A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study

High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban...

Full description

Saved in:
Bibliographic Details
Published inSustainability Vol. 16; no. 2; p. 569
Main Authors Ma, Lijian, Azari, Rahman, Elnimeiri, Mahjoub
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.01.2024
Subjects
Online AccessGet full text

Cover

Loading…
Abstract High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban population by 2050 requires cities with higher density and potentially a greater number of high-rise buildings, it is crucial to develop a clear understanding of the embodied carbon and environmental impacts of high-rise buildings. The primary structural materials used in high-rise buildings are reinforced concrete and structural steel. As of today, over 99% of tall buildings’ structures are built from those two materials. This article utilizes a building information modeling (BIM)-based life cycle assessment (LCA) in Revit and Tally to examine the embodied carbon and environmental impacts of an actual high-rise building structure case study in Chicago that uses a hybrid concrete steel structure. The results show that the embodied carbon and environmental impacts of the high-rise building structure are dominated by the impacts of the product stage in the building’s life cycle and by concrete being the main structural material. Specifically, this study reveals that concrete constitutes a substantial 91% share of the total mass of the building structure, with a 74% contribution to the life cycle global warming potential, 53% to the acidification potential, 74% to the eutrophication potential, 74% to the smog formation potential, and 68% to the non-renewable energy usage. On the other hand, steel accounts for 9% of the building’s structure mass, estimated to constitute 26% of the global warming potential, 47% of the acidification potential, 26% of the eutrophication potential, 26% of the smog formation potential, and 32% of the non-renewable energy usage.
AbstractList High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban population by 2050 requires cities with higher density and potentially a greater number of high-rise buildings, it is crucial to develop a clear understanding of the embodied carbon and environmental impacts of high-rise buildings. The primary structural materials used in high-rise buildings are reinforced concrete and structural steel. As of today, over 99% of tall buildings’ structures are built from those two materials. This article utilizes a building information modeling (BIM)-based life cycle assessment (LCA) in Revit and Tally to examine the embodied carbon and environmental impacts of an actual high-rise building structure case study in Chicago that uses a hybrid concrete steel structure. The results show that the embodied carbon and environmental impacts of the high-rise building structure are dominated by the impacts of the product stage in the building’s life cycle and by concrete being the main structural material. Specifically, this study reveals that concrete constitutes a substantial 91% share of the total mass of the building structure, with a 74% contribution to the life cycle global warming potential, 53% to the acidification potential, 74% to the eutrophication potential, 74% to the smog formation potential, and 68% to the non-renewable energy usage. On the other hand, steel accounts for 9% of the building’s structure mass, estimated to constitute 26% of the global warming potential, 47% of the acidification potential, 26% of the eutrophication potential, 26% of the smog formation potential, and 32% of the non-renewable energy usage.
Audience Academic
Author Ma, Lijian
Elnimeiri, Mahjoub
Azari, Rahman
Author_xml – sequence: 1
  fullname: Ma, Lijian
– sequence: 2
  fullname: Azari, Rahman
– sequence: 3
  fullname: Elnimeiri, Mahjoub
BookMark eNpVkcFuEzEQhi1UJErphSewxAmkLfY6a8fctlGgkYKQGjivvPZs6mrXDh4vIs_Cy-IoSKWeg0cz3z8jzf-aXIQYgJC3nN0IodlHnLlkNWukfkEua6Z4xVnDLv7LX5FrxEdWnhBcc3lJ_rT0dvaj82FPN2GIaTLZx0C_RgdjKVa3BsHRrR-Aro52BNoiAuIEIdM40PwAdD310flCrUzqi9YER9fhl08xnDAz0s10MDbjSXDn9w_VvUd42rvLabZ5ToCfaFuGlN4uz-74hrwczIhw_e-_Ij8-r7-v7qrtty-bVbutrKhVrmABDZOyXyx1r0zj1NLoxnIuONdKN0wb1gxgrWLSaO5YLTkIwaDn5S6y5uKKvDvPPaT4cwbM3WOcUygru1rzpdJaikWhbs7U3ozQ-XKrnIwt4WDytjgx-FJv1ZLpWi2ULoL3zwSFyfA7782M2G1298_ZD2fWpoiYYOgOyU8mHTvOupO53ZO54i-wlJbC
Cites_doi 10.1108/BEPAM-10-2017-0093
10.3390/su13147831
10.1016/j.autcon.2018.02.028
10.1016/j.buildenv.2018.02.016
10.1016/j.enbuild.2016.12.009
10.1073/pnas.1821673116
10.1016/j.buildenv.2022.108944
10.1016/j.jclepro.2017.05.156
10.1016/j.enbuild.2013.09.003
10.1016/j.egypro.2016.09.142
10.1016/j.jclepro.2016.09.126
10.3390/buildings8110147
10.1016/j.enbuild.2015.09.040
10.1016/j.enbuild.2018.02.038
10.1016/j.autcon.2015.06.003
10.1016/j.proeng.2014.10.525
10.1016/j.rser.2012.01.076
10.3390/buildings12081203
10.1061/(ASCE)EI.1943-5541.0000053
10.1016/j.enbuild.2012.10.019
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ISR
4U-
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PIMPY
PQEST
PQQKQ
PQUKI
DOI 10.3390/su16020569
DatabaseName CrossRef
Gale In Context: Science
University Readers
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
University Readers
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Academic
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Environmental Sciences
Architecture
EISSN 2071-1050
ExternalDocumentID A780927479
10_3390_su16020569
GeographicLocations United States
United States--US
Chicago Illinois
GeographicLocations_xml – name: United States
– name: United States--US
– name: Chicago Illinois
GroupedDBID 29Q
2WC
2XV
4P2
5VS
7XC
8FE
8FH
A8Z
AAHBH
AAYXX
ACHQT
ADBBV
AENEX
AFKRA
AFMMW
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
E3Z
ECGQY
ESTFP
FRS
GROUPED_DOAJ
GX1
HCIFZ
IAO
IEP
ISR
ITC
KQ8
ML.
MODMG
M~E
OK1
P2P
PATMY
PIMPY
PROAC
PYCSY
TR2
4U-
ABUWG
AZQEC
DWQXO
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c327t-e4e5066b489b7a5d78a95c11311979509a05fecc706a91d0261e330eb12076213
IEDL.DBID BENPR
ISSN 2071-1050
IngestDate Sat Oct 26 19:18:39 EDT 2024
Tue Feb 06 05:22:56 EST 2024
Sat Sep 28 21:05:06 EDT 2024
Thu Sep 26 16:22:17 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-e4e5066b489b7a5d78a95c11311979509a05fecc706a91d0261e330eb12076213
ORCID 0000-0002-4844-639X
OpenAccessLink https://www.proquest.com/docview/2918799634?pq-origsite=%requestingapplication%
PQID 2918799634
PQPubID 2032327
ParticipantIDs proquest_journals_2918799634
gale_infotracacademiconefile_A780927479
gale_incontextgauss_ISR_A780927479
crossref_primary_10_3390_su16020569
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Sustainability
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Chang (ref_28) 2012; 55
ref_11
Llatas (ref_16) 2017; 136
ref_31
Rabati (ref_32) 2022; 214
Gan (ref_9) 2017; 141
Resch (ref_4) 2016; 96
ref_18
ref_15
Foraboschi (ref_10) 2014; 68
Bueno (ref_17) 2018; 90
Stadel (ref_19) 2011; 137
Cho (ref_7) 2012; 16
Ellis (ref_27) 2020; 117
Wong (ref_14) 2015; 57
Kreiner (ref_13) 2015; 109
Wang (ref_6) 2018; 167
Gan (ref_30) 2017; 161
Crippa (ref_20) 2018; 8
ref_25
(ref_12) 2014; 85
ref_24
Meex (ref_33) 2018; 133
ref_23
ref_22
ref_21
ref_1
ref_3
ref_2
ref_29
ref_26
ref_8
ref_5
References_xml – volume: 8
  start-page: 491
  year: 2018
  ident: ref_20
  article-title: A BIM–LCA integration technique to embodied carbon estimation applied on wall systems in Brazil
  publication-title: Built Environ. Proj. Asset Manag.
  doi: 10.1108/BEPAM-10-2017-0093
  contributor:
    fullname: Crippa
– ident: ref_31
  doi: 10.3390/su13147831
– ident: ref_5
– ident: ref_3
– ident: ref_24
– ident: ref_26
– volume: 90
  start-page: 188
  year: 2018
  ident: ref_17
  article-title: Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.02.028
  contributor:
    fullname: Bueno
– volume: 133
  start-page: 228
  year: 2018
  ident: ref_33
  article-title: Requirements for applying LCA-based environmental impact assessment tools in the early stage of building design
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2018.02.016
  contributor:
    fullname: Meex
– volume: 136
  start-page: 110
  year: 2017
  ident: ref_16
  article-title: Critical review of bim-based LCA method to buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.12.009
  contributor:
    fullname: Llatas
– volume: 117
  start-page: 12584
  year: 2020
  ident: ref_27
  article-title: Toward electrochemical synthesis of cement-An electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1821673116
  contributor:
    fullname: Ellis
– volume: 214
  start-page: 108944
  year: 2022
  ident: ref_32
  article-title: The embodied carbon of mass timber and concrete buildings in Australia: An uncertainty analysis
  publication-title: Build. Environ.
  doi: 10.1016/j.buildenv.2022.108944
  contributor:
    fullname: Rabati
– volume: 161
  start-page: 663
  year: 2017
  ident: ref_30
  article-title: A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2017.05.156
  contributor:
    fullname: Gan
– volume: 68
  start-page: 254
  year: 2014
  ident: ref_10
  article-title: Sustainable structural design of tall buildings based on embodied energy
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.09.003
  contributor:
    fullname: Foraboschi
– volume: 96
  start-page: 800
  year: 2016
  ident: ref_4
  article-title: Impact of Urban Density and Building Height on Energy Use in Cities
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2016.09.142
  contributor:
    fullname: Resch
– volume: 141
  start-page: 825
  year: 2017
  ident: ref_9
  article-title: Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.09.126
  contributor:
    fullname: Gan
– ident: ref_11
  doi: 10.3390/buildings8110147
– ident: ref_1
– ident: ref_18
– volume: 109
  start-page: 385
  year: 2015
  ident: ref_13
  article-title: A new systemic approach to improve the sustainability performance of office buildings in the early design stage
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.09.040
  contributor:
    fullname: Kreiner
– ident: ref_23
– ident: ref_21
– volume: 167
  start-page: 152
  year: 2018
  ident: ref_6
  article-title: Life cycle energy of high-rise office buildings in Hong Kong
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.02.038
  contributor:
    fullname: Wang
– volume: 57
  start-page: 156
  year: 2015
  ident: ref_14
  article-title: Enhancing environmental sustainability over building life cycles through green BIM: A review
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.06.003
  contributor:
    fullname: Wong
– ident: ref_8
– volume: 85
  start-page: 26
  year: 2014
  ident: ref_12
  article-title: Integration of Life Cycle Assessment in a BIM Environment
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2014.10.525
– ident: ref_25
– ident: ref_2
– volume: 16
  start-page: 3146
  year: 2012
  ident: ref_7
  article-title: LCA application in the optimum design of high rise steel structures
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.01.076
  contributor:
    fullname: Cho
– ident: ref_29
  doi: 10.3390/buildings12081203
– ident: ref_15
– ident: ref_22
– volume: 137
  start-page: 51
  year: 2011
  ident: ref_19
  article-title: Intelligent Sustainable Design: Integration of Carbon Accounting and Building Information Modeling
  publication-title: J. Prof. Issues Eng. Educ. Pract.
  doi: 10.1061/(ASCE)EI.1943-5541.0000053
  contributor:
    fullname: Stadel
– volume: 55
  start-page: 790
  year: 2012
  ident: ref_28
  article-title: The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2012.10.019
  contributor:
    fullname: Chang
SSID ssj0000331916
Score 2.365621
Snippet High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied...
SourceID proquest
gale
crossref
SourceType Aggregation Database
StartPage 569
SubjectTerms Analysis
Architecture
Building information modeling
Case studies
Computer software industry
Energy consumption
Environmental sustainability
Eutrophication
Global warming
Global warming potential
High rise buildings
Real property
Skyscrapers
Smog
Steel, Structural
Tall buildings
Valuation
Title A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study
URI https://www.proquest.com/docview/2918799634
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7QGEhGCholAqC5A4WeTbay4ou9rSIlShLZX2FjmxU_VAUurl0N_Cn-VN1tttJcQ5dmzlTTxvxvNB9L5VLksc3zA2ppag1JHUk0JLo6A8sPO6aIZqn6fF8Xn2dZkvg8PNh7DKzZk4HNS2b9hH_jHR3Bcb4pJ9vvoluWsU366GFho7tJvAUkhGtDudn35f3HpZohQiFhfruqQp7HvgGxegSDlHON_RRP8-jwclc_SUngR2KMo1nM_ogevG9Li84-wf08NNLrEf0958m6eGeeFH9c_pTymmoeG1CBlHjIDg1mecgC6n0F5WfLtsnZjdYC1R3pboFH0rQAvF_GfdWzBUMTPXNeaazor7650MKZaeJ3C8iFxcerdd92woTYs9-0-ixEvwjKMWb17Q-dH8x-xYhj4MskkTtZIuczmYSZ1NdK1MbtXE6LyJuVCPVhqMw0R5C1EAvEbHlq06l6YRtEAS4ayN0z0adX3nXpIAGuBL1kUWdkyE96VpVluuUq_yWDX5Pr3bYFJdrcttVDBTGLlqi9w-vWW4Kq5f0XGAzIX57X11craoSjWJNFvaGPQhDGr71bVpTMg3wEa45NW9kQcb2KvwB_tqK2-v_v_4NT1KQHTWbpkDGuHbujcgKqv6MEjjIe18WcZ_Ad5G6XI
link.rule.ids 315,783,787,21402,27938,27939,33758,43819,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELWgPRQhIQhUtBSwAImTxX475oI2UaoEQoTSVurN8q69qAd22zoc-lv4s7zZOE0rIc5rr619s54Pz7xh7EMjXZY4umGsTSVgUkdCDQsljITywM6rou7ZPhfF9Cz7ep6fh4CbD2mVmzOxP6htV1OM_FOiqC82xCX7cnklqGsU3a6GFhoP2S5RVUGqd0eTxY_lbZQlSiFicbHmJU3h3wPfuICJlFOG8x1N9O_zuFcyx0_Zk2Ad8nIN5zP2wLUD9ri8E-wfsL1NLbEfsP3Jtk4N88KP6p-zPyUfhYbXPFQcEQKcWp9RAboYQXtZPr9oHB_fYC1e3lJ08q7hMAv55FfVWViofGyuK8w1reX315v1JZaeJlC-iFheeLdd96SnpsWe_Wde4iV4RlmLNy_Y2fHkdDwVoQ-DqNNEroTLXA7LpMqGqpImt3JoVF7HRNSjpILFYaK8gSgAXqNiS16dS9MIWiCJcNbG6T7babvWvWQcaMBesi6y8GMivC9Ns8oSS73MY1nnB-z9BhN9uabb0HBTCDm9Re6AvSO4NPFXtJQg89P89l7PTpa6lMNIkaeNQR_DoKZbXZvahHoDbIQor-6NPNrArsMf7PVW3g7___gt25uefp_r-Wzx7RV7lMDoWYdojtgOvrN7DaNlVb0JkvkXmQnrew
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLUglQAhIQhUFApYgMTK6rwds0GTkKiBKqpSKnVnecaeqgtmSh0W_RZ-lnMnTtNKiPX4pTnXvufa98HYx0a6LHH0wlibSoBSR0KNCiWMhPLAyqui7rN9LorD0-zbWX4W_J98cKvcnIn9QW27mu7IDxJFdbEhLtlBE9wijr_Ovlz-ElRBil5aQzmN-2xHZpCqAdsZTxfHy5sblyiFuMXFOkdpClsfWMcF6FJO3s63tNK_z-Ze4cyesieBKfJyDe0zds-1Q_a4vHXxP2QPN3HFfsh2p9uYNfQLm9Y_Z39KPg7Fr3mIPiI0OJVBo2B0MYYms_zoonF8co25eHmTrpN3DQdF5NOfVWfBVvnEXFXoa1rL784378MtPXUg3xGxvPBuO-9Jn6YWa_afeYlB8I08GK9fsNPZ9MfkUISaDKJOE7kSLnM5WEqVjVQlTW7lyKi8jilpj5IK7MNEeQOxANRGxZYsPJemETRCEuHcjdNdNmi71r1kHGiAO1kXWdg0EcZL06yylLFe5rGs8z32YYOJvlyn3tAwWQg5vUVuj70nuDTlsmhJKs7Nb-_1_GSpSzmKFFndaPQpNGq61ZWpTYg9wEIo_dWdlvsb2HXYzV5vZe_V_z-_Yw8glPpovvj-mj1KwH_WtzX7bIDf7N6Av6yqt0Ew_wKMjO-v
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Building+Information+Modeling-Based+Life+Cycle+Assessment+of+the+Embodied+Carbon+and+Environmental+Impacts+of+High-Rise+Building+Structures%3A+A+Case+Study&rft.jtitle=Sustainability&rft.au=Ma%2C+Lijian&rft.au=Azari%2C+Rahman&rft.au=Elnimeiri%2C+Mahjoub&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=2&rft_id=info:doi/10.3390%2Fsu16020569&rft.externalDBID=ISR&rft.externalDocID=A780927479
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon