Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study
Saved in:
Published in | Materials chemistry and physics Vol. 308; p. 128281 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
15.10.2023
|
Online Access | Get full text |
Cover
Loading…
ArticleNumber | 128281 |
---|---|
Author | Mohammed, Mustafa K.A. Pandey, Rahul Madan, Jaya Samajdar, D.P. Bhattarai, Sagar Amami, Mongi Kuddus, A. Bencherif, H. Hossain, M. Khalid Toki, G.F. Ishraque Rahman, Md. Ferdous Dwivedi, D.K. |
Author_xml | – sequence: 1 givenname: M. Khalid orcidid: 0000-0003-4595-6367 surname: Hossain fullname: Hossain, M. Khalid – sequence: 2 givenname: G.F. Ishraque surname: Toki fullname: Toki, G.F. Ishraque – sequence: 3 givenname: A. orcidid: 0000-0001-5204-3844 surname: Kuddus fullname: Kuddus, A. – sequence: 4 givenname: Mustafa K.A. surname: Mohammed fullname: Mohammed, Mustafa K.A. – sequence: 5 givenname: Rahul surname: Pandey fullname: Pandey, Rahul – sequence: 6 givenname: Jaya surname: Madan fullname: Madan, Jaya – sequence: 7 givenname: Sagar surname: Bhattarai fullname: Bhattarai, Sagar – sequence: 8 givenname: Md. Ferdous surname: Rahman fullname: Rahman, Md. Ferdous – sequence: 9 givenname: D.K. surname: Dwivedi fullname: Dwivedi, D.K. – sequence: 10 givenname: Mongi surname: Amami fullname: Amami, Mongi – sequence: 11 givenname: H. orcidid: 0000-0001-6936-605X surname: Bencherif fullname: Bencherif, H. – sequence: 12 givenname: D.P. surname: Samajdar fullname: Samajdar, D.P. |
BookMark | eNqNkE1OwzAQRr0ACSjcwRwgxWMnTcoGVeFXKmqlwjpy7LHikjiV7QLlIJyXFhBCrFiN9Gm-N6N3RPZc75CQU2BDYDA6Ww47GVWD3arZhCFnXAyBF7yAPXLIeJYmLCvSA3IUwpIxyAHEIXmfraLt7JuMtne0NzQ2SKVXjY2o4trjLmtR6sR4RFqGhStbkazQ98_habtEQ99KTxW2baCm9xRdI53CDl3cddEYqyw6tTmnE6r6rrbu59iinMwXCVxS6TR9eZ3czxc0xLXeHJN9I9uAJ99zQB6vrx7K22Q6u7krJ9NECZ7HRBeZwlzoEQPQdVpDhgBFgaCysRbccKZAj8WoZlkOOmWMo8mzAkWR1gKEEgNy8cVVvg_Bo6mUjZ_vRS9tWwGrdmqrZfVLbbVTW32p3RLGfwgrbzvpN__ofgBqE4pA |
CitedBy_id | crossref_primary_10_1021_acs_energyfuels_3c02610 crossref_primary_10_1016_j_mseb_2024_117622 crossref_primary_10_1021_acs_energyfuels_4c00200 crossref_primary_10_1007_s12596_023_01527_w crossref_primary_10_1088_1361_648X_ad6f63 crossref_primary_10_1080_16583655_2023_2300856 crossref_primary_10_1016_j_ijleo_2023_171578 crossref_primary_10_1016_j_ijleo_2023_171579 crossref_primary_10_1007_s12648_024_03350_w crossref_primary_10_1007_s10904_024_02999_4 crossref_primary_10_1016_j_jpcs_2025_112715 crossref_primary_10_1016_j_ijleo_2023_171530 crossref_primary_10_1002_est2_70001 crossref_primary_10_1007_s12596_024_02045_z crossref_primary_10_1016_j_mseb_2024_117559 crossref_primary_10_1007_s12596_023_01647_3 crossref_primary_10_1021_acs_energyfuels_3c04226 crossref_primary_10_1063_5_0251323 crossref_primary_10_1016_j_inoche_2025_114146 crossref_primary_10_1016_j_solener_2024_113191 crossref_primary_10_1039_D4TC05003G crossref_primary_10_1016_j_mseb_2024_117672 crossref_primary_10_1016_j_hybadv_2024_100174 crossref_primary_10_1088_1361_651X_ad104e crossref_primary_10_1016_j_heliyon_2023_e21498 crossref_primary_10_3390_inorganics12040123 crossref_primary_10_3390_su151712805 crossref_primary_10_1016_j_heliyon_2024_e33922 crossref_primary_10_1007_s12633_023_02717_8 crossref_primary_10_1021_acsomega_3c08072 crossref_primary_10_1051_e3sconf_202560100009 crossref_primary_10_1557_s43581_024_00110_5 crossref_primary_10_1007_s11082_024_06628_9 crossref_primary_10_1016_j_mtcomm_2024_109750 crossref_primary_10_1016_j_micrna_2024_207881 crossref_primary_10_1021_acs_energyfuels_3c02099 crossref_primary_10_1002_slct_202402044 crossref_primary_10_1021_acs_energyfuels_3c02478 crossref_primary_10_1007_s12596_023_01570_7 crossref_primary_10_1016_j_solener_2024_112573 crossref_primary_10_3390_su151914322 crossref_primary_10_1016_j_solener_2025_113347 crossref_primary_10_1039_D3RA06137J crossref_primary_10_1016_j_mseb_2024_117360 crossref_primary_10_1007_s12596_024_01817_x crossref_primary_10_1016_j_jpcs_2023_111641 crossref_primary_10_1016_j_jpcs_2025_112616 crossref_primary_10_1016_j_ijleo_2023_171474 crossref_primary_10_1016_j_ijleo_2024_171632 crossref_primary_10_1016_j_micrna_2023_207691 crossref_primary_10_1016_j_inoche_2024_113647 crossref_primary_10_1016_j_inoche_2024_112439 crossref_primary_10_1016_j_jpcs_2024_112216 crossref_primary_10_1002_ente_202301198 crossref_primary_10_1016_j_jpcs_2023_111791 crossref_primary_10_1039_D3YA00231D crossref_primary_10_1016_j_ijleo_2023_171470 crossref_primary_10_1557_s43580_024_00918_w crossref_primary_10_1038_s41598_024_56041_1 crossref_primary_10_1016_j_optcom_2024_130511 crossref_primary_10_1016_j_optmat_2023_114671 crossref_primary_10_1063_5_0227593 crossref_primary_10_1016_j_mseb_2023_117073 crossref_primary_10_1007_s12596_024_01996_7 crossref_primary_10_1016_j_inoche_2024_112529 crossref_primary_10_1021_acs_energyfuels_4c00084 crossref_primary_10_1016_j_solmat_2024_113122 crossref_primary_10_1016_j_heliyon_2024_e29091 |
Cites_doi | 10.1002/er.7942 10.1063/5.0088099 10.1021/acsomega.2c07846 10.1021/acs.jpclett.6b02344 10.1021/acs.energyfuels.3c00035 10.1021/acsami.0c03982 10.1039/C5RA22317B 10.1021/acsomega.3c00306 10.1016/j.jpcs.2018.09.024 10.1016/j.jallcom.2023.171246 10.1126/science.1243167 10.1039/D2NJ06206B 10.1038/nphoton.2014.134 10.1002/adma.201606945 10.1039/C6EE03397K 10.1038/s41598-021-82817-w 10.1016/j.matpr.2021.04.581 10.1021/jz500209g 10.1016/j.optmat.2020.109957 10.1039/C6TA05938D 10.1021/acsaem.9b00473 10.1016/j.micrna.2022.207403 10.1021/acs.energyfuels.3c00540 10.1016/j.solener.2015.07.040 10.1016/j.spmi.2016.01.026 10.1002/er.8099 10.1016/j.rinp.2022.105977 10.1246/cl.190270 10.1021/jacs.5b05602 10.1021/jz3005464 10.1016/j.solener.2022.04.040 10.1016/j.solener.2019.12.014 10.1088/1402-4896/accb13 10.1007/s11082-022-04474-1 10.1021/acsami.8b00549 10.1039/C7CC01104K 10.1016/j.mattod.2014.07.007 10.1021/acs.jpclett.6b00002 10.1038/nphoton.2013.342 10.1016/j.jallcom.2022.164823 10.1039/D1CP02666F 10.1021/acsami.6b07658 10.1016/j.solmat.2014.10.036 10.1002/adma.201306281 10.1016/j.solener.2022.11.012 10.1038/srep00591 10.1021/acs.energyfuels.2c03973 10.1016/j.solener.2020.08.003 10.1016/j.electacta.2017.12.108 10.1039/C6TA08426E 10.1021/acsaem.8b00514 10.1039/D3NJ00320E 10.17485/ijst/2017/v11i10/110721 10.1021/acs.jpclett.5b02639 10.1016/j.matpr.2021.03.610 10.1016/j.matpr.2022.08.423 10.1088/2053-1591/ace591 10.3390/coatings10040344 10.1126/science.aaa9272 10.1016/j.matpr.2022.08.518 10.1039/D2RA06734J 10.1016/j.solmat.2015.10.024 10.1016/j.heliyon.2022.e12034 10.1021/acs.chemmater.6b01832 10.1021/acsenergylett.7b00236 10.1007/s11664-019-07374-5 10.1021/acsaelm.2c01574 10.1021/acs.energyfuels.3c00181 10.1246/bcsj.71.127 10.1016/j.cap.2014.08.002 10.1039/D3CP00441D 10.1016/j.optmat.2023.113702 10.1063/5.0138354 10.1016/j.matlet.2023.134096 10.1021/acsomega.2c05912 10.1039/C5TA06398A 10.1039/D3RA00039G 10.1016/j.solmat.2016.09.022 10.1038/s41598-023-28506-2 10.1007/s10854-023-10785-0 10.1038/s41598-023-36427-3 10.1007/s10853-023-08756-1 10.1016/j.matlet.2013.08.011 10.35848/1347-4065/acb09e 10.1016/j.heliyon.2023.e15716 10.1021/acs.nanolett.0c00454 10.1063/5.0108459 10.1039/D3RA02485G 10.1016/j.cpc.2021.108232 10.1016/j.solener.2019.10.009 10.1016/j.solmat.2014.10.037 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.1016/j.matchemphys.2023.128281 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
ExternalDocumentID | 10_1016_j_matchemphys_2023_128281 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACDAQ ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC BNPGV CITATION CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W KOM M24 M37 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SEW SMS SPC SPCBC SPD SPG SSH SSM SSQ SSZ T5K WUQ XPP ZMT ~02 ~G- |
ID | FETCH-LOGICAL-c327t-d85ce73d6011db4b15e1188e1c59d32f20c1d936b0571d4002ef758e384b313c3 |
ISSN | 0254-0584 |
IngestDate | Tue Jul 01 00:05:33 EDT 2025 Thu Apr 24 23:02:13 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-d85ce73d6011db4b15e1188e1c59d32f20c1d936b0571d4002ef758e384b313c3 |
ORCID | 0000-0001-6936-605X 0000-0001-5204-3844 0000-0003-4595-6367 |
ParticipantIDs | crossref_citationtrail_10_1016_j_matchemphys_2023_128281 crossref_primary_10_1016_j_matchemphys_2023_128281 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-10-15 |
PublicationDateYYYYMMDD | 2023-10-15 |
PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Materials chemistry and physics |
PublicationYear | 2023 |
References | Raj (10.1016/j.matchemphys.2023.128281_bib34) 2021; 47 Hosen (10.1016/j.matchemphys.2023.128281_bib79) 2022; 909 Islam (10.1016/j.matchemphys.2023.128281_bib77) 2020; 105 Raj (10.1016/j.matchemphys.2023.128281_bib37) 2022; 46 Rubel (10.1016/j.matchemphys.2023.128281_bib4) 2022; 33 Bencherif (10.1016/j.matchemphys.2023.128281_bib60) 2022; 238 Hossain (10.1016/j.matchemphys.2023.128281_bib96) 2023 Yamada (10.1016/j.matchemphys.2023.128281_bib30) 1998; 71 Mandadapu (10.1016/j.matchemphys.2023.128281_bib80) 2017; 10 Kumar (10.1016/j.matchemphys.2023.128281_bib35) 2022; 46 Dastan (10.1016/j.matchemphys.2023.128281_bib58) 2023; 13 Minemoto (10.1016/j.matchemphys.2023.128281_bib70) 2014; 14 Hossain (10.1016/j.matchemphys.2023.128281_bib89) 2023; 47 Senthilarasu (10.1016/j.matchemphys.2023.128281_bib23) 2015; 133 Basher (10.1016/j.matchemphys.2023.128281_bib42) 2023; 55 Islam (10.1016/j.matchemphys.2023.128281_bib17) 2023; 98 Yin (10.1016/j.matchemphys.2023.128281_bib73) 2014; 26 Raga (10.1016/j.matchemphys.2023.128281_bib94) 2012; 3 Rubel (10.1016/j.matchemphys.2023.128281_bib6) 2022; 42 Baktash (10.1016/j.matchemphys.2023.128281_bib44) 2016; 93 Yang (10.1016/j.matchemphys.2023.128281_bib47) 2017; 53 Correa-Baena (10.1016/j.matchemphys.2023.128281_bib45) 2017; 10 Sherkar (10.1016/j.matchemphys.2023.128281_bib74) 2017; 2 Singh (10.1016/j.matchemphys.2023.128281_bib91) 2020; 208 Cai (10.1016/j.matchemphys.2023.128281_bib43) 2018; 261 Bencherif (10.1016/j.matchemphys.2023.128281_bib57) 2022; 248 Khattak (10.1016/j.matchemphys.2023.128281_bib85) 2019; 48 Vyatskikh (10.1016/j.matchemphys.2023.128281_bib48) 2020; 20 Bencherif (10.1016/j.matchemphys.2023.128281_bib56) 2022; 171 Leijtens (10.1016/j.matchemphys.2023.128281_bib40) 2014; 5 Hossain (10.1016/j.matchemphys.2023.128281_bib90) 2023; 37 Kim (10.1016/j.matchemphys.2023.128281_bib41) 2012; 2 Seth (10.1016/j.matchemphys.2023.128281_bib22) 2016; 7 Hossain (10.1016/j.matchemphys.2023.128281_bib97) 2023; 8 Raj (10.1016/j.matchemphys.2023.128281_bib36) 2021; 47 Bhattarai (10.1016/j.matchemphys.2023.128281_bib2) 2023 Chakraborty (10.1016/j.matchemphys.2023.128281_bib51) 2019; 2 Raoui (10.1016/j.matchemphys.2023.128281_bib87) 2019; 193 Mohammed (10.1016/j.matchemphys.2023.128281_bib7) 2023; 138 Yang (10.1016/j.matchemphys.2023.128281_bib11) 2015; 348 Xing (10.1016/j.matchemphys.2023.128281_bib72) 2013; 342 Zhou (10.1016/j.matchemphys.2023.128281_bib28) 2013; 110 Bosio (10.1016/j.matchemphys.2023.128281_bib88) 2020; 10 Hossain (10.1016/j.matchemphys.2023.128281_bib99) 2022; 12 Mohammed (10.1016/j.matchemphys.2023.128281_bib66) 2023; 58 Mann (10.1016/j.matchemphys.2023.128281_bib61) 2022; 272 Hossain (10.1016/j.matchemphys.2023.128281_bib78) 2023; 37 Hossain (10.1016/j.matchemphys.2023.128281_bib71) 2022; 7 Akkerman (10.1016/j.matchemphys.2023.128281_bib25) 2015; 137 Pandey (10.1016/j.matchemphys.2023.128281_bib59) 2023 Saurabh (10.1016/j.matchemphys.2023.128281_bib18) 2023; 13 Green (10.1016/j.matchemphys.2023.128281_bib10) 2014; 8 Ma (10.1016/j.matchemphys.2023.128281_bib49) 2018; 10 Rahman (10.1016/j.matchemphys.2023.128281_bib64) 2023; 13 Peedikakkandy (10.1016/j.matchemphys.2023.128281_bib31) 2016; 6 Eperon (10.1016/j.matchemphys.2023.128281_bib95) 2015; 3 Thakur (10.1016/j.matchemphys.2023.128281_bib33) 2022; 71 Behrouznejad (10.1016/j.matchemphys.2023.128281_bib93) 2016; 4 Shrivastav (10.1016/j.matchemphys.2023.128281_bib3) 2023 Hossain (10.1016/j.matchemphys.2023.128281_bib1) 2023; 37 Ali (10.1016/j.matchemphys.2023.128281_bib20) 2021; 23 Shin (10.1016/j.matchemphys.2023.128281_bib53) 2017; 29 Shrivastav (10.1016/j.matchemphys.2023.128281_bib68) 2023; 281 Xia (10.1016/j.matchemphys.2023.128281_bib29) 2020; 12 Rahman (10.1016/j.matchemphys.2023.128281_bib67) 2022; 12 Isha (10.1016/j.matchemphys.2023.128281_bib16) 2023; 9 Minemoto (10.1016/j.matchemphys.2023.128281_bib86) 2015; 133 Chen (10.1016/j.matchemphys.2023.128281_bib32) 2016; 7 Zekry (10.1016/j.matchemphys.2023.128281_bib75) 2018 Srivastava (10.1016/j.matchemphys.2023.128281_bib98) 2022; 131 Hossain (10.1016/j.matchemphys.2023.128281_bib52) 2023; 13 Shin (10.1016/j.matchemphys.2023.128281_bib50) 2016; 28 Bag (10.1016/j.matchemphys.2023.128281_bib81) 2020; 196 Kashyap (10.1016/j.matchemphys.2023.128281_bib13) 2023; 339 Liu (10.1016/j.matchemphys.2023.128281_bib39) 2014; 8 Qiu (10.1016/j.matchemphys.2023.128281_bib27) 2017; 159 Islam (10.1016/j.matchemphys.2023.128281_bib5) 2023; 62 Hasan Ali (10.1016/j.matchemphys.2023.128281_bib15) 2023; 34 Lin (10.1016/j.matchemphys.2023.128281_bib82) 2019; 124 Al-Mousoi (10.1016/j.matchemphys.2023.128281_bib8) 2023; 25 Chen (10.1016/j.matchemphys.2023.128281_bib54) 2018; 1 Hossain (10.1016/j.matchemphys.2023.128281_bib84) 2023; 47 Mohammed (10.1016/j.matchemphys.2023.128281_bib69) 2023; 963 Dureja (10.1016/j.matchemphys.2023.128281_bib38) 2022; 71 Shrivastav (10.1016/j.matchemphys.2023.128281_bib12) 2023; 37 Li (10.1016/j.matchemphys.2023.128281_bib9) 2019; 48 Beal (10.1016/j.matchemphys.2023.128281_bib24) 2016; 7 Kim (10.1016/j.matchemphys.2023.128281_bib46) 2016; 8 Rahman (10.1016/j.matchemphys.2023.128281_bib14) 2022; 8 Slami (10.1016/j.matchemphys.2023.128281_bib92) 2020; 7 Ali (10.1016/j.matchemphys.2023.128281_bib19) 2023; 8 Ge (10.1016/j.matchemphys.2023.128281_bib55) 2017; 5 Hossain (10.1016/j.matchemphys.2023.128281_bib21) 2015; 120 Kumar (10.1016/j.matchemphys.2023.128281_bib65) 2023; 34 Park (10.1016/j.matchemphys.2023.128281_bib62) 2015; 18 Betancur (10.1016/j.matchemphys.2023.128281_bib26) 2016; 146 Nalianya (10.1016/j.matchemphys.2023.128281_bib63) 2021; 248 Liu (10.1016/j.matchemphys.2023.128281_bib76) 2011 Patel (10.1016/j.matchemphys.2023.128281_bib83) 2021; 11 |
References_xml | – volume: 46 start-page: 11456 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib35 article-title: Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in lead‐free MASnI3 perovskite solar cell device publication-title: Int. J. Energy Res. doi: 10.1002/er.7942 – volume: 131 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib98 article-title: Comparative performance analysis of lead-free perovskites solar cells by numerical simulation publication-title: J. Appl. Phys. doi: 10.1063/5.0088099 – volume: 8 start-page: 7017 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib19 article-title: Performance enhancement of an MoS2-based heterojunction solar cell with an In2Te3 back surface field: a numerical simulation approach publication-title: ACS Omega doi: 10.1021/acsomega.2c07846 – volume: 7 start-page: 5028 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib32 article-title: Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b02344 – volume: 37 start-page: 6078 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib90 article-title: Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c00035 – volume: 12 start-page: 18634 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib29 article-title: Room-temperature stable inorganic halide perovskite as potential solid electrolyte for chloride ion batteries publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c03982 – volume: 6 start-page: 19857 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib31 article-title: Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites publication-title: RSC Adv. doi: 10.1039/C5RA22317B – volume: 8 start-page: 22466 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib97 article-title: Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI 3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations publication-title: ACS Omega doi: 10.1021/acsomega.3c00306 – volume: 124 start-page: 205 year: 2019 ident: 10.1016/j.matchemphys.2023.128281_bib82 article-title: A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing publication-title: J. Phys. Chem. Solid. doi: 10.1016/j.jpcs.2018.09.024 – year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib2 article-title: Perovskite solar cells with dual light absorber layers for performance efficiency exceeding 30% publication-title: Energy Fuels – volume: 963 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib69 article-title: Harnessing the potential of Dion-Jacobson perovskite solar cells: insights from SCAPS simulation techniques publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2023.171246 – volume: 342 start-page: 344 year: 2013 ident: 10.1016/j.matchemphys.2023.128281_bib72 article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3 publication-title: Science (80-.) doi: 10.1126/science.1243167 – volume: 47 start-page: 4801 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib84 article-title: Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency publication-title: New J. Chem. doi: 10.1039/D2NJ06206B – volume: 8 start-page: 506 year: 2014 ident: 10.1016/j.matchemphys.2023.128281_bib10 article-title: The emergence of perovskite solar cells publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.134 – volume: 29 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib53 article-title: Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S,Se)4 absorber publication-title: Adv. Mater. doi: 10.1002/adma.201606945 – volume: 10 start-page: 710 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib45 article-title: The rapid evolution of highly efficient perovskite solar cells publication-title: Energy Environ. Sci. doi: 10.1039/C6EE03397K – volume: 11 start-page: 3082 year: 2021 ident: 10.1016/j.matchemphys.2023.128281_bib83 article-title: Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell publication-title: Sci. Rep. doi: 10.1038/s41598-021-82817-w – volume: 47 start-page: 1656 year: 2021 ident: 10.1016/j.matchemphys.2023.128281_bib36 article-title: Effect of appropriate ETL on quantum efficiency of double perovskite La2NiMnO6 based solar cell device via SCAPS simulation publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.04.581 – volume: 5 start-page: 1096 year: 2014 ident: 10.1016/j.matchemphys.2023.128281_bib40 article-title: The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz500209g – volume: 105 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib77 article-title: Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device publication-title: Opt. Mater. doi: 10.1016/j.optmat.2020.109957 – volume: 4 start-page: 13488 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib93 article-title: A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA05938D – volume: 2 start-page: 3049 year: 2019 ident: 10.1016/j.matchemphys.2023.128281_bib51 article-title: Colloidal synthesis, optical properties, and hole transport layer applications of Cu2BaSnS4 (CBTS) nanocrystals publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.9b00473 – volume: 171 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib56 article-title: Performance enhancement of (FAPbI3)1-x(MAPbBr3)x perovskite solar cell with an optimized design publication-title: Micro Nanostruct. doi: 10.1016/j.micrna.2022.207403 – volume: 37 start-page: 7380 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib1 article-title: Photovoltaic performance investigation of Cs3Bi2I9-based perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c00540 – volume: 120 start-page: 370 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib21 article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells publication-title: Sol. Energy doi: 10.1016/j.solener.2015.07.040 – volume: 93 start-page: 128 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib44 article-title: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers publication-title: Superlattice. Microst. doi: 10.1016/j.spmi.2016.01.026 – volume: 46 start-page: 13801 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib37 article-title: Investigating the potential of lead-free double perovskite Cs2AgBiBr6 material for solar cell applications: a theoretical study publication-title: Int. J. Energy Res. doi: 10.1002/er.8099 – volume: 42 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib6 article-title: First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O12 (B = Ti, V) perovskites publication-title: Results Phys. doi: 10.1016/j.rinp.2022.105977 – volume: 48 start-page: 989 year: 2019 ident: 10.1016/j.matchemphys.2023.128281_bib9 article-title: Progress of all-inorganic cesium lead-free perovskite solar cells publication-title: Chem. Lett. doi: 10.1246/cl.190270 – volume: 137 start-page: 10276 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib25 article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05602 – volume: 3 start-page: 1629 year: 2012 ident: 10.1016/j.matchemphys.2023.128281_bib94 article-title: Analysis of the origin of open circuit voltage in dye solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3005464 – volume: 238 start-page: 114 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib60 article-title: Towards a high efficient Cd-free double CZTS layers kesterite solar cell using an optimized interface band alignment publication-title: Sol. Energy doi: 10.1016/j.solener.2022.04.040 – volume: 196 start-page: 177 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib81 article-title: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation publication-title: Sol. Energy doi: 10.1016/j.solener.2019.12.014 – volume: 98 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib17 article-title: Highly efficient SnS-based inverted planar heterojunction solar cell with ZnO ETL publication-title: Phys. Scripta doi: 10.1088/1402-4896/accb13 – volume: 55 start-page: 322 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib42 article-title: Development of zinc-oxide nanorods on chemically etched zinc plates suitable for high-efficiency photovoltaics solar cells publication-title: Opt. Quant. Electron. doi: 10.1007/s11082-022-04474-1 – volume: 10 start-page: 14649 year: 2018 ident: 10.1016/j.matchemphys.2023.128281_bib49 article-title: Facile sol–gel-derived craterlike dual-functioning TiO2 electron transport layer for high-efficiency perovskite solar cells publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00549 – volume: 53 start-page: 10882 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib47 article-title: An annealing-free aqueous-processed anatase TiO2 compact layer for efficient planar heterojunction perovskite solar cells publication-title: Chem. Commun. doi: 10.1039/C7CC01104K – volume: 18 start-page: 65 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib62 article-title: Perovskite solar cells: an emerging photovoltaic technology publication-title: Mater. Today doi: 10.1016/j.mattod.2014.07.007 – volume: 7 start-page: 746 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib24 article-title: Cesium lead halide perovskites with improved stability for tandem solar cells publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.6b00002 – start-page: 2753 year: 2011 ident: 10.1016/j.matchemphys.2023.128281_bib76 article-title: A new solar cell simulator: wxAMPS – volume: 8 start-page: 133 year: 2014 ident: 10.1016/j.matchemphys.2023.128281_bib39 article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.342 – volume: 909 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib79 article-title: Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2022.164823 – volume: 23 start-page: 22184 year: 2021 ident: 10.1016/j.matchemphys.2023.128281_bib20 article-title: Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP02666F – volume: 8 start-page: 24310 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib46 article-title: Amorphous TiO2 compact layers via ALD for planar halide perovskite photovoltaics publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b07658 – volume: 133 start-page: 8 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib86 article-title: Theoretical analysis on effect of band offsets in perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.036 – volume: 26 start-page: 4653 year: 2014 ident: 10.1016/j.matchemphys.2023.128281_bib73 article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance publication-title: Adv. Mater. doi: 10.1002/adma.201306281 – volume: 248 start-page: 137 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib57 article-title: Design and numerical investigation of efficient (FAPbI3)1−x(CsSnI3)x perovskite solar cell with optimized performances publication-title: Sol. Energy doi: 10.1016/j.solener.2022.11.012 – volume: 2 start-page: 591 year: 2012 ident: 10.1016/j.matchemphys.2023.128281_bib41 article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9% publication-title: Sci. Rep. doi: 10.1038/srep00591 – volume: 281 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib68 article-title: An efficient all-perovskite two terminal monolithic tandem solar cell with improved photovoltaic parameters: a theoretical prospect publication-title: Optik (Stuttg). – volume: 7 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib92 article-title: Comparative study of modeling of Perovskite solar cell with different HTM layers publication-title: Int. J. Mater. – volume: 37 start-page: 3083 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib12 article-title: Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.2c03973 – volume: 208 start-page: 399 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib91 article-title: Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell publication-title: Sol. Energy doi: 10.1016/j.solener.2020.08.003 – volume: 261 start-page: 227 year: 2018 ident: 10.1016/j.matchemphys.2023.128281_bib43 article-title: Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2017.12.108 – volume: 5 start-page: 2920 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib55 article-title: Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells publication-title: J. Mater. Chem. A. doi: 10.1039/C6TA08426E – volume: 33 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib4 article-title: First-principles calculations to investigate physical properties of single-cubic (Ba0.82K0.18)(Bi0.53Pb0.47)O3 novel perovskite superconductor publication-title: Mater. Today Commun. – volume: 1 start-page: 3420 year: 2018 ident: 10.1016/j.matchemphys.2023.128281_bib54 article-title: Solution-processed trigonal Cu2BaSnS4 thin-film solar cells publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00514 – volume: 47 start-page: 8602 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib89 article-title: A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu2FeSnS4 as charge transport layers publication-title: New J. Chem. doi: 10.1039/D3NJ00320E – volume: 10 start-page: 1 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib80 article-title: Simulation and analysis of lead based perovskite solar cell using SCAPS-1D publication-title: Indian J. Sci. Technol. doi: 10.17485/ijst/2017/v11i10/110721 – volume: 7 start-page: 266 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib22 article-title: Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b02639 – volume: 47 start-page: 1564 year: 2021 ident: 10.1016/j.matchemphys.2023.128281_bib34 article-title: A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2021.03.610 – volume: 71 start-page: 195 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib33 article-title: Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite n-i-p solar cell publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.08.423 – year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib3 article-title: CsPbI3-Perovskite quantum dot solar cells: unlocking their potential through improved absorber layer characteristics and reduced defects publication-title: Mater. Res. Express doi: 10.1088/2053-1591/ace591 – volume: 10 start-page: 344 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib88 article-title: The history of photovoltaics with emphasis on CdTe solar cells and modules publication-title: Coatings doi: 10.3390/coatings10040344 – volume: 348 start-page: 1234 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib11 article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange publication-title: Science (80-.) doi: 10.1126/science.aaa9272 – volume: 34 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib15 article-title: Numerical analysis of FeSi2 based solar cell with PEDOT:PSS hole transport layer publication-title: Mater. Today Commun. – volume: 71 start-page: 239 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib38 article-title: Double lead-free perovskite solar cell for 19.9% conversion efficiency: a SCAPS-1D based simulation study publication-title: Mater. Today Proc. doi: 10.1016/j.matpr.2022.08.518 – volume: 12 start-page: 34850 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib99 article-title: Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers publication-title: RSC Adv. doi: 10.1039/D2RA06734J – volume: 146 start-page: 44 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib26 article-title: A calorimetric approach to reach high performance perovskite solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.10.024 – volume: 8 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib14 article-title: Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer publication-title: Heliyon doi: 10.1016/j.heliyon.2022.e12034 – volume: 28 start-page: 4771 year: 2016 ident: 10.1016/j.matchemphys.2023.128281_bib50 article-title: BaCu2Sn(S,Se)4: earth-abundant chalcogenides for thin-film photovoltaics publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01832 – volume: 2 start-page: 1214 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib74 article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00236 – volume: 48 start-page: 5723 year: 2019 ident: 10.1016/j.matchemphys.2023.128281_bib85 article-title: CZTSe kesterite as an alternative hole transport layer for MASnI3 perovskite solar cells publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-07374-5 – year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib59 article-title: Halide composition engineered a non-toxic perovskite–silicon tandem solar cell with 30.7% conversion efficiency publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.2c01574 – volume: 37 start-page: 3957 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib78 article-title: Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement publication-title: Energy Fuels doi: 10.1021/acs.energyfuels.3c00181 – volume: 71 start-page: 127 year: 1998 ident: 10.1016/j.matchemphys.2023.128281_bib30 article-title: Phase transition and electric conductivity of ASnCl 3 (A = Cs and CH 3 NH 3) publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.71.127 – volume: 14 start-page: 1428 year: 2014 ident: 10.1016/j.matchemphys.2023.128281_bib70 article-title: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2014.08.002 – volume: 25 start-page: 16459 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib8 article-title: Understanding Auger recombination in perovskite solar cells publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D3CP00441D – volume: 138 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib7 article-title: Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer publication-title: Opt. Mater. doi: 10.1016/j.optmat.2023.113702 – volume: 13 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib64 article-title: Design and numerical analysis of CIGS-based solar cell with V2O5 as the BSF layer to enhance photovoltaic performance publication-title: AIP Adv. doi: 10.1063/5.0138354 – volume: 339 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib13 article-title: Unlocking the potential of MgF2 textured surface in enhancing the efficiency of perovskite solar cells publication-title: Mater. Lett. doi: 10.1016/j.matlet.2023.134096 – volume: 7 start-page: 43210 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib71 article-title: Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks publication-title: ACS Omega doi: 10.1021/acsomega.2c05912 – volume: 3 start-page: 19688 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib95 article-title: Inorganic caesium lead iodide perovskite solar cells publication-title: J. Mater. Chem. A. doi: 10.1039/C5TA06398A – volume: 13 start-page: 9878 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib18 article-title: Optical performance analysis of InP nanostructures for photovoltaic applications publication-title: RSC Adv. doi: 10.1039/D3RA00039G – volume: 159 start-page: 227 year: 2017 ident: 10.1016/j.matchemphys.2023.128281_bib27 article-title: From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2016.09.022 – volume: 13 start-page: 2521 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib52 article-title: An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells publication-title: Sci. Rep. doi: 10.1038/s41598-023-28506-2 – volume: 34 start-page: 1343 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib65 article-title: Tailoring the SnO2 electron transport layer with hydrofluoric acid to assemble efficient and stable HTL-free perovskite solar cells publication-title: J. Mater. Sci. Mater. Electron. doi: 10.1007/s10854-023-10785-0 – volume: 13 start-page: 9076 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib58 article-title: Insights into the photovoltaic properties of indium sulfide as an electron transport material in perovskite solar cells publication-title: Sci. Rep. doi: 10.1038/s41598-023-36427-3 – volume: 58 start-page: 11748 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib66 article-title: Fluorinated carbon nanotubes: a low-cost hole transport layer for perovskite solar cells publication-title: J. Mater. Sci. doi: 10.1007/s10853-023-08756-1 – volume: 110 start-page: 127 year: 2013 ident: 10.1016/j.matchemphys.2023.128281_bib28 article-title: Room temperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films and particles publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.08.011 – volume: 62 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib5 article-title: Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl3 (A = K, Rb, and Cs) publication-title: Jpn. J. Appl. Phys. doi: 10.35848/1347-4065/acb09e – volume: 9 year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib16 article-title: High efficiency Cu2MnSnS4 thin film solar cells with SnS BSF and CdS ETL layers: a numerical simulation publication-title: Heliyon doi: 10.1016/j.heliyon.2023.e15716 – volume: 20 start-page: 3513 year: 2020 ident: 10.1016/j.matchemphys.2023.128281_bib48 article-title: Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c00454 – volume: 12 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib67 article-title: Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency publication-title: AIP Adv. doi: 10.1063/5.0108459 – start-page: 3 year: 2018 ident: 10.1016/j.matchemphys.2023.128281_bib75 article-title: Solar cells and arrays – year: 2023 ident: 10.1016/j.matchemphys.2023.128281_bib96 article-title: Harnessing the potential of CsPbBr3-based perovskite solar cells using efficient charge transport materials and global optimization publication-title: RSC Adv. doi: 10.1039/D3RA02485G – volume: 272 year: 2022 ident: 10.1016/j.matchemphys.2023.128281_bib61 article-title: ∂PV: an end-to-end differentiable solar-cell simulator publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2021.108232 – volume: 193 start-page: 948 year: 2019 ident: 10.1016/j.matchemphys.2023.128281_bib87 article-title: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study publication-title: Sol. Energy doi: 10.1016/j.solener.2019.10.009 – volume: 248 year: 2021 ident: 10.1016/j.matchemphys.2023.128281_bib63 article-title: Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D publication-title: Optik (Stuttg). – volume: 133 start-page: 92 year: 2015 ident: 10.1016/j.matchemphys.2023.128281_bib23 article-title: Effects of spectral coupling on perovskite solar cells under diverse climatic conditions publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.037 |
SSID | ssj0017113 |
Score | 2.635482 |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 128281 |
Title | Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study |
Volume | 308 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkLg8IBhMjJuMxFuUKLFzK29VYBSmwqRu0t6q-BJVU0lRkwLigZ_BP-J_cU6ciwdDg71ElaPj1DlfbH_H50LIC8YTxTE4Js39yIX9v--mwDzcPNWw-CVSpgLtkLP38fQkfHcanY5GPy2vpW0tPPntwriSq2gV2kCvGCX7H5rtO4UG-A36hStoGK7_pOMP8L1_bAMpu8P-cycD0LYCJbrFRmsnq-ZltuIupgb_XKHV1qmQ2DpovK9M7u9yiSjoHAR0k18CgzNNADuMAYh0_7h5Njmau8Gr5gDiy9fJ7GhupavtykTltXkVjuxqy5nkBA1A-h39FBbr3OQzmHnO4RLogRos4Ka29hvvwHPeVstNbjzF2zMopbampLLXo2e9RIO8qZeMEWJF7hx67f3WxMEaZzkT5NnOhMBiXT8yteS6aZv7qTXxBkgdgwvXBGOeOPOAAeBAcXgePsUbZM7n4f5tfey9FjuHuLOF1dUCu1qYrq6R6wzYChbS8L73nkZBEpgq3d0obpDng5vhX_6VtU2y9jvHd8mdlqjQiUHdPTLS5S65mXU63CW3rVSW98kPG4t0XVDAIrWxiG09FumfWKQNFmmDRQpYpBYWUXbA4ks6oRYS8WaHRArIogaJtEHiA3Jy8Po4m7ptzQ9XcpbUrkojqROuYlh3lAhFEGmgwKkOZDRWnBXMl4Ea81gAzwgULEBMF0B5NU9DwQMu-R7ZKdelfkhomEgGMlEslB_GKh9rJkINkknBY87EPkm7V7yQbUJ8rMuyWlyq6H3CetFPJivM5UKPriL0mNwavognZKfebPVT2AbX4lkDsl-CprZ5 |
linkProvider | Elsevier |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+architecture+of+lead-free+CsSnCl3-perovskite+solar+cells+for+enhancement+of+efficiency%3A+A+combination+of+SCAPS-1D+and+wxAMPS+study&rft.jtitle=Materials+chemistry+and+physics&rft.au=Hossain%2C+M.+Khalid&rft.au=Toki%2C+G.F.+Ishraque&rft.au=Kuddus%2C+A.&rft.au=Mohammed%2C+Mustafa+K.A.&rft.date=2023-10-15&rft.issn=0254-0584&rft.volume=308&rft.spage=128281&rft_id=info:doi/10.1016%2Fj.matchemphys.2023.128281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2023_128281 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon |