A generalization of surfaces family with common spatial geodesic

We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficie...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 201; no. 1; pp. 781 - 789
Main Authors Kasap, Emin, Akyildiz, F. Talay, Orbay, Keziban
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 15.07.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2008.01.016

Cover

Loading…
Abstract We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficient condition on the marching-scale functions for which the curve C is an isogeodesic curve on a given surface. They assumed that these functions have a factor decomposition. In this work, we generalized their assumption to more general marching-scale functions and derived the sufficient conditions on them for which the curve C is an isogeodesic curve on a given surface. Finally using generalized marching-scale functions, we demonstrated some surfaces about subject.
AbstractList We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficient condition on the marching-scale functions for which the curve C is an isogeodesic curve on a given surface. They assumed that these functions have a factor decomposition. In this work, we generalized their assumption to more general marching-scale functions and derived the sufficient conditions on them for which the curve C is an isogeodesic curve on a given surface. Finally using generalized marching-scale functions, we demonstrated some surfaces about subject.
Author Orbay, Keziban
Akyildiz, F. Talay
Kasap, Emin
Author_xml – sequence: 1
  givenname: Emin
  surname: Kasap
  fullname: Kasap, Emin
  email: kasape@omu.edu.tr
  organization: Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey
– sequence: 2
  givenname: F. Talay
  surname: Akyildiz
  fullname: Akyildiz, F. Talay
  organization: Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey
– sequence: 3
  givenname: Keziban
  surname: Orbay
  fullname: Orbay, Keziban
  organization: Department of Mathematics, Education Faculty, Amasya University, 05189 Amasya, Turkey
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20466471$$DView record in Pascal Francis
BookMark eNp9kEtLAzEUhYNUsK3-AHezcTnjTTKTdHBjKb6g4EbX4U4emjKPkoxK_fWmVjcuhAuXyz3fgXNmZNIPvSXknEJBgYrLTYGdLhjAogCaRhyRKV1InleirCdkClCLnAPwEzKLcQMAUtBySq6X2YvtbcDWf-Lohz4bXBbfgkNtY-aw8-0u-_Dja6aHrkvvuE0ybBM1GBu9PiXHDttoz372nDzf3jyt7vP1493DarnONWdyzC2rqGg0K22NrGaNpk0pKDjH08WNZKZyrEJhGJOlpkaiNbAAI01TS8uRz8nFwXeLUWPrAvbaR7UNvsOwUwxKIUpJk04edDoMMQbrlPbjd7IxoG8VBbUvTG1UKkztC1NA04hE0j_kr_l_zNWBsSn6u7dBRe1tr63xwepRmcH_Q38B3WmFLw
CODEN AMHCBQ
CitedBy_id crossref_primary_10_3390_axioms12111022
crossref_primary_10_1142_S1793557124500554
crossref_primary_10_1016_j_cagd_2018_09_006
crossref_primary_10_19113_sdufenbed_814400
crossref_primary_10_1142_S0219887816500626
crossref_primary_10_31801_cfsuasmas_794779
crossref_primary_10_1063_5_0217646
crossref_primary_10_15672_hujms_881876
crossref_primary_10_5269_bspm_v34i1_24392
crossref_primary_10_5269_bspm_v34i1_25480
crossref_primary_10_1016_j_amc_2013_03_077
crossref_primary_10_37394_23206_2021_20_22
crossref_primary_10_31590_ejosat_1093177
crossref_primary_10_1142_S1793557122501996
crossref_primary_10_3390_math11163495
crossref_primary_10_1007_s00170_013_5031_9
crossref_primary_10_21597_jist_696719
crossref_primary_10_1016_j_amc_2011_08_057
crossref_primary_10_31801_cfsuasmas_798620
crossref_primary_10_21597_jist_486275
crossref_primary_10_31801_cfsuasmas_1127781
crossref_primary_10_1007_s40314_024_02857_6
crossref_primary_10_53570_jnt_1036307
crossref_primary_10_1155_2021_3901527
crossref_primary_10_1016_j_amc_2015_03_067
crossref_primary_10_3390_sym15111986
crossref_primary_10_1142_S0219887821501140
crossref_primary_10_1142_S1793557116500741
crossref_primary_10_1155_2014_623408
crossref_primary_10_3934_math_20231047
crossref_primary_10_19113_sdufenbed_682334
Cites_doi 10.1111/j.1467-8659.1985.tb00203.x
10.1111/j.1467-8659.1983.tb00151.x
10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2
10.1016/j.cad.2007.05.002
10.1016/j.cad.2007.08.006
10.1016/S0010-4485(03)00117-9
10.1111/j.1365-2818.1994.tb03511.x
10.1111/j.2153-3490.1968.tb00406.x
ContentType Journal Article
Copyright 2008 Elsevier Inc.
2008 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2008.01.016
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 789
ExternalDocumentID 20466471
10_1016_j_amc_2008_01_016
S0096300308000465
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c327t-e2516bc24e9a292bc1b4610ff32923d72d5f25a6d2274c1d7aed080d7db97e3a3
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:15:16 EDT 2025
Thu Apr 24 22:55:11 EDT 2025
Tue Jul 01 04:07:06 EDT 2025
Fri Feb 23 02:19:04 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Surface family
Common geodesic
Ruled surface
Marching-scale functions
Numerical analysis
Sufficient condition
Applied mathematics
Decomposition method
Geodesic
Surface
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-e2516bc24e9a292bc1b4610ff32923d72d5f25a6d2274c1d7aed080d7db97e3a3
PageCount 9
ParticipantIDs pascalfrancis_primary_20466471
crossref_citationtrail_10_1016_j_amc_2008_01_016
crossref_primary_10_1016_j_amc_2008_01_016
elsevier_sciencedirect_doi_10_1016_j_amc_2008_01_016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-07-15
PublicationDateYYYYMMDD 2008-07-15
PublicationDate_xml – month: 07
  year: 2008
  text: 2008-07-15
  day: 15
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Haw, Munchmeyer (bib7) 1983; 2
Haw (bib6) 1985; 4
Sanches-Reyes, Dorado (bib11) 2008; 40
L. Grundig, L. Ekert, E. Moncrieff, Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, in: T.T. Lan (Ed.), Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996.
Heikes, Randall (bib8) 1995; 123
Heikes, Randall (bib9) 1995; 123
Wang, Tang, Tai (bib1) 2004; 36
Do Carmo (bib2) 1976
Williamson (bib10) 1968; 20
Paluszny (bib12) 2008; 40
Brond, Jeulin, Gateau, Jarrin, Serpe (bib3) 1994; 176
S. Bryson, Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows. Technical Report, NASA NAS,Number RNR-92-009; March 1992.
Paluszny (10.1016/j.amc.2008.01.016_bib12) 2008; 40
Brond (10.1016/j.amc.2008.01.016_bib3) 1994; 176
10.1016/j.amc.2008.01.016_bib5
Haw (10.1016/j.amc.2008.01.016_bib6) 1985; 4
Haw (10.1016/j.amc.2008.01.016_bib7) 1983; 2
Heikes (10.1016/j.amc.2008.01.016_bib8) 1995; 123
Do Carmo (10.1016/j.amc.2008.01.016_bib2) 1976
Wang (10.1016/j.amc.2008.01.016_bib1) 2004; 36
10.1016/j.amc.2008.01.016_bib4
Heikes (10.1016/j.amc.2008.01.016_bib9) 1995; 123
Williamson (10.1016/j.amc.2008.01.016_bib10) 1968; 20
Sanches-Reyes (10.1016/j.amc.2008.01.016_bib11) 2008; 40
References_xml – volume: 2
  start-page: 225
  year: 1983
  end-page: 232
  ident: bib7
  article-title: Geodesic curves on patched polynomial surfaces
  publication-title: Comput. Graph. Forum
– volume: 36
  start-page: 447
  year: 2004
  end-page: 459
  ident: bib1
  article-title: Parametric representation of a surface pencil with a common spatial geodesic
  publication-title: Comput. Aided Des.
– volume: 20
  start-page: 642
  year: 1968
  end-page: 653
  ident: bib10
  article-title: Integration of the barotropic vorticity equation on a spherical geodesic grid
  publication-title: Tellus
– volume: 40
  start-page: 56
  year: 2008
  end-page: 61
  ident: bib12
  article-title: Cubic polynomial patches through geodesics
  publication-title: Comput. Aided Des.
– volume: 176
  start-page: 167
  year: 1994
  end-page: 177
  ident: bib3
  article-title: Estimation of the transport properties of polymer composites by geodesic propagation
  publication-title: J. Microsc.
– volume: 123
  start-page: 1881
  year: 1995
  end-page: 1887
  ident: bib9
  article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accuracy
  publication-title: Mon. Weath. Rev.
– volume: 123
  start-page: 1862
  year: 1995
  end-page: 1880
  ident: bib8
  article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part I: basic design and results of tests
  publication-title: Mon. Weath. Rev.
– volume: 40
  start-page: 49
  year: 2008
  end-page: 55
  ident: bib11
  article-title: Constrained design of polynomial surfaces from geodesic curves
  publication-title: Comput. Aided Des.
– volume: 4
  start-page: 137
  year: 1985
  end-page: 139
  ident: bib6
  article-title: An application of geodesic curves to sail design
  publication-title: Comput. Graph. Forum
– reference: S. Bryson, Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows. Technical Report, NASA NAS,Number RNR-92-009; March 1992.
– reference: L. Grundig, L. Ekert, E. Moncrieff, Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, in: T.T. Lan (Ed.), Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996.
– year: 1976
  ident: bib2
  article-title: Differential Geometry of Curves and Surfaces
– volume: 4
  start-page: 137
  issue: 2
  year: 1985
  ident: 10.1016/j.amc.2008.01.016_bib6
  article-title: An application of geodesic curves to sail design
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.1985.tb00203.x
– volume: 2
  start-page: 225
  issue: 4
  year: 1983
  ident: 10.1016/j.amc.2008.01.016_bib7
  article-title: Geodesic curves on patched polynomial surfaces
  publication-title: Comput. Graph. Forum
  doi: 10.1111/j.1467-8659.1983.tb00151.x
– volume: 123
  start-page: 1862
  year: 1995
  ident: 10.1016/j.amc.2008.01.016_bib8
  article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part I: basic design and results of tests
  publication-title: Mon. Weath. Rev.
  doi: 10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2
– volume: 123
  start-page: 1881
  year: 1995
  ident: 10.1016/j.amc.2008.01.016_bib9
  article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accuracy
  publication-title: Mon. Weath. Rev.
  doi: 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2
– ident: 10.1016/j.amc.2008.01.016_bib5
– volume: 40
  start-page: 49
  issue: 1
  year: 2008
  ident: 10.1016/j.amc.2008.01.016_bib11
  article-title: Constrained design of polynomial surfaces from geodesic curves
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2007.05.002
– volume: 40
  start-page: 56
  issue: 1
  year: 2008
  ident: 10.1016/j.amc.2008.01.016_bib12
  article-title: Cubic polynomial patches through geodesics
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2007.08.006
– volume: 36
  start-page: 447
  issue: 5
  year: 2004
  ident: 10.1016/j.amc.2008.01.016_bib1
  article-title: Parametric representation of a surface pencil with a common spatial geodesic
  publication-title: Comput. Aided Des.
  doi: 10.1016/S0010-4485(03)00117-9
– ident: 10.1016/j.amc.2008.01.016_bib4
– year: 1976
  ident: 10.1016/j.amc.2008.01.016_bib2
– volume: 176
  start-page: 167
  year: 1994
  ident: 10.1016/j.amc.2008.01.016_bib3
  article-title: Estimation of the transport properties of polymer composites by geodesic propagation
  publication-title: J. Microsc.
  doi: 10.1111/j.1365-2818.1994.tb03511.x
– volume: 20
  start-page: 642
  year: 1968
  ident: 10.1016/j.amc.2008.01.016_bib10
  article-title: Integration of the barotropic vorticity equation on a spherical geodesic grid
  publication-title: Tellus
  doi: 10.1111/j.2153-3490.1968.tb00406.x
SSID ssj0007614
Score 2.0977774
Snippet We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai,...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 781
SubjectTerms Common geodesic
Differential geometry
Exact sciences and technology
Functions of a complex variable
Geometry
Global analysis, analysis on manifolds
Marching-scale functions
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Ruled surface
Sciences and techniques of general use
Surface family
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title A generalization of surfaces family with common spatial geodesic
URI https://dx.doi.org/10.1016/j.amc.2008.01.016
Volume 201
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZou4AQ4inKo_LAhBTwI47rjQpRFRBMILFF8asqgrbqY-W3c26cCAY6IHlJFDvJ-XS-s7_7DqELb6SnmtqEC60hQDEiUYKQxIG3TLUupHchOfnpORu8pg9v4m0D3Va5MAFWGW1_adNX1jreuY7SvJ6ORiHHVwW-KB58HojyRAO1GFcZqHard_84eK4NMkTqJRmzCjAvwqvDzRXMq_g0EVFJoWV_LU_b02IOQvNltYsfS1B_F-1E3xH3ys_bQxtuvI-2nmri1fkBuunhYUkkHfMr8cTj-XLmA_IKl7sZOOy9Yvhh0EA8D4hqGHToJtbBjB2i1_7dy-0giUUSEsOZXCQOHJRMG5Y6VTDFtKE6UKh7z-GKW8ms8EwUmWUQfxpqZeEsSMxKq5V0vOBHqDmejN0xwiblmlDjSerC-a1Q1BCb2q7phpLkhLQRqWSTm8ggHgpZfOQVVOw9B3HGypYUWtZGl3WXaUmfse7htBJ4_ksHcjDv67p1fk1O_SJGAne-pCf_G_cUbZbgEJlQcYaai9nSnYMHstAd1Lj6op2oZ99NPdk9
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD2qM8TPiB_bgyWTaruvKbhIjQQVOkHhb1i-DUSAMrv7tvrIO5SAHk162rN322r6-1_7e7yF0bZWwVFIdMC4lOCiKBwknJDBgLVMpM2GNC07u9uL2IHp-5a8V9FDGwjhYpdf9hU5faGt_585L824yHLoY38TxRTFn84CXxzfQZgTT183O268fnAf46QUVc-JAXoSVR5sLkFf2qTyekkKJ_1qcdidZDiKzRa6LXwtQax_tecsRN4uPO0AVMzpEO90l7Wp-hO6b-K2gkfbRlXhscT6fWoe7wsVeBnY7rxh-F8Yfzh2eGhp9M2NtoL-O0aD12H9oBz5FQqBYKGaBAfMkliqMTJKFSSgVlY5A3VoGV0yLUHMb8izWIXifimqRGQ3y0kLLRBiWsRNUHY1H5hRhFTFJqLIkMu70lidUER3phmq4hOSE1BApZZMqzx_u0lh8pCVQ7D0Fcfq8lhRKXEM3yyqTgjxj3cNRKfB0ZQSkoNzXVauvdM7yRSFxzPmCnv2v3Su01e53O2nnqfdyjrYLmIgIKL9A1dl0bi7BFpnJ-mKsfQMLGtoB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+surfaces+family+with+common+spatial+geodesic&rft.jtitle=Applied+mathematics+and+computation&rft.au=Kasap%2C+Emin&rft.au=Akyildiz%2C+F.+Talay&rft.au=Orbay%2C+Keziban&rft.date=2008-07-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=201&rft.issue=1&rft.spage=781&rft.epage=789&rft_id=info:doi/10.1016%2Fj.amc.2008.01.016&rft.externalDocID=S0096300308000465
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon