New types of exact solutions for the fourth-order dispersive cubic–quintic nonlinear Schrödinger equation

In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 217; no. 12; pp. 5967 - 5971
Main Author Xu, Gui-Qiong
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.02.2011
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2010.12.008

Cover

Abstract In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain a new dark soliton and bright soliton, which may approach nonzero when the time variable approaches infinity. Then a series of analytical exact solutions are constructed by means of F-expansion method. These solutions include solitary wave solutions of the bell shape, solitary wave solutions of the kink shape, and periodic wave solutions of Jacobian elliptic function.
AbstractList In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe the propagation of optical pulse in a medium exhibiting a parabolic nonlinearity law. By using complex envelope ansatz method, we first obtain a new dark soliton and bright soliton, which may approach nonzero when the time variable approaches infinity. Then a series of analytical exact solutions are constructed by means of F-expansion method. These solutions include solitary wave solutions of the bell shape, solitary wave solutions of the kink shape, and periodic wave solutions of Jacobian elliptic function.
Author Xu, Gui-Qiong
Author_xml – sequence: 1
  givenname: Gui-Qiong
  surname: Xu
  fullname: Xu, Gui-Qiong
  email: xugq@staff.shu.edu.cn
  organization: Department of Information Management, Shanghai University, Shanghai 200444, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23885110$$DView record in Pascal Francis
BookMark eNp9kD1OAzEUhC0EEuHnAHRuKDf4Z73ZiAoh_iQEBVBb3rfPxNFmN7G9QDruwF24ADfhJDgEUVBQjZ4032je7JDNtmuRkAPOhpzx4mg6NDMYCra6xZCxcoMMeDmSmSry8SYZMDYuMsmY3CY7IUwZY6OC5wPS3OAzjcs5BtpZii8GIg1d00fXtYHaztM4waS9j5Os8zV6WrswRx_cE1LoKwefr2-L3rXRAU2lGtei8fQOJv7jvXbtYyJw0ZtV4B7ZsqYJuP-ju-Th_Oz-9DK7vr24Oj25zkCKUcxApKLAVGWLSimhlLUoyqoa5wZlDcpWykgux6YuqwLQQsXLHAopBZalynO5Sw7XuXMTwDTWmxZc0HPvZsYvtZDJxjlLPr72ge9C8Gh_LZzp1ax6qtOsejWr5kKnWRMz-sOAi9_fRW9c8y95vCYxvf7k0OsADlvA2nmEqOvO_UN_Ad2XmHI
CODEN AMHCBQ
CitedBy_id crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_S1131
crossref_primary_10_1155_2018_6870310
crossref_primary_10_1063_5_0179241
crossref_primary_10_1007_s11082_018_1426_z
crossref_primary_10_1016_j_ijleo_2023_170708
crossref_primary_10_1016_j_ijleo_2021_166646
crossref_primary_10_1016_j_ijleo_2020_165752
crossref_primary_10_59277_RomRepPhys_2023_75_121
crossref_primary_10_59277_RomRepPhys_2024_76_114
crossref_primary_10_1515_jaa_2021_2068
crossref_primary_10_59277_RomRepPhys_2023_75_119
crossref_primary_10_1063_5_0169763
crossref_primary_10_1155_2014_541370
crossref_primary_10_12677_AAM_2018_77113
crossref_primary_10_1002_mma_3557
crossref_primary_10_1140_epjp_i2018_12354_9
crossref_primary_10_1016_j_ijleo_2021_167421
crossref_primary_10_1088_1402_4896_ad6a9f
crossref_primary_10_3116_16091833_Ukr_J_Phys_Opt_2024_S1049
crossref_primary_10_1155_2014_769561
crossref_primary_10_1007_s11071_015_2495_1
crossref_primary_10_1080_17455030_2016_1259690
crossref_primary_10_1088_0256_307X_40_12_120501
crossref_primary_10_1063_5_0169733
crossref_primary_10_1140_epjp_i2015_15051_3
Cites_doi 10.1016/0030-4018(95)00552-8
10.1016/j.optlastec.2007.10.002
10.1103/PhysRevE.74.027602
10.1016/j.amc.2005.02.055
10.1016/j.chaos.2006.03.014
10.1002/sapm1967461133
10.1016/S0030-4018(02)02309-X
10.1103/PhysRevLett.84.4096
10.1103/PhysRevLett.78.448
10.1103/PhysRevLett.76.3955
10.1103/PhysRevE.60.3314
10.1103/PhysRevE.54.4312
10.1016/S0375-9601(02)01775-9
10.1016/j.physleta.2003.07.026
10.1016/j.chaos.2005.04.007
10.1016/j.amc.2009.09.024
10.1016/j.mcm.2005.08.010
10.1088/0305-4470/36/16/308
10.1016/j.cpc.2009.01.019
10.1016/j.physleta.2005.03.066
10.1103/PhysRevE.62.8719
10.1016/S0030-4018(97)00230-7
10.1016/j.physleta.2008.07.052
10.1016/j.amc.2008.12.004
ContentType Journal Article
Copyright 2010 Elsevier Inc.
2015 INIST-CNRS
Copyright_xml – notice: 2010 Elsevier Inc.
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2010.12.008
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 5971
ExternalDocumentID 23885110
10_1016_j_amc_2010_12_008
S0096300310012087
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABAOU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SME
SPC
SPCBC
SSW
SSZ
T5K
TN5
WH7
X6Y
XPP
ZMT
~02
~G-
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ACRPL
ACVFH
ADCNI
ADIYS
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HMJ
HVGLF
R2-
SEW
SSH
TAE
VH1
VOH
WUQ
EFKBS
IQODW
ID FETCH-LOGICAL-c327t-c2300c05bf6b55255ffe28bb94ae3dc5fb5a3139ad8b6cefcb184c6332e885443
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:17:06 EDT 2025
Tue Jul 01 04:07:16 EDT 2025
Thu Apr 24 22:59:49 EDT 2025
Fri Feb 23 02:31:12 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 12
Keywords Soliton solution
The nonlinear Schrödinger equation
Periodic wave solution
Numerical linear algebra
Periodic solution
Schrödinger equation
Exact solution
Non linear equation
Direct method
Numerical analysis
Linear system
Matrix inversion
Applied mathematics
Algebraic method
Nonlinearity
Analytical solution
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-c2300c05bf6b55255ffe28bb94ae3dc5fb5a3139ad8b6cefcb184c6332e885443
PageCount 5
ParticipantIDs pascalfrancis_primary_23885110
crossref_primary_10_1016_j_amc_2010_12_008
crossref_citationtrail_10_1016_j_amc_2010_12_008
elsevier_sciencedirect_doi_10_1016_j_amc_2010_12_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-02-15
PublicationDateYYYYMMDD 2011-02-15
PublicationDate_xml – month: 02
  year: 2011
  text: 2011-02-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied mathematics and computation
PublicationYear 2011
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References El-Sayed, Kaya (b0085) 2006; 172
Xu (b0080) 2009; 180
Agrawal (b0005) 1989
Hasegawa, Kodama (b0010) 1995
Schürmann (b0105) 1996; 54
Biswas, Milovic (b0120) 2009; 208
Tanev, Pushkarov (b0100) 1997; 141
Wazwaz (b0115) 2006; 43
Radhakrishnan, Kundu, Lakshmanan (b0030) 1999; 60
Xu (b0075) 2007; 33
Ma, Chen (b0090) 2009; 215
Li, Li, Tian, Zhou (b0035) 2000; 84
Xu (b0070) 2006; 74
Biswas (b0055) 2003; 36
Zakharov, Shabat (b0125) 1972; 34
Gedalin, Scott, Band (b0025) 1997; 78
Yomba (b0140) 2005; 340
Pusharov, Tanev (b0110) 1996; 124
Porsezian, Nakkeeran (b0020) 1996; 76
Benney, Newell (b0015) 1967; 46
Yomba (b0145) 2008; 372
Biswas (b0060) 2008; 372
Xu, Li (b0065) 2005; 26
Wang, Zhou (b0135) 2003; 318
Vinoj, Kuriakose (b0040) 2000; 62
Biswas (b0050) 2003; 216
Kohl, Biswas, Milovic, Zerrad (b0095) 2008; 40
Biswas, Konar (b0045) 2006
Zhou, Wang, Wang (b0130) 2003; 308
Biswas (10.1016/j.amc.2010.12.008_b0120) 2009; 208
Biswas (10.1016/j.amc.2010.12.008_b0045) 2006
Gedalin (10.1016/j.amc.2010.12.008_b0025) 1997; 78
Benney (10.1016/j.amc.2010.12.008_b0015) 1967; 46
Vinoj (10.1016/j.amc.2010.12.008_b0040) 2000; 62
Schürmann (10.1016/j.amc.2010.12.008_b0105) 1996; 54
Biswas (10.1016/j.amc.2010.12.008_b0055) 2003; 36
Pusharov (10.1016/j.amc.2010.12.008_b0110) 1996; 124
Wazwaz (10.1016/j.amc.2010.12.008_b0115) 2006; 43
Radhakrishnan (10.1016/j.amc.2010.12.008_b0030) 1999; 60
Tanev (10.1016/j.amc.2010.12.008_b0100) 1997; 141
Xu (10.1016/j.amc.2010.12.008_b0070) 2006; 74
Zhou (10.1016/j.amc.2010.12.008_b0130) 2003; 308
Porsezian (10.1016/j.amc.2010.12.008_b0020) 1996; 76
Xu (10.1016/j.amc.2010.12.008_b0080) 2009; 180
Yomba (10.1016/j.amc.2010.12.008_b0145) 2008; 372
Biswas (10.1016/j.amc.2010.12.008_b0050) 2003; 216
Biswas (10.1016/j.amc.2010.12.008_b0060) 2008; 372
Xu (10.1016/j.amc.2010.12.008_b0065) 2005; 26
Agrawal (10.1016/j.amc.2010.12.008_b0005) 1989
El-Sayed (10.1016/j.amc.2010.12.008_b0085) 2006; 172
Kohl (10.1016/j.amc.2010.12.008_b0095) 2008; 40
Yomba (10.1016/j.amc.2010.12.008_b0140) 2005; 340
Zakharov (10.1016/j.amc.2010.12.008_b0125) 1972; 34
Li (10.1016/j.amc.2010.12.008_b0035) 2000; 84
Xu (10.1016/j.amc.2010.12.008_b0075) 2007; 33
Ma (10.1016/j.amc.2010.12.008_b0090) 2009; 215
Hasegawa (10.1016/j.amc.2010.12.008_b0010) 1995
Wang (10.1016/j.amc.2010.12.008_b0135) 2003; 318
References_xml – volume: 62
  start-page: 008719
  year: 2000
  ident: b0040
  article-title: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations
  publication-title: Phys. Rev. E
– volume: 60
  start-page: 3314
  year: 1999
  ident: b0030
  article-title: Coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media
  publication-title: Phys. Rev. E
– volume: 172
  start-page: 1315
  year: 2006
  ident: b0085
  article-title: A numerical solution and an exact explicit solution of the NLS equation
  publication-title: Appl. Math. Comput.
– volume: 215
  start-page: 2835
  year: 2009
  ident: b0090
  article-title: Direct search for exact solutions to the nonlinear Schrödinger equation
  publication-title: Appl. Math. Comput.
– volume: 124
  start-page: 354
  year: 1996
  ident: b0110
  article-title: Bright and dark solitary wave propagation bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities
  publication-title: Opt. Commun.
– volume: 43
  start-page: 802
  year: 2006
  ident: b0115
  article-title: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities
  publication-title: Math. Comput. Model.
– volume: 141
  start-page: 322
  year: 1997
  ident: b0100
  article-title: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides
  publication-title: Opt. Commun.
– volume: 46
  start-page: 133
  year: 1967
  ident: b0015
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J. Math. Phys.
– volume: 180
  start-page: 1137
  year: 2009
  ident: b0080
  article-title: A note on the Painlevé test for nonlinear variable-coefficient PDEs
  publication-title: Comput. Phys. Commun.
– year: 1995
  ident: b0010
  article-title: Solitons in Optical Communications
– volume: 84
  start-page: 4096
  year: 2000
  ident: b0035
  article-title: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
– volume: 208
  start-page: 209
  year: 2009
  ident: b0120
  article-title: Optical solitons in a parabolic law media with fourth order dispersion
  publication-title: Appl. Math. Comput.
– volume: 340
  start-page: 149
  year: 2005
  ident: b0140
  article-title: The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations
  publication-title: Phys. Lett. A
– volume: 78
  start-page: 448
  year: 1997
  ident: b0025
  article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
– volume: 308
  start-page: 31
  year: 2003
  ident: b0130
  article-title: Periodic wave solutions to a coupled KdV equations with variable coefficients
  publication-title: Phys. Lett. A
– volume: 36
  start-page: 4581
  year: 2003
  ident: b0055
  article-title: Quasi-stationary optical solitons with power law nonlinearity
  publication-title: J. Phys. A: Math. Gen.
– year: 1989
  ident: b0005
  article-title: Nonlinear Fiber Optics
– volume: 372
  start-page: 5941
  year: 2008
  ident: b0060
  article-title: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger’s equation in dual-power law media
  publication-title: Phys. Lett. A
– volume: 26
  start-page: 1363
  year: 2005
  ident: b0065
  article-title: On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations
  publication-title: Chaos Solitons Fract.
– volume: 40
  start-page: 647
  year: 2008
  ident: b0095
  article-title: Optical soliton perturbation in a non-Kerr law media
  publication-title: Optics Laser Technol.
– volume: 34
  start-page: 62
  year: 1972
  ident: b0125
  article-title: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media
  publication-title: Sov. Phys. JETP
– volume: 33
  start-page: 1652
  year: 2007
  ident: b0075
  article-title: The Painlevé integrability of two parameterized nonlinear evolution equations using symbolic computation
  publication-title: Chaos Solitons Fract.
– volume: 54
  start-page: 4312
  year: 1996
  ident: b0105
  article-title: Traveling-wave solutions of the cubic–quintic nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
– volume: 216
  start-page: 427
  year: 2003
  ident: b0050
  article-title: Quasi-stationary optical solitons with parabolic law nonlinearity
  publication-title: Opt. Commun.
– volume: 74
  start-page: 027602
  year: 2006
  ident: b0070
  article-title: Painlevé classification of a generalized coupled Hirota system
  publication-title: Phys. Rev. E
– volume: 318
  start-page: 84
  year: 2003
  ident: b0135
  article-title: The periodic wave solutions for the Klein–Gordon–Schrödinger equations
  publication-title: Phys. Lett. A
– volume: 372
  start-page: 048
  year: 2008
  ident: b0145
  article-title: A generalized auxiliary equation method and its application to nonlinear Klein–Gordon and generalized nonlinear Camassa–Holm equations
  publication-title: Phys. Lett. A
– year: 2006
  ident: b0045
  article-title: Introduction to Non-Kerr Law Optical Solitons
– volume: 76
  start-page: 3955
  year: 1996
  ident: b0020
  article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift
  publication-title: Phys. Rev. Lett.
– volume: 124
  start-page: 354
  year: 1996
  ident: 10.1016/j.amc.2010.12.008_b0110
  article-title: Bright and dark solitary wave propagation bistability in the anomalous dispersion region of optical waveguides with third- and fifth-order nonlinearities
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(95)00552-8
– volume: 40
  start-page: 647
  year: 2008
  ident: 10.1016/j.amc.2010.12.008_b0095
  article-title: Optical soliton perturbation in a non-Kerr law media
  publication-title: Optics Laser Technol.
  doi: 10.1016/j.optlastec.2007.10.002
– volume: 34
  start-page: 62
  year: 1972
  ident: 10.1016/j.amc.2010.12.008_b0125
  article-title: Exact theory of two-dimensional self-focusing and one dimensional self-modulation of waves in nonlinear media
  publication-title: Sov. Phys. JETP
– volume: 74
  start-page: 027602
  year: 2006
  ident: 10.1016/j.amc.2010.12.008_b0070
  article-title: Painlevé classification of a generalized coupled Hirota system
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.74.027602
– volume: 172
  start-page: 1315
  year: 2006
  ident: 10.1016/j.amc.2010.12.008_b0085
  article-title: A numerical solution and an exact explicit solution of the NLS equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.02.055
– volume: 33
  start-page: 1652
  year: 2007
  ident: 10.1016/j.amc.2010.12.008_b0075
  article-title: The Painlevé integrability of two parameterized nonlinear evolution equations using symbolic computation
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2006.03.014
– volume: 46
  start-page: 133
  year: 1967
  ident: 10.1016/j.amc.2010.12.008_b0015
  article-title: The propagation of nonlinear wave envelopes
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm1967461133
– volume: 216
  start-page: 427
  year: 2003
  ident: 10.1016/j.amc.2010.12.008_b0050
  article-title: Quasi-stationary optical solitons with parabolic law nonlinearity
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(02)02309-X
– year: 1995
  ident: 10.1016/j.amc.2010.12.008_b0010
– volume: 84
  start-page: 4096
  year: 2000
  ident: 10.1016/j.amc.2010.12.008_b0035
  article-title: New types of solitary wave solutions for the higher order nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.84.4096
– volume: 78
  start-page: 448
  year: 1997
  ident: 10.1016/j.amc.2010.12.008_b0025
  article-title: Optical solitary waves in the higher order nonlinear Schrödinger equation
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.448
– volume: 76
  start-page: 3955
  year: 1996
  ident: 10.1016/j.amc.2010.12.008_b0020
  article-title: Optical solitons in presence of Kerr dispersion and self-frequency shift
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.76.3955
– volume: 60
  start-page: 3314
  year: 1999
  ident: 10.1016/j.amc.2010.12.008_b0030
  article-title: Coupled nonlinear Schrödinger equations with cubic–quintic nonlinearity: integrability and soliton interaction in non-Kerr media
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.60.3314
– volume: 54
  start-page: 4312
  year: 1996
  ident: 10.1016/j.amc.2010.12.008_b0105
  article-title: Traveling-wave solutions of the cubic–quintic nonlinear Schrödinger equation
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.54.4312
– volume: 308
  start-page: 31
  year: 2003
  ident: 10.1016/j.amc.2010.12.008_b0130
  article-title: Periodic wave solutions to a coupled KdV equations with variable coefficients
  publication-title: Phys. Lett. A
  doi: 10.1016/S0375-9601(02)01775-9
– volume: 318
  start-page: 84
  year: 2003
  ident: 10.1016/j.amc.2010.12.008_b0135
  article-title: The periodic wave solutions for the Klein–Gordon–Schrödinger equations
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2003.07.026
– volume: 26
  start-page: 1363
  year: 2005
  ident: 10.1016/j.amc.2010.12.008_b0065
  article-title: On the Painlevé integrability, periodic wave solutions and soliton solutions of generalized coupled higher-order nonlinear Schrödinger equations
  publication-title: Chaos Solitons Fract.
  doi: 10.1016/j.chaos.2005.04.007
– volume: 215
  start-page: 2835
  year: 2009
  ident: 10.1016/j.amc.2010.12.008_b0090
  article-title: Direct search for exact solutions to the nonlinear Schrödinger equation
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2009.09.024
– volume: 43
  start-page: 802
  year: 2006
  ident: 10.1016/j.amc.2010.12.008_b0115
  article-title: Exact solutions for the fourth order nonlinear Schrödinger equations with cubic and power law nonlinearities
  publication-title: Math. Comput. Model.
  doi: 10.1016/j.mcm.2005.08.010
– year: 1989
  ident: 10.1016/j.amc.2010.12.008_b0005
– volume: 36
  start-page: 4581
  year: 2003
  ident: 10.1016/j.amc.2010.12.008_b0055
  article-title: Quasi-stationary optical solitons with power law nonlinearity
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/36/16/308
– volume: 180
  start-page: 1137
  year: 2009
  ident: 10.1016/j.amc.2010.12.008_b0080
  article-title: A note on the Painlevé test for nonlinear variable-coefficient PDEs
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.01.019
– volume: 340
  start-page: 149
  year: 2005
  ident: 10.1016/j.amc.2010.12.008_b0140
  article-title: The extended F-expansion method and its application for solving the nonlinear wave, CKGZ, GDS, DS and GZ equations
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2005.03.066
– volume: 372
  start-page: 048
  year: 2008
  ident: 10.1016/j.amc.2010.12.008_b0145
  article-title: A generalized auxiliary equation method and its application to nonlinear Klein–Gordon and generalized nonlinear Camassa–Holm equations
  publication-title: Phys. Lett. A
– volume: 62
  start-page: 008719
  year: 2000
  ident: 10.1016/j.amc.2010.12.008_b0040
  article-title: Multisoliton solutions and integrability aspects of coupled higher-order nonlinear Schrödinger equations
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.62.8719
– volume: 141
  start-page: 322
  year: 1997
  ident: 10.1016/j.amc.2010.12.008_b0100
  article-title: Solitary wave propagation and bistability in the normal dispersion region of highly nonlinear optical fibres and waveguides
  publication-title: Opt. Commun.
  doi: 10.1016/S0030-4018(97)00230-7
– year: 2006
  ident: 10.1016/j.amc.2010.12.008_b0045
– volume: 372
  start-page: 5941
  year: 2008
  ident: 10.1016/j.amc.2010.12.008_b0060
  article-title: 1-soliton solution of (1+2)-dimensional nonlinear Schrödinger’s equation in dual-power law media
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2008.07.052
– volume: 208
  start-page: 209
  year: 2009
  ident: 10.1016/j.amc.2010.12.008_b0120
  article-title: Optical solitons in a parabolic law media with fourth order dispersion
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2008.12.004
SSID ssj0007614
Score 2.2164547
Snippet In this study, we use two direct algebraic methods to solve a fourth-order dispersive cubic–quintic nonlinear Schrödinger equation, which is used to describe...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 5967
SubjectTerms Exact sciences and technology
Global analysis, analysis on manifolds
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Numerical linear algebra
Partial differential equations
Periodic wave solution
Sciences and techniques of general use
Soliton solution
Special functions
The nonlinear Schrödinger equation
Topology. Manifolds and cell complexes. Global analysis and analysis on manifolds
Title New types of exact solutions for the fourth-order dispersive cubic–quintic nonlinear Schrödinger equation
URI https://dx.doi.org/10.1016/j.amc.2010.12.008
Volume 217
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LSuRAFL1ou5lBROeBj5mmFrMaqDFJVaUrSxGlddCNI7gL9cQM2vYjDa7Ef_Bf_AH_xC_xVlcSRhAXswqEeoRbl_vKqXMBfmjBFJc5o4UtHOWp07QQnFORKKMsdwPPw23kk9N8eM6PL8TFEuy3d2ECrLKx_dGmL6x182a3kebuuKrCHd8i8EWFCnWaJXKwDCsZK3LRg5W9o9_D084gY6YeyZiLAPNKWPtzcwHzUtcmArxCUTA0mXzbPa2O1QyF5mO3i39c0OE6rDWxI9mLn7cBS270CT6edMSrs89whUaLhLLqjNx44m6VqUmnXQQDVIKD8Tmf1pd0QbtJbBXIwgOKnZi5rszz_cNkXo1wPTKKPBpqSs7M5fTp0S5qgMRNIj_4Fzg_PPizP6RNQwVqWDaoqcF8IzGJ0D7XQmAy4b3LpNYFV45ZI7wWimFIqKzUuXHeaMz_TM5Y5qQMRHlfoYc7u00gaajIGc-tV5JbyZS2ORsobZiV3qZiC5JWjqVp2MZD04ursoWV_S1R9GUQfZlmJYp-C352U8aRauO9wbw9nPKVvpToCt6b1n91kN1GGLmE2DPZ_r91d-BDLDZnNBXfoFdP5-47Riu17sPyr7u03-jkC-zJ7Us
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NTtVAFJ4gLJQYgn8RBZyFK5ORtjPTTpeGSK7AZSMk7CbzG0rwerm3N2FlfAffxRfwTXwSz-m0F0kMC1dNmvlpzpycv37zHULeWsmNUCVnta8DE3mwrJZCMJkZZ7wIVRR4G3l8Uo7OxOG5PF8h-8NdGIRV9rY_2fTOWvdv9npp7k2bBu_41sgXhRXqvMhU9YCsCckrxPW9_3aL84A8PVEx1wjyyvjwa7MDeZkvLsG7sCSILSb_7ZweT80cRBZTr4u_HNDBJtnoI0f6IX3cE7ISJk_J-nhJuzp_Rq7AZFEsqs7p10jDjXEtXeoWhfCUwmB4LmbtBetIN6lvkCocMezULWzjfn__cb1oJrAenSQWDTOjn93F7NdP31UAabhO7ODPydnBx9P9EevbKTDHi6plDrKNzGXSxtJKCalEjKFQ1tbCBO6djFYaDgGh8cqWLkRnIftzJedFUApp8l6QVdg5vCQ0x3qci8JHo4RX3Fhf8spYx72KPpdbJBvkqF3PNY4tL670ACq71CB6jaLXeaFB9Fvk3XLKNBFt3DdYDIej72iLBkdw37TdOwe53AjiFow8s1f_t-4b8nB0Oj7Wx59Ojl6TR6nsXLBcbpPVdrYIOxC3tHa308s_9ELuFg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+types+of+exact+solutions+for+the+fourth-order+dispersive+cubic%E2%80%93quintic+nonlinear+Schr%C3%B6dinger+equation&rft.jtitle=Applied+mathematics+and+computation&rft.au=Xu%2C+Gui-Qiong&rft.date=2011-02-15&rft.issn=0096-3003&rft.volume=217&rft.issue=12&rft.spage=5967&rft.epage=5971&rft_id=info:doi/10.1016%2Fj.amc.2010.12.008&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_amc_2010_12_008
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon