A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study
High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban...
Saved in:
Published in | Sustainability Vol. 16; no. 2; p. 569 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.01.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban population by 2050 requires cities with higher density and potentially a greater number of high-rise buildings, it is crucial to develop a clear understanding of the embodied carbon and environmental impacts of high-rise buildings. The primary structural materials used in high-rise buildings are reinforced concrete and structural steel. As of today, over 99% of tall buildings’ structures are built from those two materials. This article utilizes a building information modeling (BIM)-based life cycle assessment (LCA) in Revit and Tally to examine the embodied carbon and environmental impacts of an actual high-rise building structure case study in Chicago that uses a hybrid concrete steel structure. The results show that the embodied carbon and environmental impacts of the high-rise building structure are dominated by the impacts of the product stage in the building’s life cycle and by concrete being the main structural material. Specifically, this study reveals that concrete constitutes a substantial 91% share of the total mass of the building structure, with a 74% contribution to the life cycle global warming potential, 53% to the acidification potential, 74% to the eutrophication potential, 74% to the smog formation potential, and 68% to the non-renewable energy usage. On the other hand, steel accounts for 9% of the building’s structure mass, estimated to constitute 26% of the global warming potential, 47% of the acidification potential, 26% of the eutrophication potential, 26% of the smog formation potential, and 32% of the non-renewable energy usage. |
---|---|
AbstractList | High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied carbon and environmental impacts, particularly when compared to low- or mid-rise buildings. Given that the projected growth of the global urban population by 2050 requires cities with higher density and potentially a greater number of high-rise buildings, it is crucial to develop a clear understanding of the embodied carbon and environmental impacts of high-rise buildings. The primary structural materials used in high-rise buildings are reinforced concrete and structural steel. As of today, over 99% of tall buildings’ structures are built from those two materials. This article utilizes a building information modeling (BIM)-based life cycle assessment (LCA) in Revit and Tally to examine the embodied carbon and environmental impacts of an actual high-rise building structure case study in Chicago that uses a hybrid concrete steel structure. The results show that the embodied carbon and environmental impacts of the high-rise building structure are dominated by the impacts of the product stage in the building’s life cycle and by concrete being the main structural material. Specifically, this study reveals that concrete constitutes a substantial 91% share of the total mass of the building structure, with a 74% contribution to the life cycle global warming potential, 53% to the acidification potential, 74% to the eutrophication potential, 74% to the smog formation potential, and 68% to the non-renewable energy usage. On the other hand, steel accounts for 9% of the building’s structure mass, estimated to constitute 26% of the global warming potential, 47% of the acidification potential, 26% of the eutrophication potential, 26% of the smog formation potential, and 32% of the non-renewable energy usage. |
Audience | Academic |
Author | Ma, Lijian Elnimeiri, Mahjoub Azari, Rahman |
Author_xml | – sequence: 1 fullname: Ma, Lijian – sequence: 2 fullname: Azari, Rahman – sequence: 3 fullname: Elnimeiri, Mahjoub |
BookMark | eNpVkcFuEzEQhi1UJErphSewxAmkLfY6a8fctlGgkYKQGjivvPZs6mrXDh4vIs_Cy-IoSKWeg0cz3z8jzf-aXIQYgJC3nN0IodlHnLlkNWukfkEua6Z4xVnDLv7LX5FrxEdWnhBcc3lJ_rT0dvaj82FPN2GIaTLZx0C_RgdjKVa3BsHRrR-Aro52BNoiAuIEIdM40PwAdD310flCrUzqi9YER9fhl08xnDAz0s10MDbjSXDn9w_VvUd42rvLabZ5ToCfaFuGlN4uz-74hrwczIhw_e-_Ij8-r7-v7qrtty-bVbutrKhVrmABDZOyXyx1r0zj1NLoxnIuONdKN0wb1gxgrWLSaO5YLTkIwaDn5S6y5uKKvDvPPaT4cwbM3WOcUygru1rzpdJaikWhbs7U3ozQ-XKrnIwt4WDytjgx-FJv1ZLpWi2ULoL3zwSFyfA7782M2G1298_ZD2fWpoiYYOgOyU8mHTvOupO53ZO54i-wlJbC |
Cites_doi | 10.1108/BEPAM-10-2017-0093 10.3390/su13147831 10.1016/j.autcon.2018.02.028 10.1016/j.buildenv.2018.02.016 10.1016/j.enbuild.2016.12.009 10.1073/pnas.1821673116 10.1016/j.buildenv.2022.108944 10.1016/j.jclepro.2017.05.156 10.1016/j.enbuild.2013.09.003 10.1016/j.egypro.2016.09.142 10.1016/j.jclepro.2016.09.126 10.3390/buildings8110147 10.1016/j.enbuild.2015.09.040 10.1016/j.enbuild.2018.02.038 10.1016/j.autcon.2015.06.003 10.1016/j.proeng.2014.10.525 10.1016/j.rser.2012.01.076 10.3390/buildings12081203 10.1061/(ASCE)EI.1943-5541.0000053 10.1016/j.enbuild.2012.10.019 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION ISR 4U- ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PIMPY PQEST PQQKQ PQUKI |
DOI | 10.3390/su16020569 |
DatabaseName | CrossRef Gale In Context: Science University Readers ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central University Readers ProQuest One Academic UKI Edition ProQuest Central Essentials ProQuest Central Korea ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Environmental Sciences Architecture |
EISSN | 2071-1050 |
ExternalDocumentID | A780927479 10_3390_su16020569 |
GeographicLocations | United States United States--US Chicago Illinois |
GeographicLocations_xml | – name: United States – name: United States--US – name: Chicago Illinois |
GroupedDBID | 29Q 2WC 2XV 4P2 5VS 7XC 8FE 8FH A8Z AAHBH AAYXX ACHQT ADBBV AENEX AFKRA AFMMW ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION E3Z ECGQY ESTFP FRS GROUPED_DOAJ GX1 HCIFZ IAO IEP ISR ITC KQ8 ML. MODMG M~E OK1 P2P PATMY PIMPY PROAC PYCSY TR2 4U- ABUWG AZQEC DWQXO PQEST PQQKQ PQUKI |
ID | FETCH-LOGICAL-c327t-e4e5066b489b7a5d78a95c11311979509a05fecc706a91d0261e330eb12076213 |
IEDL.DBID | BENPR |
ISSN | 2071-1050 |
IngestDate | Sat Oct 26 19:18:39 EDT 2024 Tue Feb 06 05:22:56 EST 2024 Sat Sep 28 21:05:06 EDT 2024 Thu Sep 26 16:22:17 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-e4e5066b489b7a5d78a95c11311979509a05fecc706a91d0261e330eb12076213 |
ORCID | 0000-0002-4844-639X |
OpenAccessLink | https://www.proquest.com/docview/2918799634?pq-origsite=%requestingapplication% |
PQID | 2918799634 |
PQPubID | 2032327 |
ParticipantIDs | proquest_journals_2918799634 gale_infotracacademiconefile_A780927479 gale_incontextgauss_ISR_A780927479 crossref_primary_10_3390_su16020569 |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Sustainability |
PublicationYear | 2024 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Chang (ref_28) 2012; 55 ref_11 Llatas (ref_16) 2017; 136 ref_31 Rabati (ref_32) 2022; 214 Gan (ref_9) 2017; 141 Resch (ref_4) 2016; 96 ref_18 ref_15 Foraboschi (ref_10) 2014; 68 Bueno (ref_17) 2018; 90 Stadel (ref_19) 2011; 137 Cho (ref_7) 2012; 16 Ellis (ref_27) 2020; 117 Wong (ref_14) 2015; 57 Kreiner (ref_13) 2015; 109 Wang (ref_6) 2018; 167 Gan (ref_30) 2017; 161 Crippa (ref_20) 2018; 8 ref_25 (ref_12) 2014; 85 ref_24 Meex (ref_33) 2018; 133 ref_23 ref_22 ref_21 ref_1 ref_3 ref_2 ref_29 ref_26 ref_8 ref_5 |
References_xml | – volume: 8 start-page: 491 year: 2018 ident: ref_20 article-title: A BIM–LCA integration technique to embodied carbon estimation applied on wall systems in Brazil publication-title: Built Environ. Proj. Asset Manag. doi: 10.1108/BEPAM-10-2017-0093 contributor: fullname: Crippa – ident: ref_31 doi: 10.3390/su13147831 – ident: ref_5 – ident: ref_3 – ident: ref_24 – ident: ref_26 – volume: 90 start-page: 188 year: 2018 ident: ref_17 article-title: Comparative analysis between a complete LCA study and results from a BIM-LCA plug-in publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.02.028 contributor: fullname: Bueno – volume: 133 start-page: 228 year: 2018 ident: ref_33 article-title: Requirements for applying LCA-based environmental impact assessment tools in the early stage of building design publication-title: Build. Environ. doi: 10.1016/j.buildenv.2018.02.016 contributor: fullname: Meex – volume: 136 start-page: 110 year: 2017 ident: ref_16 article-title: Critical review of bim-based LCA method to buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.12.009 contributor: fullname: Llatas – volume: 117 start-page: 12584 year: 2020 ident: ref_27 article-title: Toward electrochemical synthesis of cement-An electrolyzer-based process for decarbonating CaCO3 while producing useful gas streams publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1821673116 contributor: fullname: Ellis – volume: 214 start-page: 108944 year: 2022 ident: ref_32 article-title: The embodied carbon of mass timber and concrete buildings in Australia: An uncertainty analysis publication-title: Build. Environ. doi: 10.1016/j.buildenv.2022.108944 contributor: fullname: Rabati – volume: 161 start-page: 663 year: 2017 ident: ref_30 article-title: A comparative analysis of embodied carbon in high-rise buildings regarding different design parameters publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2017.05.156 contributor: fullname: Gan – volume: 68 start-page: 254 year: 2014 ident: ref_10 article-title: Sustainable structural design of tall buildings based on embodied energy publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.09.003 contributor: fullname: Foraboschi – volume: 96 start-page: 800 year: 2016 ident: ref_4 article-title: Impact of Urban Density and Building Height on Energy Use in Cities publication-title: Energy Procedia doi: 10.1016/j.egypro.2016.09.142 contributor: fullname: Resch – volume: 141 start-page: 825 year: 2017 ident: ref_9 article-title: Developing a CO2-e accounting method for quantification and analysis of embodied carbon in high-rise buildings publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.09.126 contributor: fullname: Gan – ident: ref_11 doi: 10.3390/buildings8110147 – ident: ref_1 – ident: ref_18 – volume: 109 start-page: 385 year: 2015 ident: ref_13 article-title: A new systemic approach to improve the sustainability performance of office buildings in the early design stage publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.09.040 contributor: fullname: Kreiner – ident: ref_23 – ident: ref_21 – volume: 167 start-page: 152 year: 2018 ident: ref_6 article-title: Life cycle energy of high-rise office buildings in Hong Kong publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.02.038 contributor: fullname: Wang – volume: 57 start-page: 156 year: 2015 ident: ref_14 article-title: Enhancing environmental sustainability over building life cycles through green BIM: A review publication-title: Autom. Constr. doi: 10.1016/j.autcon.2015.06.003 contributor: fullname: Wong – ident: ref_8 – volume: 85 start-page: 26 year: 2014 ident: ref_12 article-title: Integration of Life Cycle Assessment in a BIM Environment publication-title: Procedia Eng. doi: 10.1016/j.proeng.2014.10.525 – ident: ref_25 – ident: ref_2 – volume: 16 start-page: 3146 year: 2012 ident: ref_7 article-title: LCA application in the optimum design of high rise steel structures publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.01.076 contributor: fullname: Cho – ident: ref_29 doi: 10.3390/buildings12081203 – ident: ref_15 – ident: ref_22 – volume: 137 start-page: 51 year: 2011 ident: ref_19 article-title: Intelligent Sustainable Design: Integration of Carbon Accounting and Building Information Modeling publication-title: J. Prof. Issues Eng. Educ. Pract. doi: 10.1061/(ASCE)EI.1943-5541.0000053 contributor: fullname: Stadel – volume: 55 start-page: 790 year: 2012 ident: ref_28 article-title: The embodied energy and emissions of a high-rise education building: A quantification using process-based hybrid life cycle inventory model publication-title: Energy Build. doi: 10.1016/j.enbuild.2012.10.019 contributor: fullname: Chang |
SSID | ssj0000331916 |
Score | 2.365621 |
Snippet | High-rise buildings represent technological, urban, and life-style trends of the modern urban landscape, yet there are limited data regarding their embodied... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database |
StartPage | 569 |
SubjectTerms | Analysis Architecture Building information modeling Case studies Computer software industry Energy consumption Environmental sustainability Eutrophication Global warming Global warming potential High rise buildings Real property Skyscrapers Smog Steel, Structural Tall buildings Valuation |
Title | A Building Information Modeling-Based Life Cycle Assessment of the Embodied Carbon and Environmental Impacts of High-Rise Building Structures: A Case Study |
URI | https://www.proquest.com/docview/2918799634 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Nb9QwEB3R7QGEhGCholAqC5A4WeTbay4ou9rSIlShLZX2FjmxU_VAUurl0N_Cn-VN1tttJcQ5dmzlTTxvxvNB9L5VLksc3zA2ppag1JHUk0JLo6A8sPO6aIZqn6fF8Xn2dZkvg8PNh7DKzZk4HNS2b9hH_jHR3Bcb4pJ9vvoluWsU366GFho7tJvAUkhGtDudn35f3HpZohQiFhfruqQp7HvgGxegSDlHON_RRP8-jwclc_SUngR2KMo1nM_ogevG9Li84-wf08NNLrEf0958m6eGeeFH9c_pTymmoeG1CBlHjIDg1mecgC6n0F5WfLtsnZjdYC1R3pboFH0rQAvF_GfdWzBUMTPXNeaazor7650MKZaeJ3C8iFxcerdd92woTYs9-0-ixEvwjKMWb17Q-dH8x-xYhj4MskkTtZIuczmYSZ1NdK1MbtXE6LyJuVCPVhqMw0R5C1EAvEbHlq06l6YRtEAS4ayN0z0adX3nXpIAGuBL1kUWdkyE96VpVluuUq_yWDX5Pr3bYFJdrcttVDBTGLlqi9w-vWW4Kq5f0XGAzIX57X11craoSjWJNFvaGPQhDGr71bVpTMg3wEa45NW9kQcb2KvwB_tqK2-v_v_4NT1KQHTWbpkDGuHbujcgKqv6MEjjIe18WcZ_Ad5G6XI |
link.rule.ids | 315,783,787,21402,27938,27939,33758,43819,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1NbxMxELWgPRQhIQhUtBSwAImTxX475oI2UaoEQoTSVurN8q69qAd22zoc-lv4s7zZOE0rIc5rr619s54Pz7xh7EMjXZY4umGsTSVgUkdCDQsljITywM6rou7ZPhfF9Cz7ep6fh4CbD2mVmzOxP6htV1OM_FOiqC82xCX7cnklqGsU3a6GFhoP2S5RVUGqd0eTxY_lbZQlSiFicbHmJU3h3wPfuICJlFOG8x1N9O_zuFcyx0_Zk2Ad8nIN5zP2wLUD9ri8E-wfsL1NLbEfsP3Jtk4N88KP6p-zPyUfhYbXPFQcEQKcWp9RAboYQXtZPr9oHB_fYC1e3lJ08q7hMAv55FfVWViofGyuK8w1reX315v1JZaeJlC-iFheeLdd96SnpsWe_Wde4iV4RlmLNy_Y2fHkdDwVoQ-DqNNEroTLXA7LpMqGqpImt3JoVF7HRNSjpILFYaK8gSgAXqNiS16dS9MIWiCJcNbG6T7babvWvWQcaMBesi6y8GMivC9Ns8oSS73MY1nnB-z9BhN9uabb0HBTCDm9Re6AvSO4NPFXtJQg89P89l7PTpa6lMNIkaeNQR_DoKZbXZvahHoDbIQor-6NPNrArsMf7PVW3g7___gt25uefp_r-Wzx7RV7lMDoWYdojtgOvrN7DaNlVb0JkvkXmQnrew |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbhMxFLUglQAhIQhUFApYgMTK6rwds0GTkKiBKqpSKnVnecaeqgtmSh0W_RZ-lnMnTtNKiPX4pTnXvufa98HYx0a6LHH0wlibSoBSR0KNCiWMhPLAyqui7rN9LorD0-zbWX4W_J98cKvcnIn9QW27mu7IDxJFdbEhLtlBE9wijr_Ovlz-ElRBil5aQzmN-2xHZpCqAdsZTxfHy5sblyiFuMXFOkdpClsfWMcF6FJO3s63tNK_z-Ze4cyesieBKfJyDe0zds-1Q_a4vHXxP2QPN3HFfsh2p9uYNfQLm9Y_Z39KPg7Fr3mIPiI0OJVBo2B0MYYms_zoonF8co25eHmTrpN3DQdF5NOfVWfBVvnEXFXoa1rL784378MtPXUg3xGxvPBuO-9Jn6YWa_afeYlB8I08GK9fsNPZ9MfkUISaDKJOE7kSLnM5WEqVjVQlTW7lyKi8jilpj5IK7MNEeQOxANRGxZYsPJemETRCEuHcjdNdNmi71r1kHGiAO1kXWdg0EcZL06yylLFe5rGs8z32YYOJvlyn3tAwWQg5vUVuj70nuDTlsmhJKs7Nb-_1_GSpSzmKFFndaPQpNGq61ZWpTYg9wEIo_dWdlvsb2HXYzV5vZe_V_z-_Yw8glPpovvj-mj1KwH_WtzX7bIDf7N6Av6yqt0Ew_wKMjO-v |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Building+Information+Modeling-Based+Life+Cycle+Assessment+of+the+Embodied+Carbon+and+Environmental+Impacts+of+High-Rise+Building+Structures%3A+A+Case+Study&rft.jtitle=Sustainability&rft.au=Ma%2C+Lijian&rft.au=Azari%2C+Rahman&rft.au=Elnimeiri%2C+Mahjoub&rft.date=2024-01-01&rft.pub=MDPI+AG&rft.issn=2071-1050&rft.eissn=2071-1050&rft.volume=16&rft.issue=2&rft_id=info:doi/10.3390%2Fsu16020569&rft.externalDBID=ISR&rft.externalDocID=A780927479 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2071-1050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2071-1050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2071-1050&client=summon |