c31
  publication-title: Acoust. Phys.
  doi: 10.1134/S1063771011030067
– volume: 7
  start-page: 1725
  year: 2013
  ident: 2023070323254675500_c4
  publication-title: ACS Nano
  doi: 10.1021/nn305826j
– volume: 113
  start-page: 154904
  year: 2013
  ident: 2023070323254675500_c12
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801894
– volume: 120
  start-page: 044301
  issue: 4
  year: 2018
  ident: 2023070323254675500_c23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.044301
– volume-title: Fundamentals of Acoustics
  year: 2012
  ident: 2023070323254675500_c33
– volume: 19
  start-page: 24067
  issue: 24
  year: 2011
  ident: 2023070323254675500_c3
  publication-title: Opt. Exp.
  doi: 10.1364/OE.19.024067
– volume-title: Introduction to Fourier Optics
  year: 2005
  ident: 2023070323254675500_c35
– volume: 100
  start-page: 024302
  year: 2008
  ident: 2023070323254675500_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.024302
– volume: 48
  start-page: 07GL04
  issue: 7
  year: 2009
  ident: 2023070323254675500_c40
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.48.07GL04
– volume: 123
  start-page: 034901
  issue: 3
  year: 2018
  ident: 2023070323254675500_c15
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5004752
– volume: 10
  start-page: 013018
  year: 2008
  ident: 2023070323254675500_c19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/1/013018
– volume: 106
  start-page: 183704
  issue: 18
  year: 2015
  ident: 2023070323254675500_c28
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4919802
– volume: 70
  start-page: 183
  year: 2015
  ident: 2023070323254675500_c25
  publication-title: Phys. Procedia
  doi: 10.1016/j.phpro.2015.08.108
– volume: 114
  start-page: 214301
  issue: 21
  year: 2015
  ident: 2023070323254675500_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.214301
– volume: 7
  start-page: 7093
  issue: 1
  year: 2017
  ident: 2023070323254675500_c22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-07477-1
– volume: 104
  start-page: 154103
  year: 2014
  ident: 2023070323254675500_c20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4870489
– volume: 133
  start-page: 25
  issue: 1
  year: 2013
  ident: 2023070323254675500_c38
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4770256
– volume: 7
  start-page: 12998
  year: 2016
  ident: 2023070323254675500_c5
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12998
– volume: 109
  start-page: 034301
  issue: 3
  year: 2012
  ident: 2023070323254675500_c39
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.034301
– volume: 77
  start-page: 209
  year: 2009
  ident: 2023070323254675500_c7
  publication-title: Am. J. Phys.
  doi: 10.1119/1.3056580
– volume: 84
  start-page: 024305
  issue: 2
  year: 2011
  ident: 2023070323254675500_c30
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.84.024305
– volume: 6
  start-page: 35929
  year: 2016
  ident: 2023070323254675500_c29
  publication-title: Sci. Rep.
  doi: 10.1038/srep35929
– volume: 106
  start-page: 3313
  issue: 6
  year: 1999
  ident: 2023070323254675500_c11
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428184
– volume: 58
  start-page: 1651
  issue: 8
  year: 2011
  ident: 2023070323254675500_c16
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr.
  doi: 10.1109/TUFFC.2011.1992
– volume: 54
  start-page: 1593
  year: 1996
  ident: 2023070323254675500_c1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.54.1593
– volume: 116
  start-page: 024301
  issue: 2
  year: 2016
  ident: 2023070323254675500_c37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.024301
– volume: 6
  start-page: 8661
  year: 2015
  ident: 2023070323254675500_c8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9661
– volume: 4
  start-page: 034004
  issue: 3
  year: 2015
  ident: 2023070323254675500_c13
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.4.034004
– volume: 108
  start-page: 203501
  issue: 20
  year: 2016
  ident: 2023070323254675500_c17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4949337
– volume: 11
  start-page: 014055
  issue: 1
  year: 2019
  ident: 2023070323254675500_c24
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.014055
– volume: 22
  start-page: 52
  year: 1997
  ident: 2023070323254675500_c2
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.000052
– volume: 117
  start-page: 034301
  issue: 3
  year: 2016
  ident: 2023070323254675500_c18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.034301
SSID ssj0011839
Score 2.4717243
Snippet For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustic waves
Acoustics
Arrays
Circularity
Computer simulation
Concentration gradient
Energy utilization
Lenses
Polyethylenes
Spirals
Transducers
Trapping
Title Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation
URI http://dx.doi.org/10.1063/5.0006703
https://www.proquest.com/docview/2437260351
Volume 128
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i2gfRKvi1iqD-iCsaZNMJpfHopYirShtsfoS5spGSrJsNqL9H_5fz8zkJq5SfQnZYXYIc76Z-eZcEXou_CxMfS09nyntRYIRWHNEecC8I8KTgFMbC3P8Lj48i96e0_PBXGCjS1Z8V1yujSv5H6lCG8jVRMn-g2T7QaEB3kG-8AQJw_NKMj6oRFMDY4RdzRblmn01rrPfTFlkkyvZkUs2E8XSeZuy5ZJZi_rigpXwu7Yqe1MmoqwlyHhZz5raRS0OY8KxVHc-nsbKMDJ5G2VJxY0mx3jBFl0psD8QXtYSXqdM6bn853nVOMM_TO18iEz72GqyP8AHyao9YM0mbnufzAvddE1H1iXhU3M5L8ZajND60IXpeGcOAy_NXGGZXeU2Yz_NvIS6xLT9bj38q2ndfX87BYB2geiMssxEIZHhqOsdEL-wxXW0EcLVIpygjf3Xx0cnve3JcEbnGOS-qMtHFZO9fshfWcxwNbkJvMW5UIxYyukddLudbbzvsHIXXVPlFtocJZ3cQjfeu_m_h360-MGdrLHDD-7xg_l3zHCHH2zxgyuNHX6www8e4Qdb_GBWDmMa_LyEFokBPXiEHlyU2KEHj9FzH50dvDl9dei1ZTo8QcJk5ak0S7WKE6G5TGKYPtjSFQ0jHgRxrFMueUapFjoR0iSflL4yFj2fsyjiNM0keYAmZVWqhwgnROiIUS5MHkLFBY-BYCaC6USHjMpwil500553E21KqVzk1pciJjnNWwlN0dO-68IlblnXaaeTXd6u6zo3KTrhlk9oMEXPenn-bZA1vUBeQ498IfX2lcZ6hG4Nq2MHTVbLRj0G1rviT1qY_gQNXrSD
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focused+acoustic+vortex+generated+by+a+circular+array+of+planar+sector+transducers+using+an+acoustic+lens%2C+and+its+application+in+object+manipulation&rft.jtitle=Journal+of+applied+physics&rft.au=Zhou%2C+Chenchen&rft.au=Wang%2C+Qingdong&rft.au=Pu%2C+Shifu&rft.au=Li%2C+Yuzhi&rft.date=2020-08-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=128&rft.issue=8&rft_id=info:doi/10.1063%2F5.0006703&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon