Influence of a low-Z thin substrate on a microwire hard x-ray source driven by a picosecond laser pulse for point-projection x-ray radiography
In the point-projection hard x-ray radiography of dense matter, for example, an inertial confinement fusion implosion capsule at stagnation time, a picosecond laser driven gold microwire is used to produce a short pulse point, bremsstrahlung hard x-ray source. The microwire was held by a low-Z CH th...
Saved in:
Published in | Physics of plasmas Vol. 27; no. 12 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.12.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In the point-projection hard x-ray radiography of dense matter, for example, an inertial confinement fusion implosion capsule at stagnation time, a picosecond laser driven gold microwire is used to produce a short pulse point, bremsstrahlung hard x-ray source. The microwire was held by a low-Z CH thin substrate commonly used to promote experimental performance. We explored the influence of the low-Z thin substrate on the microwire bremsstrahlung hard x-ray source via particle-in-cell and Monte Carlo simulations. It was shown that both of the microwires, with or without the low-Z thin substrate, could emit more intense hard x-ray radiation than the radiator buried in the equal-density substrate, which benefited from efficient electron recirculation. The freestanding microwire exhibited further enhanced electron recirculation compared to that with the low-Z thin substrate, while the increased hot electrons were only present for the energetic electrons of >1 MeV. Thus, the freestanding microwire could produce significantly more intense MeV gamma x-ray emission with respect to that with the substrate, but an ignorable increment was exhibited at the softer x-ray emission of 10–200 keV. These results provided valuable insights into the design of backlighter targets in point-projection x-ray radiography, such as a freestanding microwire being preferred in MeV gamma-ray radiography, while the microwire with the CH thin substrate could be used in the 10–200 keV hard x-ray Compton radiography of an implosion capsule. |
---|---|
AbstractList | In the point-projection hard x-ray radiography of dense matter, for example, an inertial confinement fusion implosion capsule at stagnation time, a picosecond laser driven gold microwire is used to produce a short pulse point, bremsstrahlung hard x-ray source. The microwire was held by a low-Z CH thin substrate commonly used to promote experimental performance. We explored the influence of the low-Z thin substrate on the microwire bremsstrahlung hard x-ray source via particle-in-cell and Monte Carlo simulations. It was shown that both of the microwires, with or without the low-Z thin substrate, could emit more intense hard x-ray radiation than the radiator buried in the equal-density substrate, which benefited from efficient electron recirculation. The freestanding microwire exhibited further enhanced electron recirculation compared to that with the low-Z thin substrate, while the increased hot electrons were only present for the energetic electrons of >1 MeV. Thus, the freestanding microwire could produce significantly more intense MeV gamma x-ray emission with respect to that with the substrate, but an ignorable increment was exhibited at the softer x-ray emission of 10–200 keV. These results provided valuable insights into the design of backlighter targets in point-projection x-ray radiography, such as a freestanding microwire being preferred in MeV gamma-ray radiography, while the microwire with the CH thin substrate could be used in the 10–200 keV hard x-ray Compton radiography of an implosion capsule. |
Author | Hu, Guang-yue Zheng, Jian Li, Meng-ting Huang, Lin-gen |
Author_xml | – sequence: 1 givenname: Meng-ting surname: Li fullname: Li, Meng-ting organization: CAS Key Laboratory of Geospace Environment and Department of Engineering and Applied Physics, University of Science and Technology of China – sequence: 2 givenname: Guang-yue surname: Hu fullname: Hu, Guang-yue organization: 4Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China – sequence: 3 givenname: Lin-gen surname: Huang fullname: Huang, Lin-gen organization: Helmholtz-Zentrum Dresden-Rossendorf (HZDR) – sequence: 4 givenname: Jian surname: Zheng fullname: Zheng, Jian organization: 4Collaborative Innovation Center of IFSA (CICIFSA), Shanghai Jiao Tong University, Shanghai 200240, China |
BookMark | eNp9kF9LwzAUxYMoqNMHv0HAJ4XOmzZNukcZ_hkMfFEQX0raJC6jS2rSbu5L-JnN2EQQ9SkX7u-c3HOO0b51ViF0RmBIgGVX-RAgzUgx2kNHBIpRwhmn-5uZQ8IYfT5ExyHMAYCyvDhCHxOrm17ZWmGnscCNWyUvuJsZi0Nfhc6LLm5s3CxM7d3KeIVnwkv8nnixxsH1PkqlN0tlcbWOXGtqF1TtrMSNCMrjtm-CwtrFyRnbJa13c1V3JrpuTbyQxr160c7WJ-hAi4if7t4Berq9eRzfJ9OHu8n4eprUWcq7RJGK5DzVkHMoNFCZ6kxTyqhQlIsqB8lqYJQUKUtBjypGRMUqlimhQQotswE63_rGY956FbpyHpPY-GWZUp5mHHLgkbrYUjF5CF7psvVmIfy6JFBu6i7zcld3ZK9-sLXpxCZl7NA0vyout4rwRf5r_ye8dP4bLFups0_UP6FF |
CODEN | PHPAEN |
CitedBy_id | crossref_primary_10_1063_5_0077222 crossref_primary_10_1364_OE_512301 |
Cites_doi | 10.1103/PhysRevLett.99.185002 10.1088/1009-0630/14/10/02 10.1016/j.jcp.2008.03.043 10.1063/1.5081800 10.1103/PhysRevLett.69.1383 10.1103/PhysRevE.83.046401 10.1103/PhysRevLett.116.155001 10.1103/PhysRevLett.105.015005 10.1063/1.1781625 10.1063/1.3567499 10.1063/1.872821 10.1063/1.4900867 10.1063/1.2178775 10.1016/j.hedp.2013.05.006 10.1063/1.4979802 10.1103/PhysRevLett.109.195005 10.1063/1.4990703 10.1063/1.4936095 10.1088/1361-6587/ab9a60 10.1007/BF01366453 10.1063/1.3249691 10.1063/1.2953593 10.1103/PhysRevE.89.033105 10.1063/1.3076207 10.1103/PhysRevLett.97.235001 10.1063/1.2889449 10.1103/PhysRevE.91.033107 10.1103/PhysRevLett.112.195001 10.1103/PhysRevE.80.056407 10.1063/1.3486520 10.1063/1.4953891 10.1017/S0263034605050585 10.1038/s41467-018-02829-5 10.1016/S0168-9002(03)01368-8 10.1063/1.4989457 10.1103/PhysRevE.76.056402 10.1088/0022-3727/15/5/012 10.1063/1.2957918 10.1103/PhysRevLett.105.135001 10.1063/1.3531979 10.1103/PhysRevLett.90.155001 10.1063/1.4983137 10.1103/PhysRevLett.102.055001 10.1063/1.5040410 10.1063/1.4865825 10.1063/1.3469576 10.1063/1.3582134 10.1088/1741-4326/ab1ff9 10.1063/1.4865230 10.1063/1.4891713 10.1063/1.4866587 10.1088/0741-3335/53/2/025007 10.1063/1.4848759 10.1103/PhysRevE.79.066406 10.1063/1.4978493 10.1063/1.2472371 10.1063/1.2899317 10.1103/PhysRevLett.96.165003 10.1063/1.4954383 10.1103/PhysRevLett.101.075004 10.1103/PhysRevLett.103.245004 10.1063/1.2188912 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0023189 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1089-7674 |
ExternalDocumentID | 10_1063_5_0023189 pop |
GrantInformation_xml | – fundername: Open Fund of the State Key Laboratory of High Field Laser Physics – fundername: Fundamental Research Funds for the Central Universities funderid: https://doi.org/10.13039/501100012226 – fundername: Science Challenge Project grantid: TZ2016005 funderid: https://doi.org/10.13039/501100013287 – fundername: National Natural Science Foundation of China grantid: 11775223; 11375197; 11605200; and 11275202 funderid: https://doi.org/10.13039/501100001809 – fundername: Strategic Priority Research Program of Chinese Academy of Sciences grantid: XDB16000000 |
GroupedDBID | -~X 0ZJ 123 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABEFF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACXMS ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 N9A NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS T9H TN5 WH7 XFK AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-e1b1572f05708f04d2f3f4464ae47ab50d6c064182620f9b61ab6b63eaf0dafd3 |
ISSN | 1070-664X |
IngestDate | Sun Jun 29 12:46:33 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Tue Jul 01 01:15:14 EDT 2025 Thu Jun 23 13:36:25 EDT 2022 Fri Jun 21 00:13:57 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | Published under license by AIP Publishing. 1070-664X/2020/27(12)/123107/11/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-e1b1572f05708f04d2f3f4464ae47ab50d6c064182620f9b61ab6b63eaf0dafd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9923-8187 0000-0002-7491-0627 0000-0001-8290-4772 |
PQID | 2472370507 |
PQPubID | 2050668 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2472370507 crossref_primary_10_1063_5_0023189 crossref_citationtrail_10_1063_5_0023189 scitation_primary_10_1063_5_0023189 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201200 2020-12-01 20201201 |
PublicationDateYYYYMMDD | 2020-12-01 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201200 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of plasmas |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Tommasini, MacPhee, Hey, Ma, Chen, Izumi, Unites, MacKinnon, Hatchett, Remington, Park, Springer, Koch, Landen, Seely, Holland, Hudson (c4) 2008 Li, Yuan, Xu, Zheng, Sheng, Chen, Ma, Liang, Yu, Zhang, Liu, Wang, Wei, Zhao, Jin, Zhang (c50) 2006 Paradkar, Wei, Yabuuchi, Stephens, Haines, Krasheninnikov, Beg (c52) 2011 Brambrink, Wei, Barbrel, Audebert, Benuzzi-Mounaix, Boehly, Endo, Gregory, Kimura, Kodama, Ozaki, Park, Koenig (c9) 2009 Jarrott, Kemp, Divol, Mariscal, Westover, McGuffey, Beg, Suggit, Chen, Hey, Maddox, Hawreliak, Park, Remington, Wei, MacPhee (c12) 2014 Chen, Wilks (c22) 2005 Wilks, Kruer, Tabak, Langdon (c35) 1992 Barrios, Regan, Fournier, Epstein, Smith, Lazicki, Rygg, Fratanduono, Eggert, Park, Huntington, Bradley, Landen, Collins (c3) 2014 Theobald, Akli, Clarke, Delettrez, Freeman, Glenzer, Green, Gregori, Heathcote, Izumi, King, Koch, Kuba, Lancaster, MacKinnon, Key, Mileham, Myatt, Neely, Norreys, Park, Pasley, Patel, Regan, Sawada, Shepherd, Snavely, Stephens, Stoeckl, Storm, Zhang, Sangster (c32) 2006 Maddox, Park, Remington, Chen, Chen, Prisbrey, Comley, Back, Szabo, Seely, Feldman, Hudson, Seltzer, Haugh, Ali (c15) 2011 Iwata, Mima, Sentoku, Yogo, Nagatomo, Nishimura, Azechi (c63) 2017 Chen, Shepherd, Chung, Kemp, Hansen, Wilks, Ping, Widmann, Fournier, Dyer, Faenov, Pikuz, Beiersdorfer (c44) 2007 Hu, Lei, Wang, Huang, Wang, Wang, Xu, Shen, Liu, Yu, Li, Xu (c48) 2010 Iwata, Kojima, Sentoku, Hata, Mima (c61) 2018 Kim, Kemp, Wilks, Kalantar, Kerr, Mariscal, Beg, McGuffey, Ma (c59) 2018 McKeever, Makita, Nersisyan, Dzelzainis, White, Kettle, Dromey, Zepf, Sarri, Doria, Ahmed, Lewis, Riley, Robinson (c37) 2015 Kritcher, Neumayer, Brown, Davis, Döppner, Falcone, Gericke, Gregori, Holst, Landen (c16) 2009 Agostinelli, Allison, Amako, Apostolakis, Araujo, Arce, Asai, Axen, Banerjee, Barrand, Behner, Bellagamba, Boudreau, Broglia, Brunengo, Burkhardt, Chauvie, Chuma, Chytracek, Cooperman, Cosmo, Degtyarenko, Dell'Acqua, Depaola, Dietrich, Enami, Feliciello, Ferguson, Fesefeldt, Folger, Foppiano, Forti, Garelli, Giani, Giannitrapani, Gibin, Gómez Cadenas, González, Gracia Abril, Greeniaus, Greiner, Grichine, Grossheim, Guatelli, Gumplinger, Hamatsu, Hashimoto, Hasui, Heikkinen, Howard, Ivanchenko, Johnson, Jones, Kallenbach, Kanaya, Kawabata, Kawabata, Kawaguti, Kelner, Kent, Kimura, Kodama, Kokoulin, Kossov, Kurashige, Lamanna, Lampén, Lara, Lefebure, Lei, Liendl, Lockman, Longo, Magni, Maire, Medernach, Minamimoto, Mora de Freitas, Morita, Murakami, Nagamatu, Nartallo, Nieminen, Nishimura, Ohtsubo, Okamura, O'Neale, Oohata, Paech, Perl, Pfeiffer, Pia, Ranjard, Rybin, Sadilov, Salvo, Santin, Sasaki, Savvas, Sawada, Scherer, Sei, Sirotenko, Smith, Starkov, Stoecker, Sulkimo, Takahata, Tanaka, Tcherniaev, Safai Tehrani, Tropeano, Truscott, Uno, Urban, Urban, Verderi, Walkden, Wander, Weber, Wellisch, Wenaus, Williams, Wright, Yamada, Yoshida, Zschiesche (c42) 2003 Li, Hu, Huang, Zheng (c39) 2020 Makita, Nersisyan, McKeever, Dzelzainis, White, Kettle, Dromey, Doria, Zepf, Lewis, Robinson, Hansen, Riley (c34) 2014 Nilson, Theobald, Myatt, Stoeckl, Storm, Gotchev, Zuegel, Betti, Meyerhofer, Sangster (c29) 2008 Myatt, Theobald, Delettrez, Stoeckl, Storm, Sangster, Maximov, Short (c27) 2007 Sorokovikova, Arefiev, McGuffey, Qiao, Robinson, Wei, McLean, Beg (c53) 2016 Kemp, Sentoku, Tabak (c56) 2008 Park, Maddox, Giraldez, Hatchett, Hudson, Izumi, Key, Pape, MacKinnon, MacPhee, Patel, Phillips, Remington, Seely, Tommasini, Town, Workman, Brambrink (c19) 2008 Huang, Schlenvoigt, Takabe, Cowan (c26) 2017 Mishra, Sentoku, Kemp (c58) 2009 Klein, Nishina (c20) 1929 Ramakrishna, Kar, Robinson, Adams, Markey, Quinn, Yuan, McKenna, Lancaster, Green, Scott, Norreys, Schreiber, Zepf (c47) 2010 Buffechoux, Psikal, Nakatsutsumi, Romagnani, Andreev, Zeil, Amin, Antici, Burris-Mog, Compant-La-Fontaine, d'Humieres, Fourmaux, Gaillard, Gobet, Hannachi, Kraft, Mancic, Plaisir, Sarri, Tarisien, Toncian, Schramm, Tampo, Audebert, Willi, Cowan, Pepin, Tikhonchuk, Borghesi, Fuchs (c24) 2010 Albertazzi, Chen, Antici, Boker, Borghesi, Breil, Dervieux, Feugeas, Lancia, Nakatsutsumi, Nicolaı, Romagnagni, Shepherd, Sentoku, Starodubtsev, Swantusch, Tikhonchuk, Willi, d'Humières, Pepin, Fuchs (c25) 2015 Sawada, Lee, Shiroto, Nagatomo, Arikawa, Nishimura, Ueda, Shigemori, Sunahara, Ohnishi, Beg, Theobald, Pérez, Patel, Fujioka (c11) 2016 Sentoku, Kemp (c41) 2008 Kemp, Sentoku, Sotnikov, Wilks (c46) 2006 Kar, Robinson, Carroll, Lundh, Markey, McKenna, Norreys, Zepf (c49) 2009 Iwata, Sentoku, Sano, Mima (c60) 2019 Borm, Khaghani, Neumayer (c45) 2019 Park, Chambers, Chung, Clarke, Eagleton, Giraldez, Goldsack, Heathcote, Izumi, Key, King, Koch, Landen, Nikroo, Patel, Price, Remington, Robey, Snavely, Steinman, Stephens, Stoeckl, Storm, Tabak, Theobald, Town, Wickersham, Zhang (c17) 2006 Brambrink, Wei, Barbrel, Audebert, Benuzzi-Mounaix, Boehly, Endo, Gregory, Kimura, Kodama, Ozaki, Park, le Gloahec, Koenig (c10) 2009 Tommasini, Bailey, Bradley, Bowers, Chen, Di Nicola, Nicola, Gururangan, Hall, Hardy, Hargrove, Hermann, Hohenberger, Holder, Hsing, Izumi, Kalantar, Khan, Kroll, Landen, Lawson, Martinez, Masters, Nafziger, Nagel, Nikroo, Okui, Palmer, Sigurdsson, Vonhof, Wallace, Zobrist (c7) 2017 Neumayer, Aurand, Basko, Ecker, Gibbon, Hochhaus, Karmakar, Kazakov, Kühl, Labaune, Rosmej, Tauschwitz, Zielbauer, Zimmer (c28) 2010 McCall (c64) 1982 Kemp, Divol (c55) 2012 Tommasini, Hatchett, Hey, Iglesias, Izumi, Koch, Landen, MacKinnon, Sorce, Delettrez, Glebov, Sangster, Stoeckl (c5) 2011 Hu, Zhang, Zheng, Lei, Shen, Xu, Zhang, Yang, Yang, Wei, Li, Ding (c14) 2012 Sawada, Wei, Chawla, Morace, Akli, Yabuuchi, Nakanii, Key, Patel, Mackinnon, McLean, Stephens, Beg (c31) 2014 Pukhov, Meyer-ter-Vehn (c36) 1998 Chrisman, Sentoku, Kemp (c62) 2008 Nagel, Chen, Park, Foord, Hazi, Hilsabeck, Kerr, Marley, Williams (c38) 2017 Huang, Kluge, Cowan (c51) 2016 Chen, Forget, Fourmaux, Kieffer, Krol, Chamberlain, Hou, Nees, Mourou (c18) 2004 Morace, Fedeli, Batani, Baton, Beg, Hulin, Jarrott, Margarit, Nakai, Nakatsutsumi, Nicolai, Piovella, Wei, Vaisseau, Volpe, Santos (c8) 2014 Fontaine, Courtois, Lefebvre, Bourgade, Landoas, Thorp, Stoeckl (c33) 2013 Kemp, Sentoku, Tabak (c57) 2009 Ceccotti, Levy, Popescu, Reau, D'Oliveira, Monot, Geindre, Lefebvre, Martin (c23) 2007 Maddox, Park, Remington, Izumi, Chen, Chen, Kimminau, Ali, Haugh, Ma (c21) 2011 Quinn, Yuan, Lin, Carroll, Tresca, Gray, Coury, Li, Li, Brenner, Robinson, Neely, Zielbauer, Aurand, Fils, Kuehl, McKenna (c30) 2011 Rygg, Jones, Field, Barrios, Benedetti, Collins, Eder, Edwards, Kline, Kroll, Landen, Ma, Pak, Peterson, Raman, Town, Bradley (c2) 2014 Chen, Hermann, Kalantar, Martinez, Nicola, Tommasini, Landen, Alessi, Bowers, Browning, Brunton, Budge, Crane, Di Nicola, Doppner, Dixit, Erbert, Fishler, Halpin, Hamamoto, Heebner, Hernandez, Hohenberger, Homoelle, Honig, Hsing, Izumi, Khan, LaFortune, Lawson, Nagel, Negres, Novikova, Orth, Pelz, Prantil, Rushford, Shaw, Sherlock, Sigurdsson, Wegner, Widmayer, Williams, Williams, Whitman, Yang (c6) 2017 Sentoku, Mima, Kaw, Nishikawa (c43) 2003 Vaughan, Moore, Smalyuk, Wallace, Gate, Glendinning, McAlpin, Park, Sorce, Stevenson (c13) 2013 Krygier, Schumacher, Freeman (c54) 2014 (2023062118075655600_c20) 1929; 52 (2023062118075655600_c64) 1982; 15 (2023062118075655600_c22) 2005; 23 (2023062118075655600_c30) 2011; 53 (2023062118075655600_c41) 2008; 227 (2023062118075655600_c62) 2008; 15 (2023062118075655600_c2) 2014; 112 (2023062118075655600_c17) 2006; 13 (2023062118075655600_c61) 2018; 9 (2023062118075655600_c53) 2016; 116 (2023062118075655600_c13) 2013; 9 (2023062118075655600_c18) 2004; 11 (2023062118075655600_c31) 2014; 89 (2023062118075655600_c51) 2016; 23 (2023062118075655600_c15) 2011; 18 (2023062118075655600_c24) 2010; 105 (2023062118075655600_c21) 2011; 82 (2023062118075655600_c60) 2019; 59 (2023062118075655600_c11) 2016; 108 (2023062118075655600_c35) 1992; 69 (2023062118075655600_c1) 2004 (2023062118075655600_c33) 2013; 20 (2023062118075655600_c44) 2007; 76 (2023062118075655600_c47) 2010; 105 (2023062118075655600_c27) 2007; 14 (2023062118075655600_c50) 2006; 96 (2023062118075655600_c36) 1998; 5 (2023062118075655600_c63) 2017; 24 (2023062118075655600_c58) 2009; 16 (2023062118075655600_c59) 2018; 25 (2023062118075655600_c10) 2009; 16 (2023062118075655600_c38) 2017; 110 (2023062118075655600_c14) 2012; 14 (2023062118075655600_c25) 2015; 22 (2023062118075655600_c57) 2009; 79 (2023062118075655600_c56) 2008; 101 (2023062118075655600_c49) 2009; 102 (2023062118075655600_c28) 2010; 17 (2023062118075655600_c54) 2014; 21 (2023062118075655600_c8) 2014; 21 (2023062118075655600_c37) 2015; 91 (2023062118075655600_c7) 2017; 24 (2023062118075655600_c5) 2011; 18 (2023062118075655600_c29) 2008; 15 (2023062118075655600_c12) 2014; 21 (2023062118075655600_c45) 2019; 26 (2023062118075655600_c3) 2014; 85 (2023062118075655600_c39) 2020; 62 (2023062118075655600_c23) 2007; 99 2023062118075655600_c40 (2023062118075655600_c42) 2003; 506 (2023062118075655600_c4) 2008; 79 (2023062118075655600_c46) 2006; 97 (2023062118075655600_c55) 2012; 109 (2023062118075655600_c34) 2014; 21 (2023062118075655600_c48) 2010; 17 (2023062118075655600_c6) 2017; 24 (2023062118075655600_c43) 2003; 90 (2023062118075655600_c32) 2006; 13 (2023062118075655600_c16) 2009; 103 (2023062118075655600_c52) 2011; 83 (2023062118075655600_c19) 2008; 15 (2023062118075655600_c9) 2009; 80 (2023062118075655600_c26) 2017; 24 |
References_xml | – start-page: 144102 year: 2017 ident: c38 publication-title: Appl. Phys. Lett. – start-page: 155001 year: 2016 ident: c53 publication-title: Phys. Rev. Lett. – start-page: 235001 year: 2006 ident: c46 publication-title: Phys. Rev. Lett. – start-page: 623 year: 2018 ident: c61 publication-title: Nat. Commun. – start-page: 103103 year: 2010 ident: c28 publication-title: Phys. Plasmas – start-page: 123108 year: 2015 ident: c25 publication-title: Phys. Plasmas – start-page: 033105 year: 2014 ident: c31 publication-title: Phys. Rev. E – start-page: 095006 year: 2020 ident: c39 publication-title: Plasma Phys. Controlled Fusion – start-page: 254101 year: 2016 ident: c11 publication-title: Appl. Phys. Lett. – start-page: 1383 year: 1992 ident: c35 publication-title: Phys. Rev. Lett. – start-page: 864 year: 2012 ident: c14 publication-title: Plasma Sci. Technol. – start-page: 4439 year: 2004 ident: c18 publication-title: Phys. Plasmas – start-page: 063112 year: 2016 ident: c51 publication-title: Phys. Plasmas – start-page: 10E901 year: 2008 ident: c4 publication-title: Rev. Sci. Instrum. – start-page: 195001 year: 2014 ident: c2 publication-title: Phys. Rev. Lett. – start-page: 250 year: 2003 ident: c42 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A – start-page: 056309 year: 2011 ident: c5 publication-title: Phys. Plasmas – start-page: 053104 year: 2017 ident: c7 publication-title: Phys. Plasmas – start-page: 023113 year: 2014 ident: c34 publication-title: Phys. Plasmas – start-page: 411 year: 2005 ident: c22 publication-title: Laser Part. Beams – start-page: 11D502 year: 2014 ident: c3 publication-title: Rev. Sci. Instrum. – start-page: 023111 year: 2011 ident: c21 publication-title: Rev. Sci. Instrum. – start-page: 083102 year: 2010 ident: c48 publication-title: Phys. Plasmas – start-page: 195005 year: 2012 ident: c55 publication-title: Phys. Rev. Lett. – start-page: 031211 year: 2014 ident: c12 publication-title: Phys. Plasmas – start-page: 066406 year: 2009 ident: c57 publication-title: Phys. Rev. E – start-page: 056309 year: 2008 ident: c62 publication-title: Phys. Plasmas – start-page: 033112 year: 2017 ident: c6 publication-title: Phys. Plasmas – start-page: 043102 year: 2006 ident: c32 publication-title: Phys. Plasmas – start-page: 056301 year: 2007 ident: c27 publication-title: Phys. Plasmas – start-page: 023109 year: 2019 ident: c45 publication-title: Phys. Plasmas – start-page: 245004 year: 2009 ident: c16 publication-title: Phys. Rev. Lett. – start-page: 073111 year: 2017 ident: c63 publication-title: Phys. Plasmas – start-page: 072705 year: 2008 ident: c19 publication-title: Phys. Plasmas – start-page: 103115 year: 2017 ident: c26 publication-title: Phys. Plasmas – start-page: 823 year: 1982 ident: c64 publication-title: J. Phys. D: Appl. Phys. – start-page: 6846 year: 2008 ident: c41 publication-title: J. Comput. Phys. – start-page: 056402 year: 2007 ident: c44 publication-title: Phys. Rev. E – start-page: 185002 year: 2007 ident: c23 publication-title: Phys. Rev. Lett. – start-page: 853 year: 1929 ident: c20 publication-title: Z. Phys. – start-page: 102712 year: 2014 ident: c8 publication-title: Phys. Plasmas – start-page: 056407 year: 2009 ident: c9 publication-title: Phys. Rev. E – start-page: 112704 year: 2009 ident: c58 publication-title: Phys. Plasmas – start-page: 056709 year: 2011 ident: c15 publication-title: Phys. Plasmas – start-page: 046401 year: 2011 ident: c52 publication-title: Phys. Rev. E – start-page: 155001 year: 2003 ident: c43 publication-title: Phys. Rev. Lett. – start-page: 033101 year: 2009 ident: c10 publication-title: Phys. Plasmas – start-page: 023112 year: 2014 ident: c54 publication-title: Phys. Plasmas – start-page: 015005 year: 2010 ident: c24 publication-title: Phys. Rev. Lett. – start-page: 135001 year: 2010 ident: c47 publication-title: Phys. Rev. Lett. – start-page: 055001 year: 2009 ident: c49 publication-title: Phys. Rev. Lett. – start-page: 165003 year: 2006 ident: c50 publication-title: Phys. Rev. Lett. – start-page: 083109 year: 2018 ident: c59 publication-title: Phys. Plasmas – start-page: 025007 year: 2011 ident: c30 publication-title: Plasma Phys. Controlled Fusion – start-page: 056309 year: 2006 ident: c17 publication-title: Phys. Plasmas – start-page: 056308 year: 2008 ident: c29 publication-title: Phys. Plasmas – start-page: 086035 year: 2019 ident: c60 publication-title: Nucl. Fusion – start-page: 123111 year: 2013 ident: c33 publication-title: Phys. Plasmas – start-page: 075004 year: 2008 ident: c56 publication-title: Phys. Rev. Lett. – start-page: 635 year: 2013 ident: c13 publication-title: High Energy Density Phys. – start-page: 1880 year: 1998 ident: c36 publication-title: Phys. Plasmas – start-page: 033107 year: 2015 ident: c37 publication-title: Phys. Rev. E – volume: 99 start-page: 185002 issue: 18 year: 2007 ident: 2023062118075655600_c23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.185002 – volume: 14 start-page: 864 issue: 10 year: 2012 ident: 2023062118075655600_c14 publication-title: Plasma Sci. Technol. doi: 10.1088/1009-0630/14/10/02 – volume: 227 start-page: 6846 issue: 14 year: 2008 ident: 2023062118075655600_c41 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.03.043 – volume: 26 start-page: 023109 issue: 2 year: 2019 ident: 2023062118075655600_c45 publication-title: Phys. Plasmas doi: 10.1063/1.5081800 – volume: 69 start-page: 1383 issue: 9 year: 1992 ident: 2023062118075655600_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.69.1383 – volume: 83 start-page: 046401 issue: 4 Pt 2 year: 2011 ident: 2023062118075655600_c52 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.83.046401 – volume: 116 start-page: 155001 issue: 15 year: 2016 ident: 2023062118075655600_c53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.155001 – volume: 105 start-page: 015005 issue: 1 year: 2010 ident: 2023062118075655600_c24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.015005 – volume: 11 start-page: 4439 issue: 9 year: 2004 ident: 2023062118075655600_c18 publication-title: Phys. Plasmas doi: 10.1063/1.1781625 – volume: 18 start-page: 056309 issue: 5 year: 2011 ident: 2023062118075655600_c5 publication-title: Phys. Plasmas doi: 10.1063/1.3567499 – volume: 5 start-page: 1880 issue: 5 year: 1998 ident: 2023062118075655600_c36 publication-title: Phys. Plasmas doi: 10.1063/1.872821 – volume: 21 start-page: 102712 issue: 10 year: 2014 ident: 2023062118075655600_c8 publication-title: Phys. Plasmas doi: 10.1063/1.4900867 – volume: 13 start-page: 056309 issue: 5 year: 2006 ident: 2023062118075655600_c17 publication-title: Phys. Plasmas doi: 10.1063/1.2178775 – volume: 9 start-page: 635 issue: 3 year: 2013 ident: 2023062118075655600_c13 publication-title: High Energy Density Phys. doi: 10.1016/j.hedp.2013.05.006 – volume: 110 start-page: 144102 issue: 14 year: 2017 ident: 2023062118075655600_c38 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4979802 – volume: 109 start-page: 195005 issue: 19 year: 2012 ident: 2023062118075655600_c55 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.195005 – volume: 24 start-page: 073111 issue: 7 year: 2017 ident: 2023062118075655600_c63 publication-title: Phys. Plasmas doi: 10.1063/1.4990703 – volume: 22 start-page: 123108 year: 2015 ident: 2023062118075655600_c25 publication-title: Phys. Plasmas doi: 10.1063/1.4936095 – volume: 62 start-page: 095006 year: 2020 ident: 2023062118075655600_c39 publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/1361-6587/ab9a60 – volume: 52 start-page: 853 issue: 11–12 year: 1929 ident: 2023062118075655600_c20 publication-title: Z. Phys. doi: 10.1007/BF01366453 – volume: 16 start-page: 112704 issue: 11 year: 2009 ident: 2023062118075655600_c58 publication-title: Phys. Plasmas doi: 10.1063/1.3249691 – volume: 79 start-page: 10E901 issue: 10 year: 2008 ident: 2023062118075655600_c4 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2953593 – volume: 89 start-page: 033105 issue: 3 year: 2014 ident: 2023062118075655600_c31 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.89.033105 – volume: 16 start-page: 033101 issue: 3 year: 2009 ident: 2023062118075655600_c10 publication-title: Phys. Plasmas doi: 10.1063/1.3076207 – volume: 97 start-page: 235001 issue: 23 year: 2006 ident: 2023062118075655600_c46 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.97.235001 – volume: 15 start-page: 056308 issue: 5 year: 2008 ident: 2023062118075655600_c29 publication-title: Phys. Plasmas doi: 10.1063/1.2889449 – volume: 91 start-page: 033107 issue: 3 year: 2015 ident: 2023062118075655600_c37 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.91.033107 – volume: 112 start-page: 195001 issue: 19 year: 2014 ident: 2023062118075655600_c2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.195001 – volume: 80 start-page: 056407 issue: 5 Pt 2 year: 2009 ident: 2023062118075655600_c9 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.80.056407 – volume-title: The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter year: 2004 ident: 2023062118075655600_c1 – volume: 17 start-page: 103103 issue: 10 year: 2010 ident: 2023062118075655600_c28 publication-title: Phys. Plasmas doi: 10.1063/1.3486520 – volume: 23 start-page: 063112 issue: 6 year: 2016 ident: 2023062118075655600_c51 publication-title: Phys. Plasmas doi: 10.1063/1.4953891 – volume: 23 start-page: 411 issue: 4 year: 2005 ident: 2023062118075655600_c22 publication-title: Laser Part. Beams doi: 10.1017/S0263034605050585 – volume: 9 start-page: 623 issue: 1 year: 2018 ident: 2023062118075655600_c61 publication-title: Nat. Commun. doi: 10.1038/s41467-018-02829-5 – volume: 506 start-page: 250 issue: 3 year: 2003 ident: 2023062118075655600_c42 publication-title: Nucl. Instrum. Methods Phys. Res., Sect. A doi: 10.1016/S0168-9002(03)01368-8 – volume: 24 start-page: 103115 year: 2017 ident: 2023062118075655600_c26 publication-title: Phys. Plasmas doi: 10.1063/1.4989457 – volume: 76 start-page: 056402 issue: 5 year: 2007 ident: 2023062118075655600_c44 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.76.056402 – ident: 2023062118075655600_c40 – volume: 15 start-page: 823 issue: 5 year: 1982 ident: 2023062118075655600_c64 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/15/5/012 – volume: 15 start-page: 072705 issue: 7 year: 2008 ident: 2023062118075655600_c19 publication-title: Phys. Plasmas doi: 10.1063/1.2957918 – volume: 105 start-page: 135001 issue: 13 year: 2010 ident: 2023062118075655600_c47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.135001 – volume: 82 start-page: 023111 issue: 2 year: 2011 ident: 2023062118075655600_c21 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.3531979 – volume: 90 start-page: 155001 issue: 15 year: 2003 ident: 2023062118075655600_c43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.155001 – volume: 24 start-page: 053104 issue: 5 year: 2017 ident: 2023062118075655600_c7 publication-title: Phys. Plasmas doi: 10.1063/1.4983137 – volume: 102 start-page: 055001 issue: 5 year: 2009 ident: 2023062118075655600_c49 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.055001 – volume: 25 start-page: 083109 issue: 8 year: 2018 ident: 2023062118075655600_c59 publication-title: Phys. Plasmas doi: 10.1063/1.5040410 – volume: 21 start-page: 023113 issue: 2 year: 2014 ident: 2023062118075655600_c34 publication-title: Phys. Plasmas doi: 10.1063/1.4865825 – volume: 17 start-page: 083102 issue: 8 year: 2010 ident: 2023062118075655600_c48 publication-title: Phys. Plasmas doi: 10.1063/1.3469576 – volume: 18 start-page: 056709 issue: 5 year: 2011 ident: 2023062118075655600_c15 publication-title: Phys. Plasmas doi: 10.1063/1.3582134 – volume: 59 start-page: 086035 issue: 8 year: 2019 ident: 2023062118075655600_c60 publication-title: Nucl. Fusion doi: 10.1088/1741-4326/ab1ff9 – volume: 21 start-page: 031211 issue: 3 year: 2014 ident: 2023062118075655600_c12 publication-title: Phys. Plasmas doi: 10.1063/1.4865230 – volume: 85 start-page: 11D502 issue: 11 year: 2014 ident: 2023062118075655600_c3 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4891713 – volume: 21 start-page: 023112 issue: 2 year: 2014 ident: 2023062118075655600_c54 publication-title: Phys. Plasmas doi: 10.1063/1.4866587 – volume: 53 start-page: 025007 issue: 2 year: 2011 ident: 2023062118075655600_c30 publication-title: Plasma Phys. Controlled Fusion doi: 10.1088/0741-3335/53/2/025007 – volume: 20 start-page: 123111 issue: 12 year: 2013 ident: 2023062118075655600_c33 publication-title: Phys. Plasmas doi: 10.1063/1.4848759 – volume: 79 start-page: 066406 issue: 6 Pt 2 year: 2009 ident: 2023062118075655600_c57 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.79.066406 – volume: 24 start-page: 033112 issue: 3 year: 2017 ident: 2023062118075655600_c6 publication-title: Phys. Plasmas doi: 10.1063/1.4978493 – volume: 14 start-page: 056301 issue: 5 year: 2007 ident: 2023062118075655600_c27 publication-title: Phys. Plasmas doi: 10.1063/1.2472371 – volume: 15 start-page: 056309 issue: 5 year: 2008 ident: 2023062118075655600_c62 publication-title: Phys. Plasmas doi: 10.1063/1.2899317 – volume: 96 start-page: 165003 issue: 16 year: 2006 ident: 2023062118075655600_c50 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.165003 – volume: 108 start-page: 254101 issue: 25 year: 2016 ident: 2023062118075655600_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4954383 – volume: 101 start-page: 075004 issue: 7 year: 2008 ident: 2023062118075655600_c56 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.075004 – volume: 103 start-page: 245004 issue: 24 year: 2009 ident: 2023062118075655600_c16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.103.245004 – volume: 13 start-page: 043102 issue: 4 year: 2006 ident: 2023062118075655600_c32 publication-title: Phys. Plasmas doi: 10.1063/1.2188912 |
SSID | ssj0004658 |
Score | 2.3399255 |
Snippet | In the point-projection hard x-ray radiography of dense matter, for example, an inertial confinement fusion implosion capsule at stagnation time, a picosecond... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Bremsstrahlung Emission Gamma rays Hot electrons Inertial confinement fusion Particle in cell technique Plasma physics Projection Radiators Radiography Short pulses Substrates X ray sources X-ray radiography |
Title | Influence of a low-Z thin substrate on a microwire hard x-ray source driven by a picosecond laser pulse for point-projection x-ray radiography |
URI | http://dx.doi.org/10.1063/5.0023189 https://www.proquest.com/docview/2472370507 |
Volume | 27 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaWrRBcEE-xUJAFHJAil8TxJptjxUMFUS60UtVL5MQ2rFSSaJttWX4Ev5kZ23mAVqhwiVZea7Ty92U8nv1mTMgLnUUqVlwx2ItLJrTQTKooY6XA5k9xUaa2HcPhp-TgWHw4mZ9MJmakWlq3xV75Y2tdyf-gCmOAK1bJ_gOyvVEYgM-ALzwBYXheCeP33Q0jrsrxrL5kpxBJLqvgHPyB7TuLfwbI4BvK7rArcYBFVsF3tpKbwOXtA7VCh4dhqAyaJerXS6xpgahaYxds2DqtFLGpl1XLfOIGOeOMrKRajrte-zjXCktLKxNpwFKnQULlj5UPoJiWtd22aWllM_RrCeOb9YhtPp8NZ2b2ZShbO_2qvZS4o7fPXPCxCsQ5W3A3LEmcQnNP-7FFxrDB0NhDu-4BHRP5Vs8PoRbAZRNk4KayYXvrRYdN3VwjOxyOE3xKdvbfHH78PKqgnbuiSf-Luh5USfyqN_l75DIcR25ArOJkE6PI5Og2ueWPFHTf8eMOmejqLrnuEbhHfvYsobWhklqWUGQJ7VlC6wq-6VlCkSXUAkwdS6hjCS02MG9gCbUsoZYlFFhC_2SJNzJiyX1y_O7t0esD5m_hYGXM05bpqIjmKTcQ2IcLEwrFTWyESITUIpXFPFRJCXEtnlN5aLIiiWSRFEmspQmVNCp-QKZVXemHhMoUFrRMM2yZJCJZFmgkNRksrlrwlM_Iy26F825N8aaUs9xKJZI4n-cejBl51k9tXF-WbZN2O5hy_9qe51ykPE5DOAfNyPMeur8Z2TLrol4NM_JGmUdXsvWY3BxehF0ybVdr_QSC2rZ46hn5C0E_pkg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Influence+of+a+low-Z+thin+substrate+on+a+microwire+hard+x-ray+source+driven+by+a+picosecond+laser+pulse+for+point-projection+x-ray+radiography&rft.jtitle=Physics+of+plasmas&rft.au=Li%2C+Meng-ting&rft.au=Hu%2C+Guang-yue&rft.au=Huang%2C+Lin-gen&rft.au=Zheng%2C+Jian&rft.date=2020-12-01&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=27&rft.issue=12&rft_id=info:doi/10.1063%2F5.0023189&rft.externalDocID=pop |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon |