A Novel Approach to Surface EMG-Based Gesture Classification Using a Vision Transformer Integrated With Convolutive Blind Source Separation

A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated t...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 1; pp. 181 - 192
Main Authors Dere, Mustapha Deji, Lee, Boreom
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN2168-2194
2168-2208
2168-2208
DOI10.1109/JBHI.2023.3330289

Cover

Loading…
Abstract A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications.
AbstractList A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications.
A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. The code implementation results reported in this study are available on GitHub. https://github.com/deremustapha/BSS-ViT.A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. The code implementation results reported in this study are available on GitHub. https://github.com/deremustapha/BSS-ViT.
Author Lee, Boreom
Dere, Mustapha Deji
Author_xml – sequence: 1
  givenname: Mustapha Deji
  orcidid: 0000-0001-6512-5945
  surname: Dere
  fullname: Dere, Mustapha Deji
  email: deremustapha@gm.gist.ac.kr
  organization: Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
– sequence: 2
  givenname: Boreom
  orcidid: 0000-0002-7233-5833
  surname: Lee
  fullname: Lee, Boreom
  email: leebr@gist.ac.kr
  organization: Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea
BookMark eNp9kctuEzEUhi1UREvpAyCxsMSGzQRfZnxZJlFJgwos0sJy5PGcaV1N7GB7IvEMvDROUyTUBd7Yx_6_c_H_Gp344AGht5TMKCX64-fF1XrGCOMzzjlhSr9AZ4wKVTFG1MnfM9X1KbpI6YGUpcqVFq_QKZeaE83qM_R7jr-GPYx4vtvFYOw9zgFvpjgYC_jyy6pamAQ9XkHKUwS8HE1KbnDWZBc8vk3O32GDv7t0CG-i8WkIcQsRr32Gu2hygX-4fI-Xwe_DOGW3B7wYne_xJkyxFNnAzsTHdG_Qy8GMCS6e9nN0--nyZnlVXX9brZfz68pyJnMFNelZ18NgJPRSmrqjRlFWM2JpIxtLedOJmgnedRS46KSule61bagQhEvKz9GHY94y8c-pTNZuXbIwjsZDmFLLlBKaSyZFkb5_Jn0oXfvSXcs0pbXimjRFRY8qG0NKEYZ2F93WxF8tJe3BrPZgVnswq30yqzDyGWNdfvyGHI0b_0u-O5IOAP6pxImS5fkPIvyhiA
CODEN IJBHA9
CitedBy_id crossref_primary_10_1109_TGRS_2024_3490539
crossref_primary_10_1016_j_inffus_2024_102697
crossref_primary_10_1016_j_ins_2024_120667
crossref_primary_10_1038_s44182_025_00018_3
Cites_doi 10.1109/JSEN.2022.3165988
10.1109/TBCAS.2019.2955641
10.1109/JBHI.2022.3210019
10.1109/LRA.2021.3111850
10.3390/s16081304
10.1109/JBHI.2021.3118810
10.1109/ICCV48922.2021.00062
10.1371/journal.pone.0206049
10.1109/JBHI.2020.3041861
10.1109/10.914793
10.1109/JBHI.2023.3262316
10.1016/j.bspc.2020.102074
10.1109/TNSRE.2018.2833742
10.3389/fnins.2017.00379
10.1109/TSP.2007.896108
10.1109/JSEN.2021.3068521
10.1016/j.clinph.2022.06.016
10.1109/MSP.2021.3057051
10.1109/EMBC.2018.8512531
10.1109/JSEN.2022.3179535
10.1016/j.medengphy.2022.103797
10.1109/TIM.2022.3217868
10.1109/MeMeA54994.2022.9856454
10.1038/s41928-020-00510-8
10.1088/1741-2552/abf186
10.1016/j.bspc.2023.104936
10.1109/TMRB.2020.3014517
10.1109/LRA.2021.3062320
10.1109/JBHI.2022.3179630
10.1109/TNSRE.2022.3178384
10.1016/j.bspc.2021.103297
10.1016/j.bspc.2021.103048
10.1038/s41551-021-00732-x
10.1109/TPAMI.2022.3152247
10.1109/TNSRE.2022.3173708
10.1109/TNSRE.2021.3082551
10.1109/EMBC44109.2020.9176294
10.1109/ICCV.2019.00718
10.1109/JBHI.2021.3135575
10.1109/LRA.2022.3192623
10.1109/RBME.2021.3078190
10.1016/j.ergon.2019.102905
10.1109/TBME.2020.3006508
10.1109/JBHI.2020.3009383
10.1109/JBHI.2022.3159792
10.1109/TIM.2020.3036654
10.1109/TBME.2019.2899222
10.1016/j.patrec.2019.07.021
10.1109/TIM.2022.3204996
10.1088/1741-2560/13/2/026027
10.1609/aaai.v36i2.20142
10.1109/TBME.2022.3194104
10.1145/3505244
10.1109/EMBC44109.2020.9175279
10.1007/s00034-023-02454-8
10.3390/s21155165
10.3389/fnbot.2016.00009
10.1109/TNSRE.2022.3196622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024
DBID 97E
RIA
RIE
AAYXX
CITATION
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/JBHI.2023.3330289
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList Materials Research Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2168-2208
EndPage 192
ExternalDocumentID 10_1109_JBHI_2023_3330289
10308789
Genre orig-research
GrantInformation_xml – fundername: National Research Foundation of Korea
  grantid: RS-2023-00277220
  funderid: 10.13039/501100003725
GroupedDBID 0R~
4.4
6IF
6IH
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c327t-e40d2bdefa7ed77a4b1a812420c1575c135b64263bb1e36b79489d9c516603713
IEDL.DBID RIE
ISSN 2168-2194
2168-2208
IngestDate Fri Jul 11 07:07:09 EDT 2025
Mon Jun 30 05:11:02 EDT 2025
Tue Jul 01 03:00:07 EDT 2025
Thu Apr 24 22:52:28 EDT 2025
Wed Aug 27 02:37:23 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-e40d2bdefa7ed77a4b1a812420c1575c135b64263bb1e36b79489d9c516603713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-7233-5833
0000-0001-6512-5945
PMID 37930924
PQID 2911483905
PQPubID 85417
PageCount 12
ParticipantIDs crossref_primary_10_1109_JBHI_2023_3330289
crossref_citationtrail_10_1109_JBHI_2023_3330289
proquest_miscellaneous_2886937276
ieee_primary_10308789
proquest_journals_2911483905
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-01-01
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 2024-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE journal of biomedical and health informatics
PublicationTitleAbbrev JBHI
PublicationYear 2024
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
(ref61) 2022
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
Hassani (ref55) 2021
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Dosovitskiy (ref45) 2020
ref60
ref62
References_xml – ident: ref1
  doi: 10.1109/JSEN.2022.3165988
– ident: ref42
  doi: 10.1109/TBCAS.2019.2955641
– ident: ref14
  doi: 10.1109/JBHI.2022.3210019
– ident: ref50
  doi: 10.1109/LRA.2021.3111850
– ident: ref58
  doi: 10.3390/s16081304
– ident: ref22
  doi: 10.1109/JBHI.2021.3118810
– ident: ref56
  doi: 10.1109/ICCV48922.2021.00062
– ident: ref30
  doi: 10.1371/journal.pone.0206049
– ident: ref36
  doi: 10.1109/JBHI.2020.3041861
– ident: ref47
  doi: 10.1109/10.914793
– ident: ref9
  doi: 10.1109/JBHI.2023.3262316
– ident: ref4
  doi: 10.1016/j.bspc.2020.102074
– ident: ref54
  doi: 10.1109/TNSRE.2018.2833742
– ident: ref19
  doi: 10.3389/fnins.2017.00379
– ident: ref35
  doi: 10.1109/TSP.2007.896108
– ident: ref3
  doi: 10.1109/JSEN.2021.3068521
– ident: ref13
  doi: 10.1016/j.clinph.2022.06.016
– ident: ref2
  doi: 10.1109/MSP.2021.3057051
– ident: ref24
  doi: 10.1109/EMBC.2018.8512531
– ident: ref49
  doi: 10.1109/JSEN.2022.3179535
– ident: ref11
  doi: 10.1016/j.medengphy.2022.103797
– ident: ref28
  doi: 10.1109/TIM.2022.3217868
– ident: ref51
  doi: 10.1109/MeMeA54994.2022.9856454
– ident: ref43
  doi: 10.1038/s41928-020-00510-8
– ident: ref8
  doi: 10.1088/1741-2552/abf186
– ident: ref52
  doi: 10.1016/j.bspc.2023.104936
– ident: ref53
  doi: 10.1109/TMRB.2020.3014517
– ident: ref29
  doi: 10.1109/LRA.2021.3062320
– ident: ref18
  doi: 10.1109/JBHI.2022.3179630
– ident: ref16
  doi: 10.1109/TNSRE.2022.3178384
– ident: ref10
  doi: 10.1016/j.bspc.2021.103297
– ident: ref62
  doi: 10.1016/j.bspc.2021.103048
– ident: ref15
  doi: 10.1038/s41551-021-00732-x
– ident: ref32
  doi: 10.1109/TPAMI.2022.3152247
– ident: ref7
  doi: 10.1109/TNSRE.2022.3173708
– ident: ref41
  doi: 10.1109/TNSRE.2021.3082551
– ident: ref38
  doi: 10.1109/EMBC44109.2020.9176294
– year: 2020
  ident: ref45
  article-title: An image is worth 16x16 words: Transformers for image recognition at scale
– ident: ref57
  doi: 10.1109/ICCV.2019.00718
– ident: ref37
  doi: 10.1109/JBHI.2021.3135575
– ident: ref46
  doi: 10.1109/LRA.2022.3192623
– ident: ref6
  doi: 10.1109/RBME.2021.3078190
– ident: ref17
  doi: 10.1016/j.ergon.2019.102905
– ident: ref39
  doi: 10.1109/TBME.2020.3006508
– ident: ref12
  doi: 10.1109/JBHI.2020.3009383
– ident: ref5
  doi: 10.1109/JBHI.2022.3159792
– ident: ref27
  doi: 10.1109/TIM.2020.3036654
– ident: ref20
  doi: 10.1109/TBME.2019.2899222
– ident: ref23
  doi: 10.1016/j.patrec.2019.07.021
– year: 2022
  ident: ref61
  article-title: R: A language and environment for statistical computing, R. foundation for statistical computing
– ident: ref60
  doi: 10.1109/TIM.2022.3204996
– ident: ref34
  doi: 10.1088/1741-2560/13/2/026027
– year: 2021
  ident: ref55
  article-title: Escaping the Big Data paradigm with compact transformers
– ident: ref40
  doi: 10.1609/aaai.v36i2.20142
– ident: ref44
  doi: 10.1109/TBME.2022.3194104
– ident: ref31
  doi: 10.1145/3505244
– ident: ref25
  doi: 10.1109/EMBC44109.2020.9175279
– ident: ref33
  doi: 10.1007/s00034-023-02454-8
– ident: ref59
  doi: 10.3390/s21155165
– ident: ref21
  doi: 10.3389/fnbot.2016.00009
– ident: ref48
  doi: 10.1109/TNSRE.2022.3196622
– ident: ref26
  doi: 10.1016/j.bspc.2021.103048
SSID ssj0000816896
Score 2.4327283
Snippet A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent...
SourceID proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 181
SubjectTerms Artificial neural networks
Blind source separation
Classification
Computer architecture
Convolutive blind source separation (BSS)
Datasets
Deep learning
Electrodes
Electromyography
gesture classification
Gesture recognition
high-density surface electromyography (HD-sEMG)
human-machine interface (HMI)
Man-machine interfaces
Model accuracy
Neural networks
Noise sensitivity
Pattern recognition
Preprocessing
Real time
Real-time systems
Recurrent neural networks
Transformers
Vision
vision transformer
Title A Novel Approach to Surface EMG-Based Gesture Classification Using a Vision Transformer Integrated With Convolutive Blind Source Separation
URI https://ieeexplore.ieee.org/document/10308789
https://www.proquest.com/docview/2911483905
https://www.proquest.com/docview/2886937276
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD1UvPItYKMhInJCSOrbz8LFbtd1W2r1sC71FfkwEAiVoSfbAX-BPM3acFQ-BuFmKEzmZcfzN6xtC3jQauMmsTBBd6ET6PBplDVqtkoMEY0oVnDnLVbG4ldd3-V0sVg-1MAAQks8g9cMQy3edHbyr7CQL_HWV2iN7aLmNxVo7h0roIBH6cXEcJLgTZYxiZkydXM8XV6lvFZ4KtODRyjgkBwJ1kykufzmSQo-VP37M4bS5eEBW0zrHJJNP6dCb1H77jcLxv1_kIbkfcSc9HRXlEbkH7WNysIyR9Sfk-ylddVvAGZFknPYdXQ-bRlug58vLZI7HnaOXuNZhAzT00vRZRkGwNCQeUE3fhUp1ejOhYdjQq4mPwtH3H_sP9Kxrt0Hdt0DniHEdXYf4AV3DSEPetUfk9uL85myRxEYNiRW87BOQzHHjoNEluLLU0mTaAwfObIZw0GYiN4VnhjcmA1GgAshKOWXzrCg8ZaB4SvbbroVnhKLF7IQWTVUYz1zTGFEByxvGAL9YY_mMsElWtY0s5r6Zxuc6WDNM1V7StZd0HSU9I293t3wZKTz-NfnIi-uniaOkZuR40og67vKvNVfemhSK5TPyencZ96cPuugWugHnVFWBEJCXxfO_PPoFOcQVyNGvc0z2-80ALxHp9OZV0PAf8EX2tw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkUovPFuxpYCROCFl69jOw8du1Xa3dPeyW-gtip2JQKAEbZM98Bf404ydZMVDIG6WMomczDjz_gbgTZmjMKFVAVkXeaBcHY22hrxWJVChMYn2wZz5Ip5eq8ub6KZvVve9MIjoi89w7JY-l1_UtnWhsuPQ49el-i7cI8UfhV271jak4mdI-IlcghYBnUXV5zFDro8vJ9PZ2A0LH0vy4cnP2INdSdLJtVC_KCU_ZeWPX7PXN-cPYTHstCsz-TxuGzO2334DcfzvV3kED3rLk510ovIY7mD1BHbnfW79KXw_YYt6g0TRw4yzpmbLdl3mFtnZ_CKYkMIr2AXttV0j89M0XZ2RZy3zpQcsZ-99rzpbDfYwrtlsQKQo2IdPzUd2WlcbL_AbZBOycgu29BkEtsQOiLyu9uH6_Gx1Og36UQ2BlSJpAlS8EKbAMk-wSJJcmTB3poPgNiSD0IYyMrHDhjcmRBmTCKhUF9pGYRw70EB5ADtVXeEzYOQzFzKXZRobh11TGpkij0rOkb5YacUI-MCrzPY45m6cxpfM-zNcZ47TmeN01nN6BG-3t3ztQDz-Rbzv2PUTYcepERwNEpH15_w2E9r5k1LzaASvt5fphLq0S15h3RJNmsZkBIokPvzLo1_B_elqfpVdzRbvnsMe7UZ1UZ4j2GnWLb4gu6cxL720_wD1ePoA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+to+Surface+EMG-based+Gesture+Classification+Using+a+Vision+Transformer+Integrated+with+Convolutive+Blind+Source+Separation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dere%2C+Mustapha+Deji&rft.au=Lee%2C+Boreom&rft.date=2024-01-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=PP&rft_id=info:doi/10.1109%2FJBHI.2023.3330289&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon