New types of exact solutions for the fourth-order dispersive cubic–quintic nonlinear Schrödinger equation
In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain...
Saved in:
Published in | Applied mathematics and computation Vol. 217; no. 12; pp. 5967 - 5971 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
15.02.2011
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0096-3003 1873-5649 |
DOI | 10.1016/j.amc.2010.12.008 |
Cover
Abstract | In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain a new dark soliton and bright soliton, which may approach nonzero when the time variable approaches infinity. Then a series of analytical exact solutions are constructed by means of F-expansion method. These solutions include solitary wave solutions of the bell shape, solitary wave solutions of the kink shape, and periodic wave solutions of Jacobian elliptic function. |
---|---|
AbstractList | In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain a new dark soliton and bright soliton, which may approach nonzero when the time variable approaches infinity. Then a series of analytical exact solutions are constructed by means of F-expansion method. These solutions include solitary wave solutions of the bell shape, solitary wave solutions of the kink shape, and periodic wave solutions of Jacobian elliptic function. |
Author | Xu, Gui-Qiong |
Author_xml | – sequence: 1 givenname: Gui-Qiong surname: Xu fullname: Xu, Gui-Qiong email: xugq@staff.shu.edu.cn organization: Department of Information Management, Shanghai University, Shanghai 200444, PR China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23885110$$DView record in Pascal Francis |
BookMark | eNp9kD1OAzEUhC0EEuHnAHRuKDf4Z73ZiAoh_iQEBVBb3rfPxNFmN7G9QDruwF24ADfhJDgEUVBQjZ4032je7JDNtmuRkAPOhpzx4mg6NDMYCra6xZCxcoMMeDmSmSry8SYZMDYuMsmY3CY7IUwZY6OC5wPS3OAzjcs5BtpZii8GIg1d00fXtYHaztM4waS9j5Os8zV6WrswRx_cE1LoKwefr2-L3rXRAU2lGtei8fQOJv7jvXbtYyJw0ZtV4B7ZsqYJuP-ju-Th_Oz-9DK7vr24Oj25zkCKUcxApKLAVGWLSimhlLUoyqoa5wZlDcpWykgux6YuqwLQQsXLHAopBZalynO5Sw7XuXMTwDTWmxZc0HPvZsYvtZDJxjlLPr72ge9C8Gh_LZzp1ax6qtOsejWr5kKnWRMz-sOAi9_fRW9c8y95vCYxvf7k0OsADlvA2nmEqOvO_UN_Ad2XmHI |
CODEN | AMHCBQ |
CitedBy_id | crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_S1131 crossref_primary_10_1155_2018_6870310 crossref_primary_10_1063_5_0179241 crossref_primary_10_1007_s11082_018_1426_z crossref_primary_10_1016_j_ijleo_2023_170708 crossref_primary_10_1016_j_ijleo_2021_166646 crossref_primary_10_1016_j_ijleo_2020_165752 crossref_primary_10_59277_RomRepPhys_2023_75_121 crossref_primary_10_59277_RomRepPhys_2024_76_114 crossref_primary_10_1515_jaa_2021_2068 crossref_primary_10_59277_RomRepPhys_2023_75_119 crossref_primary_10_1063_5_0169763 crossref_primary_10_1155_2014_541370 crossref_primary_10_12677_AAM_2018_77113 crossref_primary_10_1002_mma_3557 crossref_primary_10_1140_epjp_i2018_12354_9 crossref_primary_10_1016_j_ijleo_2021_167421 crossref_primary_10_1088_1402_4896_ad6a9f crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_S1049 crossref_primary_10_1155_2014_769561 crossref_primary_10_1007_s11071_015_2495_1 crossref_primary_10_1080_17455030_2016_1259690 crossref_primary_10_1088_0256_307X_40_12_120501 crossref_primary_10_1063_5_0169733 crossref_primary_10_1140_epjp_i2015_15051_3 |
Cites_doi | 10.1016/0030-4018(95)00552-8 10.1016/j.optlastec.2007.10.002 10.1103/PhysRevE.74.027602 10.1016/j.amc.2005.02.055 10.1016/j.chaos.2006.03.014 10.1002/sapm1967461133 10.1016/S0030-4018(02)02309-X 10.1103/PhysRevLett.84.4096 10.1103/PhysRevLett.78.448 10.1103/PhysRevLett.76.3955 10.1103/PhysRevE.60.3314 10.1103/PhysRevE.54.4312 10.1016/S0375-9601(02)01775-9 10.1016/j.physleta.2003.07.026 10.1016/j.chaos.2005.04.007 10.1016/j.amc.2009.09.024 10.1016/j.mcm.2005.08.010 10.1088/0305-4470/36/16/308 10.1016/j.cpc.2009.01.019 10.1016/j.physleta.2005.03.066 10.1103/PhysRevE.62.8719 10.1016/S0030-4018(97)00230-7 10.1016/j.physleta.2008.07.052 10.1016/j.amc.2008.12.004 |
ContentType | Journal Article |
Copyright | 2010 Elsevier Inc. 2015 INIST-CNRS |
Copyright_xml | – notice: 2010 Elsevier Inc. – notice: 2015 INIST-CNRS |
DBID | AAYXX CITATION IQODW |
DOI | 10.1016/j.amc.2010.12.008 |
DatabaseName | CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1873-5649 |
EndPage | 5971 |
ExternalDocumentID | 23885110 10_1016_j_amc_2010_12_008 S0096300310012087 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABAOU ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADGUI ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W KOM LG9 M26 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ RXW SBC SDF SDG SES SME SPC SPCBC SSW SSZ T5K TN5 WH7 X6Y XPP ZMT ~02 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ACRPL ACVFH ADCNI ADIYS ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLZ HMJ HVGLF R2- SEW SSH TAE VH1 VOH WUQ EFKBS IQODW |
ID | FETCH-LOGICAL-c327t-c2300c05bf6b55255ffe28bb94ae3dc5fb5a3139ad8b6cefcb184c6332e885443 |
IEDL.DBID | AIKHN |
ISSN | 0096-3003 |
IngestDate | Mon Jul 21 09:17:06 EDT 2025 Tue Jul 01 04:07:16 EDT 2025 Thu Apr 24 22:59:49 EDT 2025 Fri Feb 23 02:31:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Keywords | Soliton solution The nonlinear Schrödinger equation Periodic wave solution Numerical linear algebra Periodic solution Schrödinger equation Exact solution Non linear equation Direct method Numerical analysis Linear system Matrix inversion Applied mathematics Algebraic method Nonlinearity Analytical solution |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-c2300c05bf6b55255ffe28bb94ae3dc5fb5a3139ad8b6cefcb184c6332e885443 |
PageCount | 5 |
ParticipantIDs | pascalfrancis_primary_23885110 crossref_primary_10_1016_j_amc_2010_12_008 crossref_citationtrail_10_1016_j_amc_2010_12_008 elsevier_sciencedirect_doi_10_1016_j_amc_2010_12_008 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2011-02-15 |
PublicationDateYYYYMMDD | 2011-02-15 |
PublicationDate_xml | – month: 02 year: 2011 text: 2011-02-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam |
PublicationTitle | Applied mathematics and computation |
PublicationYear | 2011 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | El-Sayed, Kaya (b0085) 2006; 172 Xu (b0080) 2009; 180 Agrawal (b0005) 1989 Hasegawa, Kodama (b0010) 1995 Schürmann (b0105) 1996; 54 Biswas, Milovic (b0120) 2009; 208 Tanev, Pushkarov (b0100) 1997; 141 Wazwaz (b0115) 2006; 43 Radhakrishnan, Kundu, Lakshmanan (b0030) 1999; 60 Xu (b0075) 2007; 33 Ma, Chen (b0090) 2009; 215 Li, Li, Tian, Zhou (b0035) 2000; 84 Xu (b0070) 2006; 74 Biswas (b0055) 2003; 36 Zakharov, Shabat (b0125) 1972; 34 Gedalin, Scott, Band (b0025) 1997; 78 Yomba (b0140) 2005; 340 Pusharov, Tanev (b0110) 1996; 124 Porsezian, Nakkeeran (b0020) 1996; 76 Benney, Newell (b0015) 1967; 46 Yomba (b0145) 2008; 372 Biswas (b0060) 2008; 372 Xu, Li (b0065) 2005; 26 Wang, Zhou (b0135) 2003; 318 Vinoj, Kuriakose (b0040) 2000; 62 Biswas (b0050) 2003; 216 Kohl, Biswas, Milovic, Zerrad (b0095) 2008; 40 Biswas, Konar (b0045) 2006 Zhou, Wang, Wang (b0130) 2003; 308 Biswas (10.1016/j.amc.2010.12.008_b0120) 2009; 208 Biswas (10.1016/j.amc.2010.12.008_b0045) 2006 Gedalin (10.1016/j.amc.2010.12.008_b0025) 1997; 78 Benney (10.1016/j.amc.2010.12.008_b0015) 1967; 46 Vinoj (10.1016/j.amc.2010.12.008_b0040) 2000; 62 Schürmann (10.1016/j.amc.2010.12.008_b0105) 1996; 54 Biswas (10.1016/j.amc.2010.12.008_b0055) 2003; 36 Pusharov (10.1016/j.amc.2010.12.008_b0110) 1996; 124 Wazwaz (10.1016/j.amc.2010.12.008_b0115) 2006; 43 Radhakrishnan (10.1016/j.amc.2010.12.008_b0030) 1999; 60 Tanev (10.1016/j.amc.2010.12.008_b0100) 1997; 141 Xu (10.1016/j.amc.2010.12.008_b0070) 2006; 74 Zhou (10.1016/j.amc.2010.12.008_b0130) 2003; 308 Porsezian (10.1016/j.amc.2010.12.008_b0020) 1996; 76 Xu (10.1016/j.amc.2010.12.008_b0080) 2009; 180 Yomba (10.1016/j.amc.2010.12.008_b0145) 2008; 372 Biswas (10.1016/j.amc.2010.12.008_b0050) 2003; 216 Biswas (10.1016/j.amc.2010.12.008_b0060) 2008; 372 Xu (10.1016/j.amc.2010.12.008_b0065) 2005; 26 Agrawal (10.1016/j.amc.2010.12.008_b0005) 1989 El-Sayed (10.1016/j.amc.2010.12.008_b0085) 2006; 172 Kohl (10.1016/j.amc.2010.12.008_b0095) 2008; 40 Yomba (10.1016/j.amc.2010.12.008_b0140) 2005; 340 Zakharov (10.1016/j.amc.2010.12.008_b0125) 1972; 34 Li (10.1016/j.amc.2010.12.008_b0035) 2000; 84 Xu (10.1016/j.amc.2010.12.008_b0075) 2007; 33 Ma (10.1016/j.amc.2010.12.008_b0090) 2009; 215 Hasegawa (10.1016/j.amc.2010.12.008_b0010) 1995 Wang (10.1016/j.amc.2010.12.008_b0135) 2003; 318 |
References_xml | – volume: 62 start-page: 008719 year: 2000 ident: b0040 article-title: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations publication-title: Phys. Rev. E – volume: 60 start-page: 3314 year: 1999 ident: b0030 article-title: Coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media publication-title: Phys. Rev. E – volume: 172 start-page: 1315 year: 2006 ident: b0085 article-title: A numerical solution and an exact explicit solution of the NLS equation publication-title: Appl. Math. Comput. – volume: 215 start-page: 2835 year: 2009 ident: b0090 article-title: Direct search for exact solutions to the nonlinear Schrödinger equation publication-title: Appl. Math. Comput. – volume: 124 start-page: 354 year: 1996 ident: b0110 article-title: Bright and dark solitary wave propagation bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities publication-title: Opt. Commun. – volume: 43 start-page: 802 year: 2006 ident: b0115 article-title: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities publication-title: Math. Comput. Model. – volume: 141 start-page: 322 year: 1997 ident: b0100 article-title: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides publication-title: Opt. Commun. – volume: 46 start-page: 133 year: 1967 ident: b0015 article-title: The propagation of nonlinear wave envelopes publication-title: J. Math. Phys. – volume: 180 start-page: 1137 year: 2009 ident: b0080 article-title: A note on the Painlevé test for nonlinear variable-coefficient PDEs publication-title: Comput. Phys. Commun. – year: 1995 ident: b0010 article-title: Solitons in Optical Communications – volume: 84 start-page: 4096 year: 2000 ident: b0035 article-title: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. – volume: 208 start-page: 209 year: 2009 ident: b0120 article-title: Optical solitons in a parabolic law media with fourth order dispersion publication-title: Appl. Math. Comput. – volume: 340 start-page: 149 year: 2005 ident: b0140 article-title: The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations publication-title: Phys. Lett. A – volume: 78 start-page: 448 year: 1997 ident: b0025 article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. – volume: 308 start-page: 31 year: 2003 ident: b0130 article-title: Periodic wave solutions to a coupled KdV equations with variable coefficients publication-title: Phys. Lett. A – volume: 36 start-page: 4581 year: 2003 ident: b0055 article-title: Quasi-stationary optical solitons with power law nonlinearity publication-title: J. Phys. A: Math. Gen. – year: 1989 ident: b0005 article-title: Nonlinear Fiber Optics – volume: 372 start-page: 5941 year: 2008 ident: b0060 article-title: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger’s equation in dual-power law media publication-title: Phys. Lett. A – volume: 26 start-page: 1363 year: 2005 ident: b0065 article-title: On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations publication-title: Chaos Solitons Fract. – volume: 40 start-page: 647 year: 2008 ident: b0095 article-title: Optical soliton perturbation in a non-Kerr law media publication-title: Optics Laser Technol. – volume: 34 start-page: 62 year: 1972 ident: b0125 article-title: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media publication-title: Sov. Phys. JETP – volume: 33 start-page: 1652 year: 2007 ident: b0075 article-title: The Painlevé integrability of two parameterized nonlinear evolution equations using symbolic computation publication-title: Chaos Solitons Fract. – volume: 54 start-page: 4312 year: 1996 ident: b0105 article-title: Traveling-wave solutions of the cubic–quintic nonlinear Schrödinger equation publication-title: Phys. Rev. E – volume: 216 start-page: 427 year: 2003 ident: b0050 article-title: Quasi-stationary optical solitons with parabolic law nonlinearity publication-title: Opt. Commun. – volume: 74 start-page: 027602 year: 2006 ident: b0070 article-title: Painlevé classification of a generalized coupled Hirota system publication-title: Phys. Rev. E – volume: 318 start-page: 84 year: 2003 ident: b0135 article-title: The periodic wave solutions for the Klein–Gordon–Schrödinger equations publication-title: Phys. Lett. A – volume: 372 start-page: 048 year: 2008 ident: b0145 article-title: A generalized auxiliary equation method and its application to nonlinear Klein–Gordon and generalized nonlinear Camassa–Holm equations publication-title: Phys. Lett. A – year: 2006 ident: b0045 article-title: Introduction to Non-Kerr Law Optical Solitons – volume: 76 start-page: 3955 year: 1996 ident: b0020 article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift publication-title: Phys. Rev. Lett. – volume: 124 start-page: 354 year: 1996 ident: 10.1016/j.amc.2010.12.008_b0110 article-title: Bright and dark solitary wave propagation bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities publication-title: Opt. Commun. doi: 10.1016/0030-4018(95)00552-8 – volume: 40 start-page: 647 year: 2008 ident: 10.1016/j.amc.2010.12.008_b0095 article-title: Optical soliton perturbation in a non-Kerr law media publication-title: Optics Laser Technol. doi: 10.1016/j.optlastec.2007.10.002 – volume: 34 start-page: 62 year: 1972 ident: 10.1016/j.amc.2010.12.008_b0125 article-title: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media publication-title: Sov. Phys. JETP – volume: 74 start-page: 027602 year: 2006 ident: 10.1016/j.amc.2010.12.008_b0070 article-title: Painlevé classification of a generalized coupled Hirota system publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.74.027602 – volume: 172 start-page: 1315 year: 2006 ident: 10.1016/j.amc.2010.12.008_b0085 article-title: A numerical solution and an exact explicit solution of the NLS equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2005.02.055 – volume: 33 start-page: 1652 year: 2007 ident: 10.1016/j.amc.2010.12.008_b0075 article-title: The Painlevé integrability of two parameterized nonlinear evolution equations using symbolic computation publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2006.03.014 – volume: 46 start-page: 133 year: 1967 ident: 10.1016/j.amc.2010.12.008_b0015 article-title: The propagation of nonlinear wave envelopes publication-title: J. Math. Phys. doi: 10.1002/sapm1967461133 – volume: 216 start-page: 427 year: 2003 ident: 10.1016/j.amc.2010.12.008_b0050 article-title: Quasi-stationary optical solitons with parabolic law nonlinearity publication-title: Opt. Commun. doi: 10.1016/S0030-4018(02)02309-X – year: 1995 ident: 10.1016/j.amc.2010.12.008_b0010 – volume: 84 start-page: 4096 year: 2000 ident: 10.1016/j.amc.2010.12.008_b0035 article-title: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4096 – volume: 78 start-page: 448 year: 1997 ident: 10.1016/j.amc.2010.12.008_b0025 article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.448 – volume: 76 start-page: 3955 year: 1996 ident: 10.1016/j.amc.2010.12.008_b0020 article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.76.3955 – volume: 60 start-page: 3314 year: 1999 ident: 10.1016/j.amc.2010.12.008_b0030 article-title: Coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.60.3314 – volume: 54 start-page: 4312 year: 1996 ident: 10.1016/j.amc.2010.12.008_b0105 article-title: Traveling-wave solutions of the cubic–quintic nonlinear Schrödinger equation publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.54.4312 – volume: 308 start-page: 31 year: 2003 ident: 10.1016/j.amc.2010.12.008_b0130 article-title: Periodic wave solutions to a coupled KdV equations with variable coefficients publication-title: Phys. Lett. A doi: 10.1016/S0375-9601(02)01775-9 – volume: 318 start-page: 84 year: 2003 ident: 10.1016/j.amc.2010.12.008_b0135 article-title: The periodic wave solutions for the Klein–Gordon–Schrödinger equations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2003.07.026 – volume: 26 start-page: 1363 year: 2005 ident: 10.1016/j.amc.2010.12.008_b0065 article-title: On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations publication-title: Chaos Solitons Fract. doi: 10.1016/j.chaos.2005.04.007 – volume: 215 start-page: 2835 year: 2009 ident: 10.1016/j.amc.2010.12.008_b0090 article-title: Direct search for exact solutions to the nonlinear Schrödinger equation publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2009.09.024 – volume: 43 start-page: 802 year: 2006 ident: 10.1016/j.amc.2010.12.008_b0115 article-title: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities publication-title: Math. Comput. Model. doi: 10.1016/j.mcm.2005.08.010 – year: 1989 ident: 10.1016/j.amc.2010.12.008_b0005 – volume: 36 start-page: 4581 year: 2003 ident: 10.1016/j.amc.2010.12.008_b0055 article-title: Quasi-stationary optical solitons with power law nonlinearity publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/36/16/308 – volume: 180 start-page: 1137 year: 2009 ident: 10.1016/j.amc.2010.12.008_b0080 article-title: A note on the Painlevé test for nonlinear variable-coefficient PDEs publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.01.019 – volume: 340 start-page: 149 year: 2005 ident: 10.1016/j.amc.2010.12.008_b0140 article-title: The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2005.03.066 – volume: 372 start-page: 048 year: 2008 ident: 10.1016/j.amc.2010.12.008_b0145 article-title: A generalized auxiliary equation method and its application to nonlinear Klein–Gordon and generalized nonlinear Camassa–Holm equations publication-title: Phys. Lett. A – volume: 62 start-page: 008719 year: 2000 ident: 10.1016/j.amc.2010.12.008_b0040 article-title: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.62.8719 – volume: 141 start-page: 322 year: 1997 ident: 10.1016/j.amc.2010.12.008_b0100 article-title: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides publication-title: Opt. Commun. doi: 10.1016/S0030-4018(97)00230-7 – year: 2006 ident: 10.1016/j.amc.2010.12.008_b0045 – volume: 372 start-page: 5941 year: 2008 ident: 10.1016/j.amc.2010.12.008_b0060 article-title: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger’s equation in dual-power law media publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2008.07.052 – volume: 208 start-page: 209 year: 2009 ident: 10.1016/j.amc.2010.12.008_b0120 article-title: Optical solitons in a parabolic law media with fourth order dispersion publication-title: Appl. Math. Comput. doi: 10.1016/j.amc.2008.12.004 |
SSID | ssj0007614 |
Score | 2.2164547 |
Snippet | In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 5967 |
SubjectTerms | Exact sciences and technology Global analysis, analysis on manifolds Mathematical analysis Mathematics Numerical analysis Numerical analysis. Scientific computation Numerical linear algebra Partial differential equations Periodic wave solution Sciences and techniques of general use Soliton solution Special functions The nonlinear Schrödinger equation Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds |
Title | New types of exact solutions for the fourth-order dispersive cubic–quintic nonlinear Schrödinger equation |
URI | https://dx.doi.org/10.1016/j.amc.2010.12.008 |
Volume | 217 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL1ou5lBROeBj5mmFrMaqDFJVaUrSxGlddCNI7gL9cQM2vYjDa7Ef_Bf_AH_xC_xVlcSRhAXswqEeoRbl_vKqXMBfmjBFJc5o4UtHOWp07QQnFORKKMsdwPPw23kk9N8eM6PL8TFEuy3d2ECrLKx_dGmL6x182a3kebuuKrCHd8i8EWFCnWaJXKwDCsZK3LRg5W9o9_D084gY6YeyZiLAPNKWPtzcwHzUtcmArxCUTA0mXzbPa2O1QyF5mO3i39c0OE6rDWxI9mLn7cBS270CT6edMSrs89whUaLhLLqjNx44m6VqUmnXQQDVIKD8Tmf1pd0QbtJbBXIwgOKnZi5rszz_cNkXo1wPTKKPBpqSs7M5fTp0S5qgMRNIj_4Fzg_PPizP6RNQwVqWDaoqcF8IzGJ0D7XQmAy4b3LpNYFV45ZI7wWimFIqKzUuXHeaMz_TM5Y5qQMRHlfoYc7u00gaajIGc-tV5JbyZS2ORsobZiV3qZiC5JWjqVp2MZD04ursoWV_S1R9GUQfZlmJYp-C352U8aRauO9wbw9nPKVvpToCt6b1n91kN1GGLmE2DPZ_r91d-BDLDZnNBXfoFdP5-47Riu17sPyr7u03-jkC-zJ7Us |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtVAFJ4gLJQYgn8RBZyFK5ORtjPTTpeGSK7AZSMk7CbzG0rwerm3N2FlfAffxRfwTXwSz-m0F0kMC1dNmvlpzpycv37zHULeWsmNUCVnta8DE3mwrJZCMJkZZ7wIVRR4G3l8Uo7OxOG5PF8h-8NdGIRV9rY_2fTOWvdv9npp7k2bBu_41sgXhRXqvMhU9YCsCckrxPW9_3aL84A8PVEx1wjyyvjwa7MDeZkvLsG7sCSILSb_7ZweT80cRBZTr4u_HNDBJtnoI0f6IX3cE7ISJk_J-nhJuzp_Rq7AZFEsqs7p10jDjXEtXeoWhfCUwmB4LmbtBetIN6lvkCocMezULWzjfn__cb1oJrAenSQWDTOjn93F7NdP31UAabhO7ODPydnBx9P9EevbKTDHi6plDrKNzGXSxtJKCalEjKFQ1tbCBO6djFYaDgGh8cqWLkRnIftzJedFUApp8l6QVdg5vCQ0x3qci8JHo4RX3Fhf8spYx72KPpdbJBvkqF3PNY4tL670ACq71CB6jaLXeaFB9Fvk3XLKNBFt3DdYDIej72iLBkdw37TdOwe53AjiFow8s1f_t-4b8nB0Oj7Wx59Ojl6TR6nsXLBcbpPVdrYIOxC3tHa308s_9ELuFg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+types+of+exact+solutions+for+the+fourth-order+dispersive+cubic%E2%80%93quintic+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Xu%2C+Gui-Qiong&rft.date=2011-02-15&rft.issn=0096-3003&rft.volume=217&rft.issue=12&rft.spage=5967&rft.epage=5971&rft_id=info:doi/10.1016%2Fj.amc.2010.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2010_12_008 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon |