A Novel Approach to Surface EMG-Based Gesture Classification Using a Vision Transformer Integrated With Convolutive Blind Source Separation
A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated t...
Saved in:
Published in | IEEE journal of biomedical and health informatics Vol. 28; no. 1; pp. 181 - 192 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 2168-2194 2168-2208 2168-2208 |
DOI | 10.1109/JBHI.2023.3330289 |
Cover
Loading…
Abstract | A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. |
---|---|
AbstractList | A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. The code implementation results reported in this study are available on GitHub. https://github.com/deremustapha/BSS-ViT.A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent neural networks have been widely used for the classification of gestures based on electromyography (EMG), but few studies have demonstrated the effectiveness of using a vision transformer for this purpose. Additionally, the accuracy achieved is influenced by the efficacy of the preprocessing pipeline. This study assessed ViT with and without an attention mechanism for precise motor intent decoding by investigating various input features and integrating convolutive blind source separation (BSS) preprocessing. All investigations were carried out with two open-access high-density surface EMG datasets of 34 and 21 hand gestures recorded from 20 and 5 healthy subjects respectively. Integration of centering and optimal extension factors resulted in better performance with raw input. However, spatial whitening increased the model's sensitivity to noise. The best-performing BSS-integrated convolution vision transformer model (BSS-CViT) model yielded an accuracy of 96.61% and 91.98% on test datasets one and two. This is a promising result for future studies in real-time HMI applications. The code implementation results reported in this study are available on GitHub. https://github.com/deremustapha/BSS-ViT. |
Author | Lee, Boreom Dere, Mustapha Deji |
Author_xml | – sequence: 1 givenname: Mustapha Deji orcidid: 0000-0001-6512-5945 surname: Dere fullname: Dere, Mustapha Deji email: deremustapha@gm.gist.ac.kr organization: Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea – sequence: 2 givenname: Boreom orcidid: 0000-0002-7233-5833 surname: Lee fullname: Lee, Boreom email: leebr@gist.ac.kr organization: Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, South Korea |
BookMark | eNp9kctuEzEUhi1UREvpAyCxsMSGzQRfZnxZJlFJgwos0sJy5PGcaV1N7GB7IvEMvDROUyTUBd7Yx_6_c_H_Gp344AGht5TMKCX64-fF1XrGCOMzzjlhSr9AZ4wKVTFG1MnfM9X1KbpI6YGUpcqVFq_QKZeaE83qM_R7jr-GPYx4vtvFYOw9zgFvpjgYC_jyy6pamAQ9XkHKUwS8HE1KbnDWZBc8vk3O32GDv7t0CG-i8WkIcQsRr32Gu2hygX-4fI-Xwe_DOGW3B7wYne_xJkyxFNnAzsTHdG_Qy8GMCS6e9nN0--nyZnlVXX9brZfz68pyJnMFNelZ18NgJPRSmrqjRlFWM2JpIxtLedOJmgnedRS46KSule61bagQhEvKz9GHY94y8c-pTNZuXbIwjsZDmFLLlBKaSyZFkb5_Jn0oXfvSXcs0pbXimjRFRY8qG0NKEYZ2F93WxF8tJe3BrPZgVnswq30yqzDyGWNdfvyGHI0b_0u-O5IOAP6pxImS5fkPIvyhiA |
CODEN | IJBHA9 |
CitedBy_id | crossref_primary_10_1109_TGRS_2024_3490539 crossref_primary_10_1016_j_inffus_2024_102697 crossref_primary_10_1016_j_ins_2024_120667 crossref_primary_10_1038_s44182_025_00018_3 |
Cites_doi | 10.1109/JSEN.2022.3165988 10.1109/TBCAS.2019.2955641 10.1109/JBHI.2022.3210019 10.1109/LRA.2021.3111850 10.3390/s16081304 10.1109/JBHI.2021.3118810 10.1109/ICCV48922.2021.00062 10.1371/journal.pone.0206049 10.1109/JBHI.2020.3041861 10.1109/10.914793 10.1109/JBHI.2023.3262316 10.1016/j.bspc.2020.102074 10.1109/TNSRE.2018.2833742 10.3389/fnins.2017.00379 10.1109/TSP.2007.896108 10.1109/JSEN.2021.3068521 10.1016/j.clinph.2022.06.016 10.1109/MSP.2021.3057051 10.1109/EMBC.2018.8512531 10.1109/JSEN.2022.3179535 10.1016/j.medengphy.2022.103797 10.1109/TIM.2022.3217868 10.1109/MeMeA54994.2022.9856454 10.1038/s41928-020-00510-8 10.1088/1741-2552/abf186 10.1016/j.bspc.2023.104936 10.1109/TMRB.2020.3014517 10.1109/LRA.2021.3062320 10.1109/JBHI.2022.3179630 10.1109/TNSRE.2022.3178384 10.1016/j.bspc.2021.103297 10.1016/j.bspc.2021.103048 10.1038/s41551-021-00732-x 10.1109/TPAMI.2022.3152247 10.1109/TNSRE.2022.3173708 10.1109/TNSRE.2021.3082551 10.1109/EMBC44109.2020.9176294 10.1109/ICCV.2019.00718 10.1109/JBHI.2021.3135575 10.1109/LRA.2022.3192623 10.1109/RBME.2021.3078190 10.1016/j.ergon.2019.102905 10.1109/TBME.2020.3006508 10.1109/JBHI.2020.3009383 10.1109/JBHI.2022.3159792 10.1109/TIM.2020.3036654 10.1109/TBME.2019.2899222 10.1016/j.patrec.2019.07.021 10.1109/TIM.2022.3204996 10.1088/1741-2560/13/2/026027 10.1609/aaai.v36i2.20142 10.1109/TBME.2022.3194104 10.1145/3505244 10.1109/EMBC44109.2020.9175279 10.1007/s00034-023-02454-8 10.3390/s21155165 10.3389/fnbot.2016.00009 10.1109/TNSRE.2022.3196622 |
ContentType | Journal Article |
Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024 |
DBID | 97E RIA RIE AAYXX CITATION 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
DOI | 10.1109/JBHI.2023.3330289 |
DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
DatabaseTitleList | Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2168-2208 |
EndPage | 192 |
ExternalDocumentID | 10_1109_JBHI_2023_3330289 10308789 |
Genre | orig-research |
GrantInformation_xml | – fundername: National Research Foundation of Korea grantid: RS-2023-00277220 funderid: 10.13039/501100003725 |
GroupedDBID | 0R~ 4.4 6IF 6IH 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACIWK ACPRK AENEX AFRAH AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD HZ~ IFIPE IPLJI JAVBF M43 O9- OCL PQQKQ RIA RIE RNS AAYXX CITATION RIG 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 K9. KR7 L7M L~C L~D NAPCQ P64 7X8 |
ID | FETCH-LOGICAL-c327t-e40d2bdefa7ed77a4b1a812420c1575c135b64263bb1e36b79489d9c516603713 |
IEDL.DBID | RIE |
ISSN | 2168-2194 2168-2208 |
IngestDate | Fri Jul 11 07:07:09 EDT 2025 Mon Jun 30 05:11:02 EDT 2025 Tue Jul 01 03:00:07 EDT 2025 Thu Apr 24 22:52:28 EDT 2025 Wed Aug 27 02:37:23 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-e40d2bdefa7ed77a4b1a812420c1575c135b64263bb1e36b79489d9c516603713 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7233-5833 0000-0001-6512-5945 |
PMID | 37930924 |
PQID | 2911483905 |
PQPubID | 85417 |
PageCount | 12 |
ParticipantIDs | crossref_primary_10_1109_JBHI_2023_3330289 crossref_citationtrail_10_1109_JBHI_2023_3330289 proquest_miscellaneous_2886937276 ieee_primary_10308789 proquest_journals_2911483905 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-01-01 |
PublicationDateYYYYMMDD | 2024-01-01 |
PublicationDate_xml | – month: 01 year: 2024 text: 2024-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Piscataway |
PublicationPlace_xml | – name: Piscataway |
PublicationTitle | IEEE journal of biomedical and health informatics |
PublicationTitleAbbrev | JBHI |
PublicationYear | 2024 |
Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 (ref61) 2022 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 Hassani (ref55) 2021 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Dosovitskiy (ref45) 2020 ref60 ref62 |
References_xml | – ident: ref1 doi: 10.1109/JSEN.2022.3165988 – ident: ref42 doi: 10.1109/TBCAS.2019.2955641 – ident: ref14 doi: 10.1109/JBHI.2022.3210019 – ident: ref50 doi: 10.1109/LRA.2021.3111850 – ident: ref58 doi: 10.3390/s16081304 – ident: ref22 doi: 10.1109/JBHI.2021.3118810 – ident: ref56 doi: 10.1109/ICCV48922.2021.00062 – ident: ref30 doi: 10.1371/journal.pone.0206049 – ident: ref36 doi: 10.1109/JBHI.2020.3041861 – ident: ref47 doi: 10.1109/10.914793 – ident: ref9 doi: 10.1109/JBHI.2023.3262316 – ident: ref4 doi: 10.1016/j.bspc.2020.102074 – ident: ref54 doi: 10.1109/TNSRE.2018.2833742 – ident: ref19 doi: 10.3389/fnins.2017.00379 – ident: ref35 doi: 10.1109/TSP.2007.896108 – ident: ref3 doi: 10.1109/JSEN.2021.3068521 – ident: ref13 doi: 10.1016/j.clinph.2022.06.016 – ident: ref2 doi: 10.1109/MSP.2021.3057051 – ident: ref24 doi: 10.1109/EMBC.2018.8512531 – ident: ref49 doi: 10.1109/JSEN.2022.3179535 – ident: ref11 doi: 10.1016/j.medengphy.2022.103797 – ident: ref28 doi: 10.1109/TIM.2022.3217868 – ident: ref51 doi: 10.1109/MeMeA54994.2022.9856454 – ident: ref43 doi: 10.1038/s41928-020-00510-8 – ident: ref8 doi: 10.1088/1741-2552/abf186 – ident: ref52 doi: 10.1016/j.bspc.2023.104936 – ident: ref53 doi: 10.1109/TMRB.2020.3014517 – ident: ref29 doi: 10.1109/LRA.2021.3062320 – ident: ref18 doi: 10.1109/JBHI.2022.3179630 – ident: ref16 doi: 10.1109/TNSRE.2022.3178384 – ident: ref10 doi: 10.1016/j.bspc.2021.103297 – ident: ref62 doi: 10.1016/j.bspc.2021.103048 – ident: ref15 doi: 10.1038/s41551-021-00732-x – ident: ref32 doi: 10.1109/TPAMI.2022.3152247 – ident: ref7 doi: 10.1109/TNSRE.2022.3173708 – ident: ref41 doi: 10.1109/TNSRE.2021.3082551 – ident: ref38 doi: 10.1109/EMBC44109.2020.9176294 – year: 2020 ident: ref45 article-title: An image is worth 16x16 words: Transformers for image recognition at scale – ident: ref57 doi: 10.1109/ICCV.2019.00718 – ident: ref37 doi: 10.1109/JBHI.2021.3135575 – ident: ref46 doi: 10.1109/LRA.2022.3192623 – ident: ref6 doi: 10.1109/RBME.2021.3078190 – ident: ref17 doi: 10.1016/j.ergon.2019.102905 – ident: ref39 doi: 10.1109/TBME.2020.3006508 – ident: ref12 doi: 10.1109/JBHI.2020.3009383 – ident: ref5 doi: 10.1109/JBHI.2022.3159792 – ident: ref27 doi: 10.1109/TIM.2020.3036654 – ident: ref20 doi: 10.1109/TBME.2019.2899222 – ident: ref23 doi: 10.1016/j.patrec.2019.07.021 – year: 2022 ident: ref61 article-title: R: A language and environment for statistical computing, R. foundation for statistical computing – ident: ref60 doi: 10.1109/TIM.2022.3204996 – ident: ref34 doi: 10.1088/1741-2560/13/2/026027 – year: 2021 ident: ref55 article-title: Escaping the Big Data paradigm with compact transformers – ident: ref40 doi: 10.1609/aaai.v36i2.20142 – ident: ref44 doi: 10.1109/TBME.2022.3194104 – ident: ref31 doi: 10.1145/3505244 – ident: ref25 doi: 10.1109/EMBC44109.2020.9175279 – ident: ref33 doi: 10.1007/s00034-023-02454-8 – ident: ref59 doi: 10.3390/s21155165 – ident: ref21 doi: 10.3389/fnbot.2016.00009 – ident: ref48 doi: 10.1109/TNSRE.2022.3196622 – ident: ref26 doi: 10.1016/j.bspc.2021.103048 |
SSID | ssj0000816896 |
Score | 2.4327283 |
Snippet | A robust pattern recognition framework is required for ideal real-time human-machine interface (HMI) applications. Convolutional neural networks and recurrent... |
SourceID | proquest crossref ieee |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 181 |
SubjectTerms | Artificial neural networks Blind source separation Classification Computer architecture Convolutive blind source separation (BSS) Datasets Deep learning Electrodes Electromyography gesture classification Gesture recognition high-density surface electromyography (HD-sEMG) human-machine interface (HMI) Man-machine interfaces Model accuracy Neural networks Noise sensitivity Pattern recognition Preprocessing Real time Real-time systems Recurrent neural networks Transformers Vision vision transformer |
Title | A Novel Approach to Surface EMG-Based Gesture Classification Using a Vision Transformer Integrated With Convolutive Blind Source Separation |
URI | https://ieeexplore.ieee.org/document/10308789 https://www.proquest.com/docview/2911483905 https://www.proquest.com/docview/2886937276 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoD1UvPItYKMhInJCSOrbz8LFbtd1W2r1sC71FfkwEAiVoSfbAX-BPM3acFQ-BuFmKEzmZcfzN6xtC3jQauMmsTBBd6ET6PBplDVqtkoMEY0oVnDnLVbG4ldd3-V0sVg-1MAAQks8g9cMQy3edHbyr7CQL_HWV2iN7aLmNxVo7h0roIBH6cXEcJLgTZYxiZkydXM8XV6lvFZ4KtODRyjgkBwJ1kykufzmSQo-VP37M4bS5eEBW0zrHJJNP6dCb1H77jcLxv1_kIbkfcSc9HRXlEbkH7WNysIyR9Sfk-ylddVvAGZFknPYdXQ-bRlug58vLZI7HnaOXuNZhAzT00vRZRkGwNCQeUE3fhUp1ejOhYdjQq4mPwtH3H_sP9Kxrt0Hdt0DniHEdXYf4AV3DSEPetUfk9uL85myRxEYNiRW87BOQzHHjoNEluLLU0mTaAwfObIZw0GYiN4VnhjcmA1GgAshKOWXzrCg8ZaB4SvbbroVnhKLF7IQWTVUYz1zTGFEByxvGAL9YY_mMsElWtY0s5r6Zxuc6WDNM1V7StZd0HSU9I293t3wZKTz-NfnIi-uniaOkZuR40og67vKvNVfemhSK5TPyencZ96cPuugWugHnVFWBEJCXxfO_PPoFOcQVyNGvc0z2-80ALxHp9OZV0PAf8EX2tw |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB5BkUovPFuxpYCROCFl69jOw8du1Xa3dPeyW-gtip2JQKAEbZM98Bf404ydZMVDIG6WMomczDjz_gbgTZmjMKFVAVkXeaBcHY22hrxWJVChMYn2wZz5Ip5eq8ub6KZvVve9MIjoi89w7JY-l1_UtnWhsuPQ49el-i7cI8UfhV271jak4mdI-IlcghYBnUXV5zFDro8vJ9PZ2A0LH0vy4cnP2INdSdLJtVC_KCU_ZeWPX7PXN-cPYTHstCsz-TxuGzO2334DcfzvV3kED3rLk510ovIY7mD1BHbnfW79KXw_YYt6g0TRw4yzpmbLdl3mFtnZ_CKYkMIr2AXttV0j89M0XZ2RZy3zpQcsZ-99rzpbDfYwrtlsQKQo2IdPzUd2WlcbL_AbZBOycgu29BkEtsQOiLyu9uH6_Gx1Og36UQ2BlSJpAlS8EKbAMk-wSJJcmTB3poPgNiSD0IYyMrHDhjcmRBmTCKhUF9pGYRw70EB5ADtVXeEzYOQzFzKXZRobh11TGpkij0rOkb5YacUI-MCrzPY45m6cxpfM-zNcZ47TmeN01nN6BG-3t3ztQDz-Rbzv2PUTYcepERwNEpH15_w2E9r5k1LzaASvt5fphLq0S15h3RJNmsZkBIokPvzLo1_B_elqfpVdzRbvnsMe7UZ1UZ4j2GnWLb4gu6cxL720_wD1ePoA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Novel+Approach+to+Surface+EMG-based+Gesture+Classification+Using+a+Vision+Transformer+Integrated+with+Convolutive+Blind+Source+Separation&rft.jtitle=IEEE+journal+of+biomedical+and+health+informatics&rft.au=Dere%2C+Mustapha+Deji&rft.au=Lee%2C+Boreom&rft.date=2024-01-01&rft.issn=2168-2208&rft.eissn=2168-2208&rft.volume=PP&rft_id=info:doi/10.1109%2FJBHI.2023.3330289&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2168-2194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2168-2194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2168-2194&client=summon |