Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation
For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens...
Saved in:
Published in | Journal of applied physics Vol. 128; no. 8 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.08.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens, numerical simulations show that an FAV with considerable pressure gain and strengthened acoustic gradient force (AGF) can be produced by the effective concentration of acoustic waves. The performance of rotational object trapping is shown by the axial and radial distributions of the AGF for FAVs of different orders. Elastic objects of nanometer, micrometer, millimeter, and even larger-than-wavelength size can be captured with the trapping radius determined by the topological charge. With the established 16-channel experimental system, FAVs of different orders are verified by their clear pressure circles and phase spirals. The trapping radius and rotation speed of object capture are demonstrated using polyethylene particles of various sizes and FAVs of different orders. The favorable results provide an experimentally applicable method of FAV generation using the simplified circular transducer array to accomplish more accurate, stable, and flexible object manipulations with strengthened AGFs. Also, FAVs could offer an efficient means of high-intensity focused ultrasound therapy to improve the therapeutic effect of tumor treatments by accumulating drug particles, thereby enabling more potential applications in clinical practice. |
---|---|
AbstractList | For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a spherical acoustic lens on a circular array of planar sector transducers. Based on the acoustic refraction of a concave spherical acoustic lens, numerical simulations show that an FAV with considerable pressure gain and strengthened acoustic gradient force (AGF) can be produced by the effective concentration of acoustic waves. The performance of rotational object trapping is shown by the axial and radial distributions of the AGF for FAVs of different orders. Elastic objects of nanometer, micrometer, millimeter, and even larger-than-wavelength size can be captured with the trapping radius determined by the topological charge. With the established 16-channel experimental system, FAVs of different orders are verified by their clear pressure circles and phase spirals. The trapping radius and rotation speed of object capture are demonstrated using polyethylene particles of various sizes and FAVs of different orders. The favorable results provide an experimentally applicable method of FAV generation using the simplified circular transducer array to accomplish more accurate, stable, and flexible object manipulations with strengthened AGFs. Also, FAVs could offer an efficient means of high-intensity focused ultrasound therapy to improve the therapeutic effect of tumor treatments by accumulating drug particles, thereby enabling more potential applications in clinical practice. |
Author | Pu, Shifu Zhang, Dong Wang, Qingdong Ma, Qingyu Li, Yuzhi Guo, Gepu Tu, Juan Chu, Hongyan Zhou, Chenchen |
Author_xml | – sequence: 1 givenname: Chenchen surname: Zhou fullname: Zhou, Chenchen organization: School of Physics and Technology, Nanjing Normal University – sequence: 2 givenname: Qingdong surname: Wang fullname: Wang, Qingdong organization: College of Ocean Science and Engineering, Shandong University of Science and Technology – sequence: 3 givenname: Shifu surname: Pu fullname: Pu, Shifu organization: School of Physics and Technology, Nanjing Normal University – sequence: 4 givenname: Yuzhi surname: Li fullname: Li, Yuzhi organization: School of Physics and Technology, Nanjing Normal University – sequence: 5 givenname: Gepu surname: Guo fullname: Guo, Gepu organization: School of Physics and Technology, Nanjing Normal University – sequence: 6 givenname: Hongyan surname: Chu fullname: Chu, Hongyan organization: School of Physics and Technology, Nanjing Normal University – sequence: 7 givenname: Qingyu surname: Ma fullname: Ma, Qingyu organization: School of Physics and Technology, Nanjing Normal University – sequence: 8 givenname: Juan surname: Tu fullname: Tu, Juan organization: Institute of Acoustics, Nanjing University – sequence: 9 givenname: Dong surname: Zhang fullname: Zhang, Dong organization: Institute of Acoustics, Nanjing University |
BookMark | eNp9kc9KJDEQxoOMsOPoYd8g4EnZ1kqn00kfRXZ2Fwb2oucmnT-SoU3aJC3Og_i-Gx0XQXY9FVX1q6-or47QwgdvEPpK4IJASy_ZBQC0HOgBWhIQXcUZgwVaAtSkEh3vvqCjlLYAhAjaLdHzOqg5GY2lCnPKTuHHELN5wnfGmyhz6Qw7LLFyUc2jjFjGKHc4WDyN0pc8GZVDxDlKn_SsTEx4Ts7fYenfNUfj07dS0djlhOU0jU7J7ILHzuMwbIsGvpfeTWXFS_kYHVo5JnPyFlfodv395vpntfn949f11aZStOa5MqIT1rRc2UHztlzUUmFY3QyEtK0Vgx46xqyyXGnBOddg6gZqGGTTDEx0mq7Q6V53iuFhNin32zBHX1b2dUN53QJlpFBne0rFkFI0tp-iu5dx1xPoX1zvWf_memEvP7DK5debikNu_OfE-X4i_SU_lf8vXP72DvaTtvQPQ3ykdA |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1063_5_0058213 crossref_primary_10_1088_1742_6596_2822_1_012166 crossref_primary_10_1016_j_apacoust_2022_109053 crossref_primary_10_1016_j_apacoust_2024_110022 crossref_primary_10_1016_j_ijmecsci_2025_110044 crossref_primary_10_1109_TUFFC_2024_3456083 crossref_primary_10_3390_mi15020186 crossref_primary_10_1063_5_0201781 crossref_primary_10_1109_TBME_2023_3342093 crossref_primary_10_1063_5_0213089 crossref_primary_10_1063_5_0054889 crossref_primary_10_1109_TUFFC_2021_3120285 crossref_primary_10_1016_j_ultrasmedbio_2022_06_008 crossref_primary_10_1088_1674_1056_ad5aef crossref_primary_10_1016_j_ultsonch_2025_107314 crossref_primary_10_1109_TUFFC_2023_3277854 crossref_primary_10_1121_10_0025688 crossref_primary_10_3390_w16202954 crossref_primary_10_1063_5_0070249 crossref_primary_10_1063_5_0130015 crossref_primary_10_1103_PhysRevApplied_22_054012 crossref_primary_10_1121_10_0034361 crossref_primary_10_1016_j_eng_2024_01_032 crossref_primary_10_1063_5_0107785 crossref_primary_10_1121_10_0017106 |
Cites_doi | 10.1073/pnas.1813047115 10.1063/1.4803078 10.1063/1.4958309 10.1063/1.4941992 10.1063/1.5029424 10.1016/j.ultrasmedbio.2006.05.021 10.1063/1.4981122 10.1121/1.4802076 10.1134/S1063771011030067 10.1021/nn305826j 10.1063/1.4801894 10.1103/PhysRevLett.120.044301 10.1364/OE.19.024067 10.1103/PhysRevLett.100.024302 10.1143/JJAP.48.07GL04 10.1063/1.5004752 10.1088/1367-2630/10/1/013018 10.1063/1.4919802 10.1016/j.phpro.2015.08.108 10.1103/PhysRevLett.114.214301 10.1038/s41598-017-07477-1 10.1063/1.4870489 10.1121/1.4770256 10.1038/ncomms12998 10.1103/PhysRevLett.109.034301 10.1119/1.3056580 10.1103/PhysRevB.84.024305 10.1038/srep35929 10.1121/1.428184 10.1109/TUFFC.2011.1992 10.1103/PhysRevA.54.1593 10.1103/PhysRevLett.116.024301 10.1038/ncomms9661 10.1103/PhysRevApplied.4.034004 10.1063/1.4949337 10.1103/PhysRevApplied.11.014055 10.1364/OL.22.000052 10.1103/PhysRevLett.117.034301 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0006703 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0006703 jap |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11974187 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11934009 funderid: https://doi.org/10.13039/501100001809 – fundername: Practice and Innovation Project of Postgraduates in Jiangsu Province grantid: KYCX19_0812 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-e898fe67cfbd76118638e524b1166f8bdb955fcf7cd8777d0e24020ba44b589d3 |
ISSN | 0021-8979 |
IngestDate | Mon Jun 30 02:26:59 EDT 2025 Tue Jul 01 02:01:20 EDT 2025 Thu Apr 24 23:02:22 EDT 2025 Fri Jun 21 00:14:24 EDT 2024 Wed Nov 11 00:05:25 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8 |
Language | English |
License | 0021-8979/2020/128(8)/084901/12/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-e898fe67cfbd76118638e524b1166f8bdb955fcf7cd8777d0e24020ba44b589d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5339-2218 |
PQID | 2437260351 |
PQPubID | 2050677 |
PageCount | 12 |
ParticipantIDs | scitation_primary_10_1063_5_0006703 crossref_citationtrail_10_1063_5_0006703 crossref_primary_10_1063_5_0006703 proquest_journals_2437260351 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200828 2020-08-28 |
PublicationDateYYYYMMDD | 2020-08-28 |
PublicationDate_xml | – month: 08 year: 2020 text: 20200828 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Baresch, Thomas, Marchiano (c9) 2013 Volke-Sepúlveda, Santillán, Boullosa (c10) 2008 Pazos-Ospina, Quiceno, Ealo, Muelas (c25) 2015 Skeldon, Wilson, Edgar, Padgett (c19) 2008 Baresch, Thomas, Marchiano (c37) 2016 Smith, Roddewig, Strovink, Scales (c27) 2013 Wang, Li, Ma, Guo, Tu, Zhang (c15) 2018 Zigoneanu, Popa, Cummer (c30) 2011 Anhäuser, Wunenburger, Brasselet (c39) 2012 Fan, Zhang (c24) 2019 Yang, Ma, Tu, Zhang (c12) 2013 Hong, Yin, Zhai, Yan, Wang, Zhang, Drinkwater (c22) 2017 Kaya, Cicek, Ulug (c31) 2011 Schmiegelow, Schulz, Kaufmann, Ruster (c5) 2016 Song, Huang, Dong, Cheng, Cui (c29) 2016 Kotlyar, Kovalev, Porfirev (c6) 2016 Friese, Enger, Rubinsztein-Dunlop, Heckenberg (c1) 1996 Santillan, Volke-Sepulveda (c7) 2009 Courtney, Demore, Wu, Grinenko, Wilcox, Cochran, Drinkwater (c20) 2014 Jiang, Li, Liang, Cheng, Zhang (c18) 2016 Riaud, Thomas, Charron, Bussonnière, Bou Matar, Baudoin (c13) 2015 Hefner, Marston (c11) 1999 Jiménez, Romero-García, García-Raffi, Camarena (c26) 2018 Gao, Gu, Liang, Zou, Yang, Cheng (c32) 2016 Ealo (c16) 2011 Gor'Kov (c36) 1962 Jiang, Zhao, Liu, Liang, Zou, Yang, Qiu, Cheng (c17) 2016 Lee, Shung (c34) 2006 Marzo, Seah, Drinkwater, Sahoo (c8) 2015 Marzo, Caleap, Drinkwater (c23) 2018 Li, Guo, Ma, Tu, Zhang (c14) 2017 Lin, Crozier (c4) 2013 Sato, Mizutani, Wakatsuki, Nakamura (c40) 2009 Hong, Zhang, Drinkwater (c21) 2015 Marzo, Drinkwater (c41) 2019 Baresch, Thomas, Marchiano (c38) 2013 Hwang, Cheon, Shin, Kim, Lee (c28) 2015 Simpson, Dholakia, Allen, Padgett (c2) 1997 Guo, Sui, Weng, Dong, Hu, Zhuang (c3) 2011 (2023070323254675500_c2) 1997; 22 (2023070323254675500_c38) 2013; 133 (2023070323254675500_c17) 2016; 108 (2023070323254675500_c41) 2019; 116 (2023070323254675500_c26) 2018; 112 (2023070323254675500_c33) 2012 (2023070323254675500_c18) 2016; 117 (2023070323254675500_c12) 2013; 113 (2023070323254675500_c8) 2015; 6 (2023070323254675500_c11) 1999; 106 (2023070323254675500_c15) 2018; 123 (2023070323254675500_c3) 2011; 19 (2023070323254675500_c10) 2008; 100 (2023070323254675500_c32) 2016; 108 (2023070323254675500_c27) 2013; 9 (2023070323254675500_c28) 2015; 106 (2023070323254675500_c9) 2013; 113 (2023070323254675500_c21) 2015; 114 (2023070323254675500_c4) 2013; 7 (2023070323254675500_c20) 2014; 104 (2023070323254675500_c7) 2009; 77 (2023070323254675500_c30) 2011; 84 (2023070323254675500_c22) 2017; 7 (2023070323254675500_c19) 2008; 10 (2023070323254675500_c35) 2005 (2023070323254675500_c24) 2019; 11 (2023070323254675500_c31) 2011; 57 (2023070323254675500_c13) 2015; 4 (2023070323254675500_c16) 2011; 58 (2023070323254675500_c1) 1996; 54 (2023070323254675500_c23) 2018; 120 (2023070323254675500_c25) 2015; 70 (2023070323254675500_c34) 2006; 32 (2023070323254675500_c36) 1962; 6 (2023070323254675500_c29) 2016; 6 (2023070323254675500_c6) 2016; 120 (2023070323254675500_c37) 2016; 116 (2023070323254675500_c40) 2009; 48 (2023070323254675500_c14) 2017; 121 (2023070323254675500_c39) 2012; 109 (2023070323254675500_c5) 2016; 7 |
References_xml | – start-page: 22 year: 2013 ident: c27 publication-title: Acoust. Today – start-page: 034301 year: 2016 ident: c18 publication-title: Phys. Rev. Lett. – start-page: 044301 year: 2018 ident: c23 publication-title: Phys. Rev. Lett. – start-page: 023101 year: 2016 ident: c6 publication-title: J. Appl. Phys. – start-page: 209 year: 2009 ident: c7 publication-title: Am. J. Phys. – start-page: 073501 year: 2016 ident: c32 publication-title: Appl. Phys. Lett. – start-page: 1593 year: 1996 ident: c1 publication-title: Phys. Rev. A – start-page: 024302 year: 2008 ident: c10 publication-title: Phys. Rev. Lett. – start-page: 203501 year: 2016 ident: c17 publication-title: Appl. Phys. Lett. – start-page: 024305 year: 2011 ident: c30 publication-title: Phys. Rev. B – start-page: 24067 year: 2011 ident: c3 publication-title: Opt. Exp. – start-page: 07GL04 year: 2009 ident: c40 publication-title: Jpn. J. Appl. Phys. – start-page: 034901 year: 2018 ident: c15 publication-title: J. Appl. Phys. – start-page: 184901 year: 2013 ident: c9 publication-title: J. Appl. Phys. – start-page: 183 year: 2015 ident: c25 publication-title: Phys. Procedia – start-page: 214301 year: 2015 ident: c21 publication-title: Phys. Rev. Lett. – start-page: 154103 year: 2014 ident: c20 publication-title: Appl. Phys. Lett. – start-page: 024301 year: 2016 ident: c37 publication-title: Phys. Rev. Lett. – start-page: 25 year: 2013 ident: c38 publication-title: J. Acoust. Soc. Am. – start-page: 3313 year: 1999 ident: c11 publication-title: J. Acoust. Soc. Am. – start-page: 183704 year: 2015 ident: c28 publication-title: Appl. Phys. Lett. – start-page: 773 year: 1962 ident: c36 publication-title: Sov. Phys. Dokl. – start-page: 164901 year: 2017 ident: c14 publication-title: J. Appl. Phys. – start-page: 154904 year: 2013 ident: c12 publication-title: J. Appl. Phys. – start-page: 12998 year: 2016 ident: c5 publication-title: Nat. Commun. – start-page: 204101 year: 2018 ident: c26 publication-title: Appl. Phys. Lett. – start-page: 013018 year: 2008 ident: c19 publication-title: New J. Phys. – start-page: 034301 year: 2012 ident: c39 publication-title: Phys. Rev. Lett. – start-page: 35929 year: 2016 ident: c29 publication-title: Sci. Rep. – start-page: 84 year: 2019 ident: c41 publication-title: PNAS – start-page: 1575 year: 2006 ident: c34 publication-title: Ultrasound Med. Biol. – start-page: 8661 year: 2015 ident: c8 publication-title: Nat. Commun. – start-page: 7093 year: 2017 ident: c22 publication-title: Sci. Rep. – start-page: 014055 year: 2019 ident: c24 publication-title: Phys. Rev. Appl. – start-page: 1651 year: 2011 ident: c16 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. – start-page: 52 year: 1997 ident: c2 publication-title: Opt. Lett. – start-page: 1725 year: 2013 ident: c4 publication-title: ACS Nano – start-page: 292 year: 2011 ident: c31 publication-title: Acoust. Phys. – start-page: 034004 year: 2015 ident: c13 publication-title: Phys. Rev. Appl. – volume: 116 start-page: 84 issue: 1 year: 2019 ident: 2023070323254675500_c41 publication-title: PNAS doi: 10.1073/pnas.1813047115 – volume: 113 start-page: 184901 issue: 18 year: 2013 ident: 2023070323254675500_c9 publication-title: J. Appl. Phys. doi: 10.1063/1.4803078 – volume: 120 start-page: 023101 year: 2016 ident: 2023070323254675500_c6 publication-title: J. Appl. Phys. doi: 10.1063/1.4958309 – volume: 108 start-page: 073501 issue: 7 year: 2016 ident: 2023070323254675500_c32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4941992 – volume: 112 start-page: 204101 issue: 20 year: 2018 ident: 2023070323254675500_c26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5029424 – volume: 32 start-page: 1575 issue: 10 year: 2006 ident: 2023070323254675500_c34 publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2006.05.021 – volume: 121 start-page: 164901 issue: 16 year: 2017 ident: 2023070323254675500_c14 publication-title: J. Appl. Phys. doi: 10.1063/1.4981122 – volume: 6 start-page: 773 year: 1962 ident: 2023070323254675500_c36 publication-title: Sov. Phys. Dokl. – volume: 9 start-page: 22 issue: 1 year: 2013 ident: 2023070323254675500_c27 publication-title: Acoust. Today doi: 10.1121/1.4802076 – volume: 57 start-page: 292 issue: 3 year: 2011 ident: 2023070323254675500_c31 publication-title: Acoust. Phys. doi: 10.1134/S1063771011030067 – volume: 7 start-page: 1725 year: 2013 ident: 2023070323254675500_c4 publication-title: ACS Nano doi: 10.1021/nn305826j – volume: 113 start-page: 154904 year: 2013 ident: 2023070323254675500_c12 publication-title: J. Appl. Phys. doi: 10.1063/1.4801894 – volume: 120 start-page: 044301 issue: 4 year: 2018 ident: 2023070323254675500_c23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.044301 – volume-title: Fundamentals of Acoustics year: 2012 ident: 2023070323254675500_c33 – volume: 19 start-page: 24067 issue: 24 year: 2011 ident: 2023070323254675500_c3 publication-title: Opt. Exp. doi: 10.1364/OE.19.024067 – volume-title: Introduction to Fourier Optics year: 2005 ident: 2023070323254675500_c35 – volume: 100 start-page: 024302 year: 2008 ident: 2023070323254675500_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.024302 – volume: 48 start-page: 07GL04 issue: 7 year: 2009 ident: 2023070323254675500_c40 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.48.07GL04 – volume: 123 start-page: 034901 issue: 3 year: 2018 ident: 2023070323254675500_c15 publication-title: J. Appl. Phys. doi: 10.1063/1.5004752 – volume: 10 start-page: 013018 year: 2008 ident: 2023070323254675500_c19 publication-title: New J. Phys. doi: 10.1088/1367-2630/10/1/013018 – volume: 106 start-page: 183704 issue: 18 year: 2015 ident: 2023070323254675500_c28 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4919802 – volume: 70 start-page: 183 year: 2015 ident: 2023070323254675500_c25 publication-title: Phys. Procedia doi: 10.1016/j.phpro.2015.08.108 – volume: 114 start-page: 214301 issue: 21 year: 2015 ident: 2023070323254675500_c21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.214301 – volume: 7 start-page: 7093 issue: 1 year: 2017 ident: 2023070323254675500_c22 publication-title: Sci. Rep. doi: 10.1038/s41598-017-07477-1 – volume: 104 start-page: 154103 year: 2014 ident: 2023070323254675500_c20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4870489 – volume: 133 start-page: 25 issue: 1 year: 2013 ident: 2023070323254675500_c38 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4770256 – volume: 7 start-page: 12998 year: 2016 ident: 2023070323254675500_c5 publication-title: Nat. Commun. doi: 10.1038/ncomms12998 – volume: 109 start-page: 034301 issue: 3 year: 2012 ident: 2023070323254675500_c39 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.034301 – volume: 77 start-page: 209 year: 2009 ident: 2023070323254675500_c7 publication-title: Am. J. Phys. doi: 10.1119/1.3056580 – volume: 84 start-page: 024305 issue: 2 year: 2011 ident: 2023070323254675500_c30 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.84.024305 – volume: 6 start-page: 35929 year: 2016 ident: 2023070323254675500_c29 publication-title: Sci. Rep. doi: 10.1038/srep35929 – volume: 106 start-page: 3313 issue: 6 year: 1999 ident: 2023070323254675500_c11 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.428184 – volume: 58 start-page: 1651 issue: 8 year: 2011 ident: 2023070323254675500_c16 publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Contr. doi: 10.1109/TUFFC.2011.1992 – volume: 54 start-page: 1593 year: 1996 ident: 2023070323254675500_c1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.54.1593 – volume: 116 start-page: 024301 issue: 2 year: 2016 ident: 2023070323254675500_c37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.024301 – volume: 6 start-page: 8661 year: 2015 ident: 2023070323254675500_c8 publication-title: Nat. Commun. doi: 10.1038/ncomms9661 – volume: 4 start-page: 034004 issue: 3 year: 2015 ident: 2023070323254675500_c13 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.4.034004 – volume: 108 start-page: 203501 issue: 20 year: 2016 ident: 2023070323254675500_c17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4949337 – volume: 11 start-page: 014055 issue: 1 year: 2019 ident: 2023070323254675500_c24 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.014055 – volume: 22 start-page: 52 year: 1997 ident: 2023070323254675500_c2 publication-title: Opt. Lett. doi: 10.1364/OL.22.000052 – volume: 117 start-page: 034301 issue: 3 year: 2016 ident: 2023070323254675500_c18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.034301 |
SSID | ssj0011839 |
Score | 2.4717243 |
Snippet | For enhanced energy utilization with improved flexibility and capability for object manipulation, a focused acoustic vortex (FAV) is devised by installing a... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acoustic waves Acoustics Arrays Circularity Computer simulation Concentration gradient Energy utilization Lenses Polyethylenes Spirals Transducers Trapping |
Title | Focused acoustic vortex generated by a circular array of planar sector transducers using an acoustic lens, and its application in object manipulation |
URI | http://dx.doi.org/10.1063/5.0006703 https://www.proquest.com/docview/2437260351 |
Volume | 128 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB50i2gfRKvi1iqD-iCsaZNMJpfHopYirShtsfoS5spGSrJsNqL9H_5fz8zkJq5SfQnZYXYIc76Z-eZcEXou_CxMfS09nyntRYIRWHNEecC8I8KTgFMbC3P8Lj48i96e0_PBXGCjS1Z8V1yujSv5H6lCG8jVRMn-g2T7QaEB3kG-8AQJw_NKMj6oRFMDY4RdzRblmn01rrPfTFlkkyvZkUs2E8XSeZuy5ZJZi_rigpXwu7Yqe1MmoqwlyHhZz5raRS0OY8KxVHc-nsbKMDJ5G2VJxY0mx3jBFl0psD8QXtYSXqdM6bn853nVOMM_TO18iEz72GqyP8AHyao9YM0mbnufzAvddE1H1iXhU3M5L8ZajND60IXpeGcOAy_NXGGZXeU2Yz_NvIS6xLT9bj38q2ndfX87BYB2geiMssxEIZHhqOsdEL-wxXW0EcLVIpygjf3Xx0cnve3JcEbnGOS-qMtHFZO9fshfWcxwNbkJvMW5UIxYyukddLudbbzvsHIXXVPlFtocJZ3cQjfeu_m_h360-MGdrLHDD-7xg_l3zHCHH2zxgyuNHX6www8e4Qdb_GBWDmMa_LyEFokBPXiEHlyU2KEHj9FzH50dvDl9dei1ZTo8QcJk5ak0S7WKE6G5TGKYPtjSFQ0jHgRxrFMueUapFjoR0iSflL4yFj2fsyjiNM0keYAmZVWqhwgnROiIUS5MHkLFBY-BYCaC6USHjMpwil500553E21KqVzk1pciJjnNWwlN0dO-68IlblnXaaeTXd6u6zo3KTrhlk9oMEXPenn-bZA1vUBeQ498IfX2lcZ6hG4Nq2MHTVbLRj0G1rviT1qY_gQNXrSD |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Focused+acoustic+vortex+generated+by+a+circular+array+of+planar+sector+transducers+using+an+acoustic+lens%2C+and+its+application+in+object+manipulation&rft.jtitle=Journal+of+applied+physics&rft.au=Zhou%2C+Chenchen&rft.au=Wang%2C+Qingdong&rft.au=Pu%2C+Shifu&rft.au=Li%2C+Yuzhi&rft.date=2020-08-28&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=128&rft.issue=8&rft_id=info:doi/10.1063%2F5.0006703&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |