Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study

Saved in:
Bibliographic Details
Published inMaterials chemistry and physics Vol. 308; p. 128281
Main Authors Hossain, M. Khalid, Toki, G.F. Ishraque, Kuddus, A., Mohammed, Mustafa K.A., Pandey, Rahul, Madan, Jaya, Bhattarai, Sagar, Rahman, Md. Ferdous, Dwivedi, D.K., Amami, Mongi, Bencherif, H., Samajdar, D.P.
Format Journal Article
LanguageEnglish
Published 15.10.2023
Online AccessGet full text

Cover

Loading…
ArticleNumber 128281
Author Mohammed, Mustafa K.A.
Pandey, Rahul
Madan, Jaya
Samajdar, D.P.
Bhattarai, Sagar
Amami, Mongi
Kuddus, A.
Bencherif, H.
Hossain, M. Khalid
Toki, G.F. Ishraque
Rahman, Md. Ferdous
Dwivedi, D.K.
Author_xml – sequence: 1
  givenname: M. Khalid
  orcidid: 0000-0003-4595-6367
  surname: Hossain
  fullname: Hossain, M. Khalid
– sequence: 2
  givenname: G.F. Ishraque
  surname: Toki
  fullname: Toki, G.F. Ishraque
– sequence: 3
  givenname: A.
  orcidid: 0000-0001-5204-3844
  surname: Kuddus
  fullname: Kuddus, A.
– sequence: 4
  givenname: Mustafa K.A.
  surname: Mohammed
  fullname: Mohammed, Mustafa K.A.
– sequence: 5
  givenname: Rahul
  surname: Pandey
  fullname: Pandey, Rahul
– sequence: 6
  givenname: Jaya
  surname: Madan
  fullname: Madan, Jaya
– sequence: 7
  givenname: Sagar
  surname: Bhattarai
  fullname: Bhattarai, Sagar
– sequence: 8
  givenname: Md. Ferdous
  surname: Rahman
  fullname: Rahman, Md. Ferdous
– sequence: 9
  givenname: D.K.
  surname: Dwivedi
  fullname: Dwivedi, D.K.
– sequence: 10
  givenname: Mongi
  surname: Amami
  fullname: Amami, Mongi
– sequence: 11
  givenname: H.
  orcidid: 0000-0001-6936-605X
  surname: Bencherif
  fullname: Bencherif, H.
– sequence: 12
  givenname: D.P.
  surname: Samajdar
  fullname: Samajdar, D.P.
BookMark eNqNkE1OwzAQRr0ACSjcwRwgxWMnTcoGVeFXKmqlwjpy7LHikjiV7QLlIJyXFhBCrFiN9Gm-N6N3RPZc75CQU2BDYDA6Ww47GVWD3arZhCFnXAyBF7yAPXLIeJYmLCvSA3IUwpIxyAHEIXmfraLt7JuMtne0NzQ2SKVXjY2o4trjLmtR6sR4RFqGhStbkazQ98_habtEQ99KTxW2baCm9xRdI53CDl3cddEYqyw6tTmnE6r6rrbu59iinMwXCVxS6TR9eZ3czxc0xLXeHJN9I9uAJ99zQB6vrx7K22Q6u7krJ9NECZ7HRBeZwlzoEQPQdVpDhgBFgaCysRbccKZAj8WoZlkOOmWMo8mzAkWR1gKEEgNy8cVVvg_Bo6mUjZ_vRS9tWwGrdmqrZfVLbbVTW32p3RLGfwgrbzvpN__ofgBqE4pA
CitedBy_id crossref_primary_10_1021_acs_energyfuels_3c02610
crossref_primary_10_1016_j_mseb_2024_117622
crossref_primary_10_1021_acs_energyfuels_4c00200
crossref_primary_10_1007_s12596_023_01527_w
crossref_primary_10_1088_1361_648X_ad6f63
crossref_primary_10_1080_16583655_2023_2300856
crossref_primary_10_1016_j_ijleo_2023_171578
crossref_primary_10_1016_j_ijleo_2023_171579
crossref_primary_10_1007_s12648_024_03350_w
crossref_primary_10_1007_s10904_024_02999_4
crossref_primary_10_1016_j_jpcs_2025_112715
crossref_primary_10_1016_j_ijleo_2023_171530
crossref_primary_10_1002_est2_70001
crossref_primary_10_1007_s12596_024_02045_z
crossref_primary_10_1016_j_mseb_2024_117559
crossref_primary_10_1007_s12596_023_01647_3
crossref_primary_10_1021_acs_energyfuels_3c04226
crossref_primary_10_1063_5_0251323
crossref_primary_10_1016_j_inoche_2025_114146
crossref_primary_10_1016_j_solener_2024_113191
crossref_primary_10_1039_D4TC05003G
crossref_primary_10_1016_j_mseb_2024_117672
crossref_primary_10_1016_j_hybadv_2024_100174
crossref_primary_10_1088_1361_651X_ad104e
crossref_primary_10_1016_j_heliyon_2023_e21498
crossref_primary_10_3390_inorganics12040123
crossref_primary_10_3390_su151712805
crossref_primary_10_1016_j_heliyon_2024_e33922
crossref_primary_10_1007_s12633_023_02717_8
crossref_primary_10_1021_acsomega_3c08072
crossref_primary_10_1051_e3sconf_202560100009
crossref_primary_10_1557_s43581_024_00110_5
crossref_primary_10_1007_s11082_024_06628_9
crossref_primary_10_1016_j_mtcomm_2024_109750
crossref_primary_10_1016_j_micrna_2024_207881
crossref_primary_10_1021_acs_energyfuels_3c02099
crossref_primary_10_1002_slct_202402044
crossref_primary_10_1021_acs_energyfuels_3c02478
crossref_primary_10_1007_s12596_023_01570_7
crossref_primary_10_1016_j_solener_2024_112573
crossref_primary_10_3390_su151914322
crossref_primary_10_1016_j_solener_2025_113347
crossref_primary_10_1039_D3RA06137J
crossref_primary_10_1016_j_mseb_2024_117360
crossref_primary_10_1007_s12596_024_01817_x
crossref_primary_10_1016_j_jpcs_2023_111641
crossref_primary_10_1016_j_jpcs_2025_112616
crossref_primary_10_1016_j_ijleo_2023_171474
crossref_primary_10_1016_j_ijleo_2024_171632
crossref_primary_10_1016_j_micrna_2023_207691
crossref_primary_10_1016_j_inoche_2024_113647
crossref_primary_10_1016_j_inoche_2024_112439
crossref_primary_10_1016_j_jpcs_2024_112216
crossref_primary_10_1002_ente_202301198
crossref_primary_10_1016_j_jpcs_2023_111791
crossref_primary_10_1039_D3YA00231D
crossref_primary_10_1016_j_ijleo_2023_171470
crossref_primary_10_1557_s43580_024_00918_w
crossref_primary_10_1038_s41598_024_56041_1
crossref_primary_10_1016_j_optcom_2024_130511
crossref_primary_10_1016_j_optmat_2023_114671
crossref_primary_10_1063_5_0227593
crossref_primary_10_1016_j_mseb_2023_117073
crossref_primary_10_1007_s12596_024_01996_7
crossref_primary_10_1016_j_inoche_2024_112529
crossref_primary_10_1021_acs_energyfuels_4c00084
crossref_primary_10_1016_j_solmat_2024_113122
crossref_primary_10_1016_j_heliyon_2024_e29091
Cites_doi 10.1002/er.7942
10.1063/5.0088099
10.1021/acsomega.2c07846
10.1021/acs.jpclett.6b02344
10.1021/acs.energyfuels.3c00035
10.1021/acsami.0c03982
10.1039/C5RA22317B
10.1021/acsomega.3c00306
10.1016/j.jpcs.2018.09.024
10.1016/j.jallcom.2023.171246
10.1126/science.1243167
10.1039/D2NJ06206B
10.1038/nphoton.2014.134
10.1002/adma.201606945
10.1039/C6EE03397K
10.1038/s41598-021-82817-w
10.1016/j.matpr.2021.04.581
10.1021/jz500209g
10.1016/j.optmat.2020.109957
10.1039/C6TA05938D
10.1021/acsaem.9b00473
10.1016/j.micrna.2022.207403
10.1021/acs.energyfuels.3c00540
10.1016/j.solener.2015.07.040
10.1016/j.spmi.2016.01.026
10.1002/er.8099
10.1016/j.rinp.2022.105977
10.1246/cl.190270
10.1021/jacs.5b05602
10.1021/jz3005464
10.1016/j.solener.2022.04.040
10.1016/j.solener.2019.12.014
10.1088/1402-4896/accb13
10.1007/s11082-022-04474-1
10.1021/acsami.8b00549
10.1039/C7CC01104K
10.1016/j.mattod.2014.07.007
10.1021/acs.jpclett.6b00002
10.1038/nphoton.2013.342
10.1016/j.jallcom.2022.164823
10.1039/D1CP02666F
10.1021/acsami.6b07658
10.1016/j.solmat.2014.10.036
10.1002/adma.201306281
10.1016/j.solener.2022.11.012
10.1038/srep00591
10.1021/acs.energyfuels.2c03973
10.1016/j.solener.2020.08.003
10.1016/j.electacta.2017.12.108
10.1039/C6TA08426E
10.1021/acsaem.8b00514
10.1039/D3NJ00320E
10.17485/ijst/2017/v11i10/110721
10.1021/acs.jpclett.5b02639
10.1016/j.matpr.2021.03.610
10.1016/j.matpr.2022.08.423
10.1088/2053-1591/ace591
10.3390/coatings10040344
10.1126/science.aaa9272
10.1016/j.matpr.2022.08.518
10.1039/D2RA06734J
10.1016/j.solmat.2015.10.024
10.1016/j.heliyon.2022.e12034
10.1021/acs.chemmater.6b01832
10.1021/acsenergylett.7b00236
10.1007/s11664-019-07374-5
10.1021/acsaelm.2c01574
10.1021/acs.energyfuels.3c00181
10.1246/bcsj.71.127
10.1016/j.cap.2014.08.002
10.1039/D3CP00441D
10.1016/j.optmat.2023.113702
10.1063/5.0138354
10.1016/j.matlet.2023.134096
10.1021/acsomega.2c05912
10.1039/C5TA06398A
10.1039/D3RA00039G
10.1016/j.solmat.2016.09.022
10.1038/s41598-023-28506-2
10.1007/s10854-023-10785-0
10.1038/s41598-023-36427-3
10.1007/s10853-023-08756-1
10.1016/j.matlet.2013.08.011
10.35848/1347-4065/acb09e
10.1016/j.heliyon.2023.e15716
10.1021/acs.nanolett.0c00454
10.1063/5.0108459
10.1039/D3RA02485G
10.1016/j.cpc.2021.108232
10.1016/j.solener.2019.10.009
10.1016/j.solmat.2014.10.037
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.1016/j.matchemphys.2023.128281
DatabaseName CrossRef
DatabaseTitle CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
ExternalDocumentID 10_1016_j_matchemphys_2023_128281
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
BNPGV
CITATION
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
KOM
M24
M37
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SMS
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SSZ
T5K
WUQ
XPP
ZMT
~02
~G-
ID FETCH-LOGICAL-c327t-d85ce73d6011db4b15e1188e1c59d32f20c1d936b0571d4002ef758e384b313c3
ISSN 0254-0584
IngestDate Tue Jul 01 00:05:33 EDT 2025
Thu Apr 24 23:02:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-d85ce73d6011db4b15e1188e1c59d32f20c1d936b0571d4002ef758e384b313c3
ORCID 0000-0001-6936-605X
0000-0001-5204-3844
0000-0003-4595-6367
ParticipantIDs crossref_citationtrail_10_1016_j_matchemphys_2023_128281
crossref_primary_10_1016_j_matchemphys_2023_128281
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-10-15
PublicationDateYYYYMMDD 2023-10-15
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-15
  day: 15
PublicationDecade 2020
PublicationTitle Materials chemistry and physics
PublicationYear 2023
References Raj (10.1016/j.matchemphys.2023.128281_bib34) 2021; 47
Hosen (10.1016/j.matchemphys.2023.128281_bib79) 2022; 909
Islam (10.1016/j.matchemphys.2023.128281_bib77) 2020; 105
Raj (10.1016/j.matchemphys.2023.128281_bib37) 2022; 46
Rubel (10.1016/j.matchemphys.2023.128281_bib4) 2022; 33
Bencherif (10.1016/j.matchemphys.2023.128281_bib60) 2022; 238
Hossain (10.1016/j.matchemphys.2023.128281_bib96) 2023
Yamada (10.1016/j.matchemphys.2023.128281_bib30) 1998; 71
Mandadapu (10.1016/j.matchemphys.2023.128281_bib80) 2017; 10
Kumar (10.1016/j.matchemphys.2023.128281_bib35) 2022; 46
Dastan (10.1016/j.matchemphys.2023.128281_bib58) 2023; 13
Minemoto (10.1016/j.matchemphys.2023.128281_bib70) 2014; 14
Hossain (10.1016/j.matchemphys.2023.128281_bib89) 2023; 47
Senthilarasu (10.1016/j.matchemphys.2023.128281_bib23) 2015; 133
Basher (10.1016/j.matchemphys.2023.128281_bib42) 2023; 55
Islam (10.1016/j.matchemphys.2023.128281_bib17) 2023; 98
Yin (10.1016/j.matchemphys.2023.128281_bib73) 2014; 26
Raga (10.1016/j.matchemphys.2023.128281_bib94) 2012; 3
Rubel (10.1016/j.matchemphys.2023.128281_bib6) 2022; 42
Baktash (10.1016/j.matchemphys.2023.128281_bib44) 2016; 93
Yang (10.1016/j.matchemphys.2023.128281_bib47) 2017; 53
Correa-Baena (10.1016/j.matchemphys.2023.128281_bib45) 2017; 10
Sherkar (10.1016/j.matchemphys.2023.128281_bib74) 2017; 2
Singh (10.1016/j.matchemphys.2023.128281_bib91) 2020; 208
Cai (10.1016/j.matchemphys.2023.128281_bib43) 2018; 261
Bencherif (10.1016/j.matchemphys.2023.128281_bib57) 2022; 248
Khattak (10.1016/j.matchemphys.2023.128281_bib85) 2019; 48
Vyatskikh (10.1016/j.matchemphys.2023.128281_bib48) 2020; 20
Bencherif (10.1016/j.matchemphys.2023.128281_bib56) 2022; 171
Leijtens (10.1016/j.matchemphys.2023.128281_bib40) 2014; 5
Hossain (10.1016/j.matchemphys.2023.128281_bib90) 2023; 37
Kim (10.1016/j.matchemphys.2023.128281_bib41) 2012; 2
Seth (10.1016/j.matchemphys.2023.128281_bib22) 2016; 7
Hossain (10.1016/j.matchemphys.2023.128281_bib97) 2023; 8
Raj (10.1016/j.matchemphys.2023.128281_bib36) 2021; 47
Bhattarai (10.1016/j.matchemphys.2023.128281_bib2) 2023
Chakraborty (10.1016/j.matchemphys.2023.128281_bib51) 2019; 2
Raoui (10.1016/j.matchemphys.2023.128281_bib87) 2019; 193
Mohammed (10.1016/j.matchemphys.2023.128281_bib7) 2023; 138
Yang (10.1016/j.matchemphys.2023.128281_bib11) 2015; 348
Xing (10.1016/j.matchemphys.2023.128281_bib72) 2013; 342
Zhou (10.1016/j.matchemphys.2023.128281_bib28) 2013; 110
Bosio (10.1016/j.matchemphys.2023.128281_bib88) 2020; 10
Hossain (10.1016/j.matchemphys.2023.128281_bib99) 2022; 12
Mohammed (10.1016/j.matchemphys.2023.128281_bib66) 2023; 58
Mann (10.1016/j.matchemphys.2023.128281_bib61) 2022; 272
Hossain (10.1016/j.matchemphys.2023.128281_bib78) 2023; 37
Hossain (10.1016/j.matchemphys.2023.128281_bib71) 2022; 7
Akkerman (10.1016/j.matchemphys.2023.128281_bib25) 2015; 137
Pandey (10.1016/j.matchemphys.2023.128281_bib59) 2023
Saurabh (10.1016/j.matchemphys.2023.128281_bib18) 2023; 13
Green (10.1016/j.matchemphys.2023.128281_bib10) 2014; 8
Ma (10.1016/j.matchemphys.2023.128281_bib49) 2018; 10
Rahman (10.1016/j.matchemphys.2023.128281_bib64) 2023; 13
Peedikakkandy (10.1016/j.matchemphys.2023.128281_bib31) 2016; 6
Eperon (10.1016/j.matchemphys.2023.128281_bib95) 2015; 3
Thakur (10.1016/j.matchemphys.2023.128281_bib33) 2022; 71
Behrouznejad (10.1016/j.matchemphys.2023.128281_bib93) 2016; 4
Shrivastav (10.1016/j.matchemphys.2023.128281_bib3) 2023
Hossain (10.1016/j.matchemphys.2023.128281_bib1) 2023; 37
Ali (10.1016/j.matchemphys.2023.128281_bib20) 2021; 23
Shin (10.1016/j.matchemphys.2023.128281_bib53) 2017; 29
Shrivastav (10.1016/j.matchemphys.2023.128281_bib68) 2023; 281
Xia (10.1016/j.matchemphys.2023.128281_bib29) 2020; 12
Rahman (10.1016/j.matchemphys.2023.128281_bib67) 2022; 12
Isha (10.1016/j.matchemphys.2023.128281_bib16) 2023; 9
Minemoto (10.1016/j.matchemphys.2023.128281_bib86) 2015; 133
Chen (10.1016/j.matchemphys.2023.128281_bib32) 2016; 7
Zekry (10.1016/j.matchemphys.2023.128281_bib75) 2018
Srivastava (10.1016/j.matchemphys.2023.128281_bib98) 2022; 131
Hossain (10.1016/j.matchemphys.2023.128281_bib52) 2023; 13
Shin (10.1016/j.matchemphys.2023.128281_bib50) 2016; 28
Bag (10.1016/j.matchemphys.2023.128281_bib81) 2020; 196
Kashyap (10.1016/j.matchemphys.2023.128281_bib13) 2023; 339
Liu (10.1016/j.matchemphys.2023.128281_bib39) 2014; 8
Qiu (10.1016/j.matchemphys.2023.128281_bib27) 2017; 159
Islam (10.1016/j.matchemphys.2023.128281_bib5) 2023; 62
Hasan Ali (10.1016/j.matchemphys.2023.128281_bib15) 2023; 34
Lin (10.1016/j.matchemphys.2023.128281_bib82) 2019; 124
Al-Mousoi (10.1016/j.matchemphys.2023.128281_bib8) 2023; 25
Chen (10.1016/j.matchemphys.2023.128281_bib54) 2018; 1
Hossain (10.1016/j.matchemphys.2023.128281_bib84) 2023; 47
Mohammed (10.1016/j.matchemphys.2023.128281_bib69) 2023; 963
Dureja (10.1016/j.matchemphys.2023.128281_bib38) 2022; 71
Shrivastav (10.1016/j.matchemphys.2023.128281_bib12) 2023; 37
Li (10.1016/j.matchemphys.2023.128281_bib9) 2019; 48
Beal (10.1016/j.matchemphys.2023.128281_bib24) 2016; 7
Kim (10.1016/j.matchemphys.2023.128281_bib46) 2016; 8
Rahman (10.1016/j.matchemphys.2023.128281_bib14) 2022; 8
Slami (10.1016/j.matchemphys.2023.128281_bib92) 2020; 7
Ali (10.1016/j.matchemphys.2023.128281_bib19) 2023; 8
Ge (10.1016/j.matchemphys.2023.128281_bib55) 2017; 5
Hossain (10.1016/j.matchemphys.2023.128281_bib21) 2015; 120
Kumar (10.1016/j.matchemphys.2023.128281_bib65) 2023; 34
Park (10.1016/j.matchemphys.2023.128281_bib62) 2015; 18
Betancur (10.1016/j.matchemphys.2023.128281_bib26) 2016; 146
Nalianya (10.1016/j.matchemphys.2023.128281_bib63) 2021; 248
Liu (10.1016/j.matchemphys.2023.128281_bib76) 2011
Patel (10.1016/j.matchemphys.2023.128281_bib83) 2021; 11
References_xml – volume: 46
  start-page: 11456
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib35
  article-title: Computational analysis of bandgap tuning, admittance and impedance spectroscopy measurements in lead‐free MASnI3 perovskite solar cell device
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.7942
– volume: 131
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib98
  article-title: Comparative performance analysis of lead-free perovskites solar cells by numerical simulation
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0088099
– volume: 8
  start-page: 7017
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib19
  article-title: Performance enhancement of an MoS2-based heterojunction solar cell with an In2Te3 back surface field: a numerical simulation approach
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c07846
– volume: 7
  start-page: 5028
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib32
  article-title: Synthesis and optical properties of lead-free cesium tin halide perovskite quantum rods with high-performance solar cell application
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b02344
– volume: 37
  start-page: 6078
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib90
  article-title: Numerical analysis in DFT and SCAPS-1D on the influence of different charge transport layers of CsPbBr3 perovskite solar cells
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c00035
– volume: 12
  start-page: 18634
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib29
  article-title: Room-temperature stable inorganic halide perovskite as potential solid electrolyte for chloride ion batteries
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c03982
– volume: 6
  start-page: 19857
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib31
  article-title: Composition dependent optical, structural and photoluminescence characteristics of cesium tin halide perovskites
  publication-title: RSC Adv.
  doi: 10.1039/C5RA22317B
– volume: 8
  start-page: 22466
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib97
  article-title: Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI 3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations
  publication-title: ACS Omega
  doi: 10.1021/acsomega.3c00306
– volume: 124
  start-page: 205
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128281_bib82
  article-title: A modeled perovskite solar cell structure with a Cu2O hole-transporting layer enabling over 20% efficiency by low-cost low-temperature processing
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/j.jpcs.2018.09.024
– year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib2
  article-title: Perovskite solar cells with dual light absorber layers for performance efficiency exceeding 30%
  publication-title: Energy Fuels
– volume: 963
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib69
  article-title: Harnessing the potential of Dion-Jacobson perovskite solar cells: insights from SCAPS simulation techniques
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2023.171246
– volume: 342
  start-page: 344
  year: 2013
  ident: 10.1016/j.matchemphys.2023.128281_bib72
  article-title: Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3
  publication-title: Science (80-.)
  doi: 10.1126/science.1243167
– volume: 47
  start-page: 4801
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib84
  article-title: Numerical simulation and optimization of a CsPbI3-based perovskite solar cell to enhance the power conversion efficiency
  publication-title: New J. Chem.
  doi: 10.1039/D2NJ06206B
– volume: 8
  start-page: 506
  year: 2014
  ident: 10.1016/j.matchemphys.2023.128281_bib10
  article-title: The emergence of perovskite solar cells
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.134
– volume: 29
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib53
  article-title: Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn(S,Se)4 absorber
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606945
– volume: 10
  start-page: 710
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib45
  article-title: The rapid evolution of highly efficient perovskite solar cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C6EE03397K
– volume: 11
  start-page: 3082
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128281_bib83
  article-title: Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-82817-w
– volume: 47
  start-page: 1656
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128281_bib36
  article-title: Effect of appropriate ETL on quantum efficiency of double perovskite La2NiMnO6 based solar cell device via SCAPS simulation
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.04.581
– volume: 5
  start-page: 1096
  year: 2014
  ident: 10.1016/j.matchemphys.2023.128281_bib40
  article-title: The importance of perovskite pore filling in organometal mixed halide sensitized TiO2-based solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz500209g
– volume: 105
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib77
  article-title: Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2020.109957
– volume: 4
  start-page: 13488
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib93
  article-title: A study on utilizing different metals as the back contact of CH3NH3PbI3 perovskite solar cells
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA05938D
– volume: 2
  start-page: 3049
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128281_bib51
  article-title: Colloidal synthesis, optical properties, and hole transport layer applications of Cu2BaSnS4 (CBTS) nanocrystals
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.9b00473
– volume: 171
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib56
  article-title: Performance enhancement of (FAPbI3)1-x(MAPbBr3)x perovskite solar cell with an optimized design
  publication-title: Micro Nanostruct.
  doi: 10.1016/j.micrna.2022.207403
– volume: 37
  start-page: 7380
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib1
  article-title: Photovoltaic performance investigation of Cs3Bi2I9-based perovskite solar cells with various charge transport channels using DFT and SCAPS-1D frameworks
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c00540
– volume: 120
  start-page: 370
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib21
  article-title: Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2015.07.040
– volume: 93
  start-page: 128
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib44
  article-title: Improve efficiency of perovskite solar cells by using Magnesium doped ZnO and TiO2 compact layers
  publication-title: Superlattice. Microst.
  doi: 10.1016/j.spmi.2016.01.026
– volume: 46
  start-page: 13801
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib37
  article-title: Investigating the potential of lead-free double perovskite Cs2AgBiBr6 material for solar cell applications: a theoretical study
  publication-title: Int. J. Energy Res.
  doi: 10.1002/er.8099
– volume: 42
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib6
  article-title: First-principles calculations to investigate structural, elastic, electronic, thermodynamic, and thermoelectric properties of CaPd3B4O12 (B = Ti, V) perovskites
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2022.105977
– volume: 48
  start-page: 989
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128281_bib9
  article-title: Progress of all-inorganic cesium lead-free perovskite solar cells
  publication-title: Chem. Lett.
  doi: 10.1246/cl.190270
– volume: 137
  start-page: 10276
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib25
  article-title: Tuning the optical properties of cesium lead halide perovskite nanocrystals by anion exchange reactions
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05602
– volume: 3
  start-page: 1629
  year: 2012
  ident: 10.1016/j.matchemphys.2023.128281_bib94
  article-title: Analysis of the origin of open circuit voltage in dye solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz3005464
– volume: 238
  start-page: 114
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib60
  article-title: Towards a high efficient Cd-free double CZTS layers kesterite solar cell using an optimized interface band alignment
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.04.040
– volume: 196
  start-page: 177
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib81
  article-title: Effect of absorber layer, hole transport layer thicknesses, and its doping density on the performance of perovskite solar cells by device simulation
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.12.014
– volume: 98
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib17
  article-title: Highly efficient SnS-based inverted planar heterojunction solar cell with ZnO ETL
  publication-title: Phys. Scripta
  doi: 10.1088/1402-4896/accb13
– volume: 55
  start-page: 322
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib42
  article-title: Development of zinc-oxide nanorods on chemically etched zinc plates suitable for high-efficiency photovoltaics solar cells
  publication-title: Opt. Quant. Electron.
  doi: 10.1007/s11082-022-04474-1
– volume: 10
  start-page: 14649
  year: 2018
  ident: 10.1016/j.matchemphys.2023.128281_bib49
  article-title: Facile sol–gel-derived craterlike dual-functioning TiO2 electron transport layer for high-efficiency perovskite solar cells
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00549
– volume: 53
  start-page: 10882
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib47
  article-title: An annealing-free aqueous-processed anatase TiO2 compact layer for efficient planar heterojunction perovskite solar cells
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC01104K
– volume: 18
  start-page: 65
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib62
  article-title: Perovskite solar cells: an emerging photovoltaic technology
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.07.007
– volume: 7
  start-page: 746
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib24
  article-title: Cesium lead halide perovskites with improved stability for tandem solar cells
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.6b00002
– start-page: 2753
  year: 2011
  ident: 10.1016/j.matchemphys.2023.128281_bib76
  article-title: A new solar cell simulator: wxAMPS
– volume: 8
  start-page: 133
  year: 2014
  ident: 10.1016/j.matchemphys.2023.128281_bib39
  article-title: Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.342
– volume: 909
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib79
  article-title: Performance analysis of SnS solar cell with a hole transport layer based on experimentally extracted device parameters
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2022.164823
– volume: 23
  start-page: 22184
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128281_bib20
  article-title: Lead-free CsSnCl3 perovskite nanocrystals: rapid synthesis, experimental characterization and DFT simulations
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP02666F
– volume: 8
  start-page: 24310
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib46
  article-title: Amorphous TiO2 compact layers via ALD for planar halide perovskite photovoltaics
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b07658
– volume: 133
  start-page: 8
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib86
  article-title: Theoretical analysis on effect of band offsets in perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.036
– volume: 26
  start-page: 4653
  year: 2014
  ident: 10.1016/j.matchemphys.2023.128281_bib73
  article-title: Unique properties of halide perovskites as possible origins of the superior solar cell performance
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201306281
– volume: 248
  start-page: 137
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib57
  article-title: Design and numerical investigation of efficient (FAPbI3)1−x(CsSnI3)x perovskite solar cell with optimized performances
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2022.11.012
– volume: 2
  start-page: 591
  year: 2012
  ident: 10.1016/j.matchemphys.2023.128281_bib41
  article-title: Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%
  publication-title: Sci. Rep.
  doi: 10.1038/srep00591
– volume: 281
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib68
  article-title: An efficient all-perovskite two terminal monolithic tandem solar cell with improved photovoltaic parameters: a theoretical prospect
  publication-title: Optik (Stuttg).
– volume: 7
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib92
  article-title: Comparative study of modeling of Perovskite solar cell with different HTM layers
  publication-title: Int. J. Mater.
– volume: 37
  start-page: 3083
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib12
  article-title: Perovskite-CIGS monolithic tandem solar cells with 29.7% efficiency: a numerical study
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.2c03973
– volume: 208
  start-page: 399
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib91
  article-title: Numerical simulation of highly efficient lead-free all-perovskite tandem solar cell
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2020.08.003
– volume: 261
  start-page: 227
  year: 2018
  ident: 10.1016/j.matchemphys.2023.128281_bib43
  article-title: Enhancing efficiency of planar structure perovskite solar cells using Sn-doped TiO2 as electron transport layer at low temperature
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2017.12.108
– volume: 5
  start-page: 2920
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib55
  article-title: Cu-based quaternary chalcogenide Cu2BaSnS4 thin films acting as hole transport layers in inverted perovskite CH3NH3PbI3 solar cells
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C6TA08426E
– volume: 33
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib4
  article-title: First-principles calculations to investigate physical properties of single-cubic (Ba0.82K0.18)(Bi0.53Pb0.47)O3 novel perovskite superconductor
  publication-title: Mater. Today Commun.
– volume: 1
  start-page: 3420
  year: 2018
  ident: 10.1016/j.matchemphys.2023.128281_bib54
  article-title: Solution-processed trigonal Cu2BaSnS4 thin-film solar cells
  publication-title: ACS Appl. Energy Mater.
  doi: 10.1021/acsaem.8b00514
– volume: 47
  start-page: 8602
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib89
  article-title: A comprehensive study of the optimization and comparison of cesium halide perovskite solar cells using ZnO and Cu2FeSnS4 as charge transport layers
  publication-title: New J. Chem.
  doi: 10.1039/D3NJ00320E
– volume: 10
  start-page: 1
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib80
  article-title: Simulation and analysis of lead based perovskite solar cell using SCAPS-1D
  publication-title: Indian J. Sci. Technol.
  doi: 10.17485/ijst/2017/v11i10/110721
– volume: 7
  start-page: 266
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib22
  article-title: Fluorescence blinking and photoactivation of all-inorganic perovskite nanocrystals CsPbBr3 and CsPbBr2I
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b02639
– volume: 47
  start-page: 1564
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128281_bib34
  article-title: A computational approach to investigate the suitable ETL for lead-free CsGeI3 based perovskite solar cell
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2021.03.610
– volume: 71
  start-page: 195
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib33
  article-title: Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite n-i-p solar cell
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.08.423
– year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib3
  article-title: CsPbI3-Perovskite quantum dot solar cells: unlocking their potential through improved absorber layer characteristics and reduced defects
  publication-title: Mater. Res. Express
  doi: 10.1088/2053-1591/ace591
– volume: 10
  start-page: 344
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib88
  article-title: The history of photovoltaics with emphasis on CdTe solar cells and modules
  publication-title: Coatings
  doi: 10.3390/coatings10040344
– volume: 348
  start-page: 1234
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib11
  article-title: High-performance photovoltaic perovskite layers fabricated through intramolecular exchange
  publication-title: Science (80-.)
  doi: 10.1126/science.aaa9272
– volume: 34
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib15
  article-title: Numerical analysis of FeSi2 based solar cell with PEDOT:PSS hole transport layer
  publication-title: Mater. Today Commun.
– volume: 71
  start-page: 239
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib38
  article-title: Double lead-free perovskite solar cell for 19.9% conversion efficiency: a SCAPS-1D based simulation study
  publication-title: Mater. Today Proc.
  doi: 10.1016/j.matpr.2022.08.518
– volume: 12
  start-page: 34850
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib99
  article-title: Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers
  publication-title: RSC Adv.
  doi: 10.1039/D2RA06734J
– volume: 146
  start-page: 44
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib26
  article-title: A calorimetric approach to reach high performance perovskite solar cells
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.10.024
– volume: 8
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib14
  article-title: Concurrent investigation of antimony chalcogenide (Sb2Se3 and Sb2S3)-based solar cells with a potential WS2 electron transport layer
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2022.e12034
– volume: 28
  start-page: 4771
  year: 2016
  ident: 10.1016/j.matchemphys.2023.128281_bib50
  article-title: BaCu2Sn(S,Se)4: earth-abundant chalcogenides for thin-film photovoltaics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01832
– volume: 2
  start-page: 1214
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib74
  article-title: Recombination in perovskite solar cells: significance of grain boundaries, interface traps, and defect ions
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b00236
– volume: 48
  start-page: 5723
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128281_bib85
  article-title: CZTSe kesterite as an alternative hole transport layer for MASnI3 perovskite solar cells
  publication-title: J. Electron. Mater.
  doi: 10.1007/s11664-019-07374-5
– year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib59
  article-title: Halide composition engineered a non-toxic perovskite–silicon tandem solar cell with 30.7% conversion efficiency
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.2c01574
– volume: 37
  start-page: 3957
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib78
  article-title: Design and simulation of Cs2BiAgI6 double perovskite solar cells with different electron transport layers for efficiency enhancement
  publication-title: Energy Fuels
  doi: 10.1021/acs.energyfuels.3c00181
– volume: 71
  start-page: 127
  year: 1998
  ident: 10.1016/j.matchemphys.2023.128281_bib30
  article-title: Phase transition and electric conductivity of ASnCl 3 (A = Cs and CH 3 NH 3)
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.71.127
– volume: 14
  start-page: 1428
  year: 2014
  ident: 10.1016/j.matchemphys.2023.128281_bib70
  article-title: Impact of work function of back contact of perovskite solar cells without hole transport material analyzed by device simulation
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2014.08.002
– volume: 25
  start-page: 16459
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib8
  article-title: Understanding Auger recombination in perovskite solar cells
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D3CP00441D
– volume: 138
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib7
  article-title: Improving the performance of perovskite solar cells with carbon nanotubes as a hole transport layer
  publication-title: Opt. Mater.
  doi: 10.1016/j.optmat.2023.113702
– volume: 13
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib64
  article-title: Design and numerical analysis of CIGS-based solar cell with V2O5 as the BSF layer to enhance photovoltaic performance
  publication-title: AIP Adv.
  doi: 10.1063/5.0138354
– volume: 339
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib13
  article-title: Unlocking the potential of MgF2 textured surface in enhancing the efficiency of perovskite solar cells
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2023.134096
– volume: 7
  start-page: 43210
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib71
  article-title: Effect of various electron and hole transport layers on the performance of CsPbI3-based perovskite solar cells: a numerical investigation in DFT, SCAPS-1D, and wxAMPS frameworks
  publication-title: ACS Omega
  doi: 10.1021/acsomega.2c05912
– volume: 3
  start-page: 19688
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib95
  article-title: Inorganic caesium lead iodide perovskite solar cells
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C5TA06398A
– volume: 13
  start-page: 9878
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib18
  article-title: Optical performance analysis of InP nanostructures for photovoltaic applications
  publication-title: RSC Adv.
  doi: 10.1039/D3RA00039G
– volume: 159
  start-page: 227
  year: 2017
  ident: 10.1016/j.matchemphys.2023.128281_bib27
  article-title: From unstable CsSnI3 to air-stable Cs2SnI6: a lead-free perovskite solar cell light absorber with bandgap of 1.48 eV and high absorption coefficient
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2016.09.022
– volume: 13
  start-page: 2521
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib52
  article-title: An extensive study on multiple ETL and HTL layers to design and simulation of high-performance lead-free CsSnCl3-based perovskite solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-28506-2
– volume: 34
  start-page: 1343
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib65
  article-title: Tailoring the SnO2 electron transport layer with hydrofluoric acid to assemble efficient and stable HTL-free perovskite solar cells
  publication-title: J. Mater. Sci. Mater. Electron.
  doi: 10.1007/s10854-023-10785-0
– volume: 13
  start-page: 9076
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib58
  article-title: Insights into the photovoltaic properties of indium sulfide as an electron transport material in perovskite solar cells
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-36427-3
– volume: 58
  start-page: 11748
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib66
  article-title: Fluorinated carbon nanotubes: a low-cost hole transport layer for perovskite solar cells
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-023-08756-1
– volume: 110
  start-page: 127
  year: 2013
  ident: 10.1016/j.matchemphys.2023.128281_bib28
  article-title: Room temperature “one-pot” solution synthesis of nanoscale CsSnI3 orthorhombic perovskite thin films and particles
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.08.011
– volume: 62
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib5
  article-title: Strain-induced tunable optoelectronic properties of inorganic halide perovskites APbCl3 (A = K, Rb, and Cs)
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.35848/1347-4065/acb09e
– volume: 9
  year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib16
  article-title: High efficiency Cu2MnSnS4 thin film solar cells with SnS BSF and CdS ETL layers: a numerical simulation
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2023.e15716
– volume: 20
  start-page: 3513
  year: 2020
  ident: 10.1016/j.matchemphys.2023.128281_bib48
  article-title: Additive manufacturing of high-refractive-index, nanoarchitected titanium dioxide for 3D dielectric photonic crystals
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.0c00454
– volume: 12
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib67
  article-title: Design and numerical investigation of cadmium telluride (CdTe) and iron silicide (FeSi2) based double absorber solar cells to enhance power conversion efficiency
  publication-title: AIP Adv.
  doi: 10.1063/5.0108459
– start-page: 3
  year: 2018
  ident: 10.1016/j.matchemphys.2023.128281_bib75
  article-title: Solar cells and arrays
– year: 2023
  ident: 10.1016/j.matchemphys.2023.128281_bib96
  article-title: Harnessing the potential of CsPbBr3-based perovskite solar cells using efficient charge transport materials and global optimization
  publication-title: RSC Adv.
  doi: 10.1039/D3RA02485G
– volume: 272
  year: 2022
  ident: 10.1016/j.matchemphys.2023.128281_bib61
  article-title: ∂PV: an end-to-end differentiable solar-cell simulator
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2021.108232
– volume: 193
  start-page: 948
  year: 2019
  ident: 10.1016/j.matchemphys.2023.128281_bib87
  article-title: Performance analysis of MAPbI3 based perovskite solar cells employing diverse charge selective contacts: simulation study
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2019.10.009
– volume: 248
  year: 2021
  ident: 10.1016/j.matchemphys.2023.128281_bib63
  article-title: Numerical study of lead free CsSn0.5Ge0.5I3 perovskite solar cell by SCAPS-1D
  publication-title: Optik (Stuttg).
– volume: 133
  start-page: 92
  year: 2015
  ident: 10.1016/j.matchemphys.2023.128281_bib23
  article-title: Effects of spectral coupling on perovskite solar cells under diverse climatic conditions
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.037
SSID ssj0017113
Score 2.635482
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 128281
Title Optimization of the architecture of lead-free CsSnCl3-perovskite solar cells for enhancement of efficiency: A combination of SCAPS-1D and wxAMPS study
Volume 308
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLbKkLg8IBhMjJuMxFuUKLFzK29VYBSmwqRu0t6q-BJVU0lRkwLigZ_BP-J_cU6ciwdDg71ElaPj1DlfbH_H50LIC8YTxTE4Js39yIX9v--mwDzcPNWw-CVSpgLtkLP38fQkfHcanY5GPy2vpW0tPPntwriSq2gV2kCvGCX7H5rtO4UG-A36hStoGK7_pOMP8L1_bAMpu8P-cycD0LYCJbrFRmsnq-ZltuIupgb_XKHV1qmQ2DpovK9M7u9yiSjoHAR0k18CgzNNADuMAYh0_7h5Njmau8Gr5gDiy9fJ7GhupavtykTltXkVjuxqy5nkBA1A-h39FBbr3OQzmHnO4RLogRos4Ka29hvvwHPeVstNbjzF2zMopbampLLXo2e9RIO8qZeMEWJF7hx67f3WxMEaZzkT5NnOhMBiXT8yteS6aZv7qTXxBkgdgwvXBGOeOPOAAeBAcXgePsUbZM7n4f5tfey9FjuHuLOF1dUCu1qYrq6R6wzYChbS8L73nkZBEpgq3d0obpDng5vhX_6VtU2y9jvHd8mdlqjQiUHdPTLS5S65mXU63CW3rVSW98kPG4t0XVDAIrWxiG09FumfWKQNFmmDRQpYpBYWUXbA4ks6oRYS8WaHRArIogaJtEHiA3Jy8Po4m7ptzQ9XcpbUrkojqROuYlh3lAhFEGmgwKkOZDRWnBXMl4Ea81gAzwgULEBMF0B5NU9DwQMu-R7ZKdelfkhomEgGMlEslB_GKh9rJkINkknBY87EPkm7V7yQbUJ8rMuyWlyq6H3CetFPJivM5UKPriL0mNwavognZKfebPVT2AbX4lkDsl-CprZ5
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+the+architecture+of+lead-free+CsSnCl3-perovskite+solar+cells+for+enhancement+of+efficiency%3A+A+combination+of+SCAPS-1D+and+wxAMPS+study&rft.jtitle=Materials+chemistry+and+physics&rft.au=Hossain%2C+M.+Khalid&rft.au=Toki%2C+G.F.+Ishraque&rft.au=Kuddus%2C+A.&rft.au=Mohammed%2C+Mustafa+K.A.&rft.date=2023-10-15&rft.issn=0254-0584&rft.volume=308&rft.spage=128281&rft_id=info:doi/10.1016%2Fj.matchemphys.2023.128281&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_matchemphys_2023_128281
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0254-0584&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0254-0584&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0254-0584&client=summon