A generalization of surfaces family with common spatial geodesic
We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficie...
Saved in:
Published in | Applied mathematics and computation Vol. 201; no. 1; pp. 781 - 789 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
Elsevier Inc
15.07.2008
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2008.01.016 |
Cover
Loading…
Abstract | We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficient condition on the marching-scale functions for which the curve
C is an isogeodesic curve on a given surface. They assumed that these functions have a factor decomposition. In this work, we generalized their assumption to more general marching-scale functions and derived the sufficient conditions on them for which the curve
C is an isogeodesic curve on a given surface. Finally using generalized marching-scale functions, we demonstrated some surfaces about subject. |
---|---|
AbstractList | We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai, Parametric representation of a surface pencil with a common spatial geodesic, Comp. Aided Des. 36 (5) (2004) 447–459], who derived the sufficient condition on the marching-scale functions for which the curve
C is an isogeodesic curve on a given surface. They assumed that these functions have a factor decomposition. In this work, we generalized their assumption to more general marching-scale functions and derived the sufficient conditions on them for which the curve
C is an isogeodesic curve on a given surface. Finally using generalized marching-scale functions, we demonstrated some surfaces about subject. |
Author | Orbay, Keziban Akyildiz, F. Talay Kasap, Emin |
Author_xml | – sequence: 1 givenname: Emin surname: Kasap fullname: Kasap, Emin email: kasape@omu.edu.tr organization: Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey – sequence: 2 givenname: F. Talay surname: Akyildiz fullname: Akyildiz, F. Talay organization: Department of Mathematics, Arts and Science Faculty, Ondokuz Mayis University, 55139 Samsun, Turkey – sequence: 3 givenname: Keziban surname: Orbay fullname: Orbay, Keziban organization: Department of Mathematics, Education Faculty, Amasya University, 05189 Amasya, Turkey |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20466471$$DView record in Pascal Francis |
BookMark | eNp9kEtLAzEUhYNUsK3-AHezcTnjTTKTdHBjKb6g4EbX4U4emjKPkoxK_fWmVjcuhAuXyz3fgXNmZNIPvSXknEJBgYrLTYGdLhjAogCaRhyRKV1InleirCdkClCLnAPwEzKLcQMAUtBySq6X2YvtbcDWf-Lohz4bXBbfgkNtY-aw8-0u-_Dja6aHrkvvuE0ybBM1GBu9PiXHDttoz372nDzf3jyt7vP1493DarnONWdyzC2rqGg0K22NrGaNpk0pKDjH08WNZKZyrEJhGJOlpkaiNbAAI01TS8uRz8nFwXeLUWPrAvbaR7UNvsOwUwxKIUpJk04edDoMMQbrlPbjd7IxoG8VBbUvTG1UKkztC1NA04hE0j_kr_l_zNWBsSn6u7dBRe1tr63xwepRmcH_Q38B3WmFLw |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_3390_axioms12111022 crossref_primary_10_1142_S1793557124500554 crossref_primary_10_1016_j_cagd_2018_09_006 crossref_primary_10_19113_sdufenbed_814400 crossref_primary_10_1142_S0219887816500626 crossref_primary_10_31801_cfsuasmas_794779 crossref_primary_10_1063_5_0217646 crossref_primary_10_15672_hujms_881876 crossref_primary_10_5269_bspm_v34i1_24392 crossref_primary_10_5269_bspm_v34i1_25480 crossref_primary_10_1016_j_amc_2013_03_077 crossref_primary_10_37394_23206_2021_20_22 crossref_primary_10_31590_ejosat_1093177 crossref_primary_10_1142_S1793557122501996 crossref_primary_10_3390_math11163495 crossref_primary_10_1007_s00170_013_5031_9 crossref_primary_10_21597_jist_696719 crossref_primary_10_1016_j_amc_2011_08_057 crossref_primary_10_31801_cfsuasmas_798620 crossref_primary_10_21597_jist_486275 crossref_primary_10_31801_cfsuasmas_1127781 crossref_primary_10_1007_s40314_024_02857_6 crossref_primary_10_53570_jnt_1036307 crossref_primary_10_1155_2021_3901527 crossref_primary_10_1016_j_amc_2015_03_067 crossref_primary_10_3390_sym15111986 crossref_primary_10_1142_S0219887821501140 crossref_primary_10_1142_S1793557116500741 crossref_primary_10_1155_2014_623408 crossref_primary_10_3934_math_20231047 crossref_primary_10_19113_sdufenbed_682334 |
Cites_doi | 10.1111/j.1467-8659.1985.tb00203.x 10.1111/j.1467-8659.1983.tb00151.x 10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2 10.1016/j.cad.2007.05.002 10.1016/j.cad.2007.08.006 10.1016/S0010-4485(03)00117-9 10.1111/j.1365-2818.1994.tb03511.x 10.1111/j.2153-3490.1968.tb00406.x |
ContentType | Journal Article |
Copyright | 2008 Elsevier Inc. 2008 INIST-CNRS |
Copyright_xml | – notice: 2008 Elsevier Inc. – notice: 2008 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.amc.2008.01.016 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 789 |
ExternalDocumentID | 20466471 10_1016_j_amc_2008_01_016 S0096300308000465 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AI. AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLZ HMJ HVGLF HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ RXW SBC SDF SDG SES SEW SME SPC SPCBC SSW SSZ T5K TAE TN5 VH1 VOH WH7 WUQ X6Y XPP ZMT ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW |
ID | FETCH-LOGICAL-c327t-e2516bc24e9a292bc1b4610ff32923d72d5f25a6d2274c1d7aed080d7db97e3a3 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:15:16 EDT 2025 Thu Apr 24 22:55:11 EDT 2025 Tue Jul 01 04:07:06 EDT 2025 Fri Feb 23 02:19:04 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | Surface family Common geodesic Ruled surface Marching-scale functions Numerical analysis Sufficient condition Applied mathematics Decomposition method Geodesic Surface |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-e2516bc24e9a292bc1b4610ff32923d72d5f25a6d2274c1d7aed080d7db97e3a3 |
PageCount | 9 |
ParticipantIDs | pascalfrancis_primary_20466471 crossref_citationtrail_10_1016_j_amc_2008_01_016 crossref_primary_10_1016_j_amc_2008_01_016 elsevier_sciencedirect_doi_10_1016_j_amc_2008_01_016 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-07-15 |
PublicationDateYYYYMMDD | 2008-07-15 |
PublicationDate_xml | – month: 07 year: 2008 text: 2008-07-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | New York, NY |
PublicationPlace_xml | – name: New York, NY |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2008 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Haw, Munchmeyer (bib7) 1983; 2 Haw (bib6) 1985; 4 Sanches-Reyes, Dorado (bib11) 2008; 40 L. Grundig, L. Ekert, E. Moncrieff, Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, in: T.T. Lan (Ed.), Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996. Heikes, Randall (bib8) 1995; 123 Heikes, Randall (bib9) 1995; 123 Wang, Tang, Tai (bib1) 2004; 36 Do Carmo (bib2) 1976 Williamson (bib10) 1968; 20 Paluszny (bib12) 2008; 40 Brond, Jeulin, Gateau, Jarrin, Serpe (bib3) 1994; 176 S. Bryson, Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows. Technical Report, NASA NAS,Number RNR-92-009; March 1992. Paluszny (10.1016/j.amc.2008.01.016_bib12) 2008; 40 Brond (10.1016/j.amc.2008.01.016_bib3) 1994; 176 10.1016/j.amc.2008.01.016_bib5 Haw (10.1016/j.amc.2008.01.016_bib6) 1985; 4 Haw (10.1016/j.amc.2008.01.016_bib7) 1983; 2 Heikes (10.1016/j.amc.2008.01.016_bib8) 1995; 123 Do Carmo (10.1016/j.amc.2008.01.016_bib2) 1976 Wang (10.1016/j.amc.2008.01.016_bib1) 2004; 36 10.1016/j.amc.2008.01.016_bib4 Heikes (10.1016/j.amc.2008.01.016_bib9) 1995; 123 Williamson (10.1016/j.amc.2008.01.016_bib10) 1968; 20 Sanches-Reyes (10.1016/j.amc.2008.01.016_bib11) 2008; 40 |
References_xml | – volume: 2 start-page: 225 year: 1983 end-page: 232 ident: bib7 article-title: Geodesic curves on patched polynomial surfaces publication-title: Comput. Graph. Forum – volume: 36 start-page: 447 year: 2004 end-page: 459 ident: bib1 article-title: Parametric representation of a surface pencil with a common spatial geodesic publication-title: Comput. Aided Des. – volume: 20 start-page: 642 year: 1968 end-page: 653 ident: bib10 article-title: Integration of the barotropic vorticity equation on a spherical geodesic grid publication-title: Tellus – volume: 40 start-page: 56 year: 2008 end-page: 61 ident: bib12 article-title: Cubic polynomial patches through geodesics publication-title: Comput. Aided Des. – volume: 176 start-page: 167 year: 1994 end-page: 177 ident: bib3 article-title: Estimation of the transport properties of polymer composites by geodesic propagation publication-title: J. Microsc. – volume: 123 start-page: 1881 year: 1995 end-page: 1887 ident: bib9 article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accuracy publication-title: Mon. Weath. Rev. – volume: 123 start-page: 1862 year: 1995 end-page: 1880 ident: bib8 article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part I: basic design and results of tests publication-title: Mon. Weath. Rev. – volume: 40 start-page: 49 year: 2008 end-page: 55 ident: bib11 article-title: Constrained design of polynomial surfaces from geodesic curves publication-title: Comput. Aided Des. – volume: 4 start-page: 137 year: 1985 end-page: 139 ident: bib6 article-title: An application of geodesic curves to sail design publication-title: Comput. Graph. Forum – reference: S. Bryson, Virtual spacetime: an environment for the visualization of curved spacetimes via geodesic flows. Technical Report, NASA NAS,Number RNR-92-009; March 1992. – reference: L. Grundig, L. Ekert, E. Moncrieff, Geodesic and semi-geodesic line algorithms for cutting pattern generation of architectural textile structures, in: T.T. Lan (Ed.), Proceedings of the Asia-Pacific Conference on Shell and Spatial Structures, Beijing, 1996. – year: 1976 ident: bib2 article-title: Differential Geometry of Curves and Surfaces – volume: 4 start-page: 137 issue: 2 year: 1985 ident: 10.1016/j.amc.2008.01.016_bib6 article-title: An application of geodesic curves to sail design publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.1985.tb00203.x – volume: 2 start-page: 225 issue: 4 year: 1983 ident: 10.1016/j.amc.2008.01.016_bib7 article-title: Geodesic curves on patched polynomial surfaces publication-title: Comput. Graph. Forum doi: 10.1111/j.1467-8659.1983.tb00151.x – volume: 123 start-page: 1862 year: 1995 ident: 10.1016/j.amc.2008.01.016_bib8 article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part I: basic design and results of tests publication-title: Mon. Weath. Rev. doi: 10.1175/1520-0493(1995)123<1862:NIOTSW>2.0.CO;2 – volume: 123 start-page: 1881 year: 1995 ident: 10.1016/j.amc.2008.01.016_bib9 article-title: Numerical integration of the shallow-water equations of a twisted icosahedral grid. Part II: a detailed description of the grid and an analysis of numerical accuracy publication-title: Mon. Weath. Rev. doi: 10.1175/1520-0493(1995)123<1881:NIOTSW>2.0.CO;2 – ident: 10.1016/j.amc.2008.01.016_bib5 – volume: 40 start-page: 49 issue: 1 year: 2008 ident: 10.1016/j.amc.2008.01.016_bib11 article-title: Constrained design of polynomial surfaces from geodesic curves publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2007.05.002 – volume: 40 start-page: 56 issue: 1 year: 2008 ident: 10.1016/j.amc.2008.01.016_bib12 article-title: Cubic polynomial patches through geodesics publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2007.08.006 – volume: 36 start-page: 447 issue: 5 year: 2004 ident: 10.1016/j.amc.2008.01.016_bib1 article-title: Parametric representation of a surface pencil with a common spatial geodesic publication-title: Comput. Aided Des. doi: 10.1016/S0010-4485(03)00117-9 – ident: 10.1016/j.amc.2008.01.016_bib4 – year: 1976 ident: 10.1016/j.amc.2008.01.016_bib2 – volume: 176 start-page: 167 year: 1994 ident: 10.1016/j.amc.2008.01.016_bib3 article-title: Estimation of the transport properties of polymer composites by geodesic propagation publication-title: J. Microsc. doi: 10.1111/j.1365-2818.1994.tb03511.x – volume: 20 start-page: 642 year: 1968 ident: 10.1016/j.amc.2008.01.016_bib10 article-title: Integration of the barotropic vorticity equation on a spherical geodesic grid publication-title: Tellus doi: 10.1111/j.2153-3490.1968.tb00406.x |
SSID | ssj0007614 |
Score | 2.0977774 |
Snippet | We analyzed the problem of constructing a surfaces family from a given spatial geodesic curve as in the work of Wang et al. [G.-J. Wang, K. Tang, C.-L. Tai,... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 781 |
SubjectTerms | Common geodesic Differential geometry Exact sciences and technology Functions of a complex variable Geometry Global analysis, analysis on manifolds Marching-scale functions Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Ruled surface Sciences and techniques of general use Surface family Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | A generalization of surfaces family with common spatial geodesic |
URI | https://dx.doi.org/10.1016/j.amc.2008.01.016 |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELZou4AQ4inKo_LAhBTwI47rjQpRFRBMILFF8asqgrbqY-W3c26cCAY6IHlJFDvJ-XS-s7_7DqELb6SnmtqEC60hQDEiUYKQxIG3TLUupHchOfnpORu8pg9v4m0D3Va5MAFWGW1_adNX1jreuY7SvJ6ORiHHVwW-KB58HojyRAO1GFcZqHard_84eK4NMkTqJRmzCjAvwqvDzRXMq_g0EVFJoWV_LU_b02IOQvNltYsfS1B_F-1E3xH3ys_bQxtuvI-2nmri1fkBuunhYUkkHfMr8cTj-XLmA_IKl7sZOOy9Yvhh0EA8D4hqGHToJtbBjB2i1_7dy-0giUUSEsOZXCQOHJRMG5Y6VTDFtKE6UKh7z-GKW8ms8EwUmWUQfxpqZeEsSMxKq5V0vOBHqDmejN0xwiblmlDjSerC-a1Q1BCb2q7phpLkhLQRqWSTm8ggHgpZfOQVVOw9B3HGypYUWtZGl3WXaUmfse7htBJ4_ksHcjDv67p1fk1O_SJGAne-pCf_G_cUbZbgEJlQcYaai9nSnYMHstAd1Lj6op2oZ99NPdk9 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT8IwFG8QD2qM8TPiB_bgyWTaruvKbhIjQQVOkHhb1i-DUSAMrv7tvrIO5SAHk162rN322r6-1_7e7yF0bZWwVFIdMC4lOCiKBwknJDBgLVMpM2GNC07u9uL2IHp-5a8V9FDGwjhYpdf9hU5faGt_585L824yHLoY38TxRTFn84CXxzfQZgTT183O268fnAf46QUVc-JAXoSVR5sLkFf2qTyekkKJ_1qcdidZDiKzRa6LXwtQax_tecsRN4uPO0AVMzpEO90l7Wp-hO6b-K2gkfbRlXhscT6fWoe7wsVeBnY7rxh-F8Yfzh2eGhp9M2NtoL-O0aD12H9oBz5FQqBYKGaBAfMkliqMTJKFSSgVlY5A3VoGV0yLUHMb8izWIXifimqRGQ3y0kLLRBiWsRNUHY1H5hRhFTFJqLIkMu70lidUER3phmq4hOSE1BApZZMqzx_u0lh8pCVQ7D0Fcfq8lhRKXEM3yyqTgjxj3cNRKfB0ZQSkoNzXVauvdM7yRSFxzPmCnv2v3Su01e53O2nnqfdyjrYLmIgIKL9A1dl0bi7BFpnJ-mKsfQMLGtoB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+generalization+of+surfaces+family+with+common+spatial+geodesic&rft.jtitle=Applied+mathematics+and+computation&rft.au=Kasap%2C+Emin&rft.au=Akyildiz%2C+F.+Talay&rft.au=Orbay%2C+Keziban&rft.date=2008-07-15&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=201&rft.issue=1&rft.spage=781&rft.epage=789&rft_id=info:doi/10.1016%2Fj.amc.2008.01.016&rft.externalDocID=S0096300308000465 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |