Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron

Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under tran...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 127; no. 4
Main Authors Sun, Yandong, Zhou, Yanguang, Han, Jian, Hu, Ming, Xu, Ben, Liu, Wei
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 31.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under transient heat flow. However, the phonon–dislocation scattering rate in iron is unknown, and the details of the scattering process have not been well studied. In this paper, the effect of dislocations on lattice thermal conductivity in pure iron is studied using molecular dynamics simulations. The temperature distribution in the neighborhood of the dislocation, the spectral heat flux, and the frequency-dependent phonon mean free paths are obtained. From a comparison with the results for a perfect crystal, we find that the dislocation can significantly decrease the lattice thermal conductivity. By using an average phonon group velocity, the phonon–dislocation scattering rate under a given dislocation density is obtained from the phonon mean free paths. Moreover, eigenmode analysis of a dislocation dipole model indicates that the phonons have a certain degree of localization, which reduces their ability to transport heat. Our study reveals the details of the phonon–dislocation scattering process and may help to interpret the reduced thermal conductivity caused by the dislocations that are generated during the service lives of iron-based structural materials.
AbstractList Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under transient heat flow. However, the phonon–dislocation scattering rate in iron is unknown, and the details of the scattering process have not been well studied. In this paper, the effect of dislocations on lattice thermal conductivity in pure iron is studied using molecular dynamics simulations. The temperature distribution in the neighborhood of the dislocation, the spectral heat flux, and the frequency-dependent phonon mean free paths are obtained. From a comparison with the results for a perfect crystal, we find that the dislocation can significantly decrease the lattice thermal conductivity. By using an average phonon group velocity, the phonon–dislocation scattering rate under a given dislocation density is obtained from the phonon mean free paths. Moreover, eigenmode analysis of a dislocation dipole model indicates that the phonons have a certain degree of localization, which reduces their ability to transport heat. Our study reveals the details of the phonon–dislocation scattering process and may help to interpret the reduced thermal conductivity caused by the dislocations that are generated during the service lives of iron-based structural materials.
Author Sun, Yandong
Hu, Ming
Xu, Ben
Liu, Wei
Zhou, Yanguang
Han, Jian
Author_xml – sequence: 1
  givenname: Yandong
  surname: Sun
  fullname: Sun, Yandong
  organization: Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University
– sequence: 2
  givenname: Yanguang
  surname: Zhou
  fullname: Zhou, Yanguang
  organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles
– sequence: 3
  givenname: Jian
  surname: Han
  fullname: Han, Jian
  organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University
– sequence: 4
  givenname: Ming
  surname: Hu
  fullname: Hu, Ming
  email: hu@sc.edu
  organization: Department of Mechanical Engineering, University of South Carolina
– sequence: 5
  givenname: Ben
  surname: Xu
  fullname: Xu, Ben
  email: xuben@mail.tsinghua.edu.cn
  organization: 4Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA
– sequence: 6
  givenname: Wei
  surname: Liu
  fullname: Liu, Wei
  email: liuw@mail.tsinghua.edu.cn
  organization: Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University
BookMark eNp9kF1PwyAUhomZidv0wn_QxCtNukFpC1yaxa9kxhu9RkohsrQwgS7Zv1_3pYkaL044h_d5X8IZgYF1VgFwieAEwRJP0aRAGYGYnIAhgpSlpCjgAAwhzFBKGWFnYBTCAkKEKGZD8P7sGiW7RvikXlvRGhmSYNr-IhpnQ-J0Ej9UorRWMm6n2oTGyaNqd2pfvhVNIp2tOxnNysT1ljXe2XNwqkUT1MXhHIO3-7vX2WM6f3l4mt3OU4kzElMJS0gqJLQuBcaiQDTLlKQUkpwxLSqCcC_kCCvWd0ooXRU01yUiNdS1qPAYXO1zl959dipEvnCdt_2TPMN5yXBGi7KnpntKeheCV5pLE3efiV6YhiPIt2vkiB_W2DuufziW3rTCr_9kb_ZsOKZ-wSvnv0G-rPV_8O_kDXFrkOA
CODEN JAPIAU
CitedBy_id crossref_primary_10_1063_5_0054078
crossref_primary_10_1007_s12598_023_02483_x
crossref_primary_10_7498_aps_71_20211451
crossref_primary_10_1039_D4NH00487F
crossref_primary_10_1063_5_0171550
crossref_primary_10_1039_D2CP01117D
crossref_primary_10_1039_D0CP03372C
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123789
crossref_primary_10_1007_s11837_021_05061_7
crossref_primary_10_1063_5_0078669
crossref_primary_10_1088_1674_1056_ad0290
crossref_primary_10_1016_j_actamat_2022_118143
crossref_primary_10_1021_acsaem_1c01859
Cites_doi 10.1103/PhysRevB.91.115426
10.1126/science.aat5522
10.1103/PhysRevB.48.12581
10.1038/ncomms13828
10.1039/C7CP07821H
10.1103/PhysRev.122.787
10.1103/PhysRevB.92.195204
10.1016/S0009-2614(01)00686-8
10.1063/1.1835565
10.1063/1.339406
10.1002/smll.201302966
10.1103/PhysRevLett.117.025503
10.1103/PhysRevE.93.052141
10.1039/C5MH00299K
10.1039/C5NR06855J
10.1063/1.1782098
10.1002/adfm.200901905
10.1038/nmat3401
10.1002/adma.201900108
10.1103/PhysRevB.90.134312
10.1103/PhysRevB.74.245207
10.1038/s41563-018-0250-y
10.1016/j.scriptamat.2015.07.021
10.1103/PhysRev.131.1433
10.1103/PhysRevLett.101.165502
10.1016/j.jeurceramsoc.2016.07.036
10.1002/adma.201802016
10.1006/jcph.1995.1039
10.1021/acs.nanolett.6b04756
10.1115/1.4006750
10.1103/PhysRevLett.113.124301
10.1063/1.1465106
10.1016/S1369-7021(09)70294-9
10.1179/imtr.1986.31.1.197
10.1103/PhysRevB.92.195205
10.1126/science.aaa4166
10.1103/PhysRevB.95.245304
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5127037
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_5127037
jap
GrantInformation_xml – fundername: NSF award
  grantid: 1905775
– fundername: SC EPSCoR/IDeA
  grantid: NSF OIA-1655740 via SC EPSCoR/IDeA 19-SA06 and GEAR-CRP2019 19-GC02
– fundername: Basic Science Center Project of NSFC
  grantid: No.51788104
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-c0607b1aff6a33a51822ec8807499fab7136a3413e9136eaefb584f617d0fdab3
ISSN 0021-8979
IngestDate Mon Jun 30 06:09:31 EDT 2025
Tue Jul 01 02:01:15 EDT 2025
Thu Apr 24 23:11:54 EDT 2025
Wed Nov 11 00:04:58 EST 2020
Fri Jun 21 00:14:31 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 0021-8979/2020/127(4)/045106/6/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-c0607b1aff6a33a51822ec8807499fab7136a3413e9136eaefb584f617d0fdab3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4491-208X
0000-0002-8209-0139
0000-0002-1557-0052
PQID 2346932856
PQPubID 2050677
PageCount 6
ParticipantIDs crossref_citationtrail_10_1063_1_5127037
proquest_journals_2346932856
scitation_primary_10_1063_1_5127037
crossref_primary_10_1063_1_5127037
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200131
2020-01-31
PublicationDateYYYYMMDD 2020-01-31
PublicationDate_xml – month: 01
  year: 2020
  text: 20200131
  day: 31
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Togo, Tanaka (c27) 2015
Xiong, Ma, Volz, Dumitricǎ (c16) 2014
Wang, Carrete, van Roekeghem, Mingo, Madsen (c19) 2017
Zhou, Zhang, Hu (c23) 2015
Plimpton (c25) 1995
Kim, Lee, Mun, Kim, Hwang, Roh, Yang, Shin, Li, Lee (c11) 2015
Sääskilahti, Oksanen, Volz, Tulkki (c32) 2015
Termentzidis, Isaiev, Salnikova, Belabbas, Lacroix, Kioseoglou (c18) 2018
Allen, Feldman (c39) 1993
Zinkle, Busby (c1) 2009
Sääskilahti, Oksanen, Tulkki, Volz (c22) 2014
Proville, Rodney, Marinica (c26) 2012
Savić, Mingo, Stewart (c35) 2008
Kang, Li, Wu, Nguyen, Hu (c36) 2018
Li, Ding, Meng, Zhou, Zhu, Liu, Dresselhaus, Chen (c20) 2017
Xiong, Sääskilahti, Kosevich, Han, Donadio, Volz (c34) 2016
Jobic, Smirnov, Bougeard (c31) 2001
Sääskilahti, Oksanen, Tulkki, Volz (c33) 2016
Bodapati, Schelling, Phillpot, Keblinski (c37) 2006
Zhao, Freund (c10) 2005
Schelling, Phillpot, Keblinski (c9) 2002
Ni, Xiong, Volz, Dumitricǎ (c17) 2014
Chen, Ge, Li, Lin, Shen, Chang, Hanus, Snyder, Pei (c13) 2017
Klemens, Williams (c2) 1986
Zhang, Hu, Giapis, Poulikakos (c38) 2012
Zhao, Pan, Wan, Qu, Li, Yang (c8) 2017
Hanus, Agne, Rettie, Chen, Tan, Chung, Kanatzidis, Pei, Voorhees, Snyder (c21) 2019
Zhou, Hu (c24) 2015
Zhou, Zhang, Hu (c30) 2016
Walker, Pohl (c7) 1963
Williams, Graves, Weaver, Yarbrough (c5) 1987
He, Girard, Kanatzidis, Dravid (c12) 2010
Kim, Kang, Tang, Hanus, Snyder (c29) 2016
Callaway (c6) 1961
Fulkerson, Moore, McElroy (c4) 1966
Pan, Aydemir, Grovogui, Witting, Hanus, Xu, Wu, Wu, Sun, Zhuang (c14) 2018
Sun, Haunschild, Polanco, Lindsay, Koblmüller, Koh (c15) 2019
(2023070602401594200_c36) 2018; 361
(2023070602401594200_c38) 2012; 134
(2023070602401594200_c22) 2014; 90
(2023070602401594200_c27) 2015; 108
(2023070602401594200_c35) 2008; 101
(2023070602401594200_c25) 1995; 117
(2023070602401594200_c5) 1987; 62
(2023070602401594200_c34) 2016; 117
(2023070602401594200_c15) 2019; 18
(2023070602401594200_c37) 2006; 74
(2023070602401594200_c13) 2017; 8
(2023070602401594200_c23) 2015; 92
(2023070602401594200_c39) 1993; 48
(2023070602401594200_c7) 1963; 131
(2023070602401594200_c6) 1961; 122
(2023070602401594200_c29) 2016; 3
(2023070602401594200_c17) 2014; 113
(2023070602401594200_c18) 2018; 20
(2023070602401594200_c20) 2017; 17
(2023070602401594200_c28) 2012
(2023070602401594200_c10) 2005; 97
(2023070602401594200_c21) 2019; 31
(2023070602401594200_c4) 1966; 37
(2023070602401594200_c30) 2016; 8
(2023070602401594200_c19) 2017; 95
(2023070602401594200_c9) 2002; 80
(2023070602401594200_c31) 2001; 344
(2023070602401594200_c32) 2015; 91
(2023070602401594200_c2) 1986; 31
(2023070602401594200_c1) 2009; 12
(2023070602401594200_c12) 2010; 20
(2023070602401594200_c24) 2015; 92
(2023070602401594200_c14) 2018; 30
(2023070602401594200_c33) 2016; 93
(2023070602401594200_c26) 2012; 11
(2023070602401594200_c3) 2005
(2023070602401594200_c8) 2017; 37
(2023070602401594200_c16) 2014; 10
(2023070602401594200_c11) 2015; 348
References_xml – start-page: 5159
  year: 2018
  ident: c18
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 1
  year: 2015
  ident: c27
  publication-title: Scr. Mater.
– start-page: 197
  year: 1986
  ident: c2
  publication-title: Int. Metals Rev.
– start-page: 024903
  year: 2005
  ident: c10
  publication-title: J. Appl. Phys.
– start-page: 1
  year: 2017
  ident: c8
  publication-title: J. Eur. Ceram. Soc.
– start-page: 165502
  year: 2008
  ident: c35
  publication-title: Phys. Rev. Lett.
– start-page: 102402
  year: 2012
  ident: c38
  publication-title: J. Heat Transfer
– start-page: 136
  year: 2019
  ident: c15
  publication-title: Nat. Mater.
– start-page: 195204
  year: 2015
  ident: c23
  publication-title: Phys. Rev. B
– start-page: 134312
  year: 2014
  ident: c22
  publication-title: Phys. Rev. B
– start-page: 13828
  year: 2017
  ident: c13
  publication-title: Nat. Commun.
– start-page: 575
  year: 2018
  ident: c36
  publication-title: Science
– start-page: 2778
  year: 1987
  ident: c5
  publication-title: J. Appl. Phys.
– start-page: 1587
  year: 2017
  ident: c20
  publication-title: Nano Lett.
– start-page: 052141
  year: 2016
  ident: c33
  publication-title: Phys. Rev. E
– start-page: 115426
  year: 2015
  ident: c32
  publication-title: Phys. Rev. B
– start-page: 12
  year: 2009
  ident: c1
  publication-title: Mater. Today
– start-page: 787
  year: 1961
  ident: c6
  publication-title: Phys. Rev.
– start-page: 234
  year: 2016
  ident: c29
  publication-title: Mater. Horiz.
– start-page: 1756
  year: 2014
  ident: c16
  publication-title: Small
– start-page: 1900108
  year: 2019
  ident: c21
  publication-title: Adv. Mater.
– start-page: 1
  year: 1995
  ident: c25
  publication-title: J. Comput. Phys.
– start-page: 1433
  year: 1963
  ident: c7
  publication-title: Phys. Rev.
– start-page: 764
  year: 2010
  ident: c12
  publication-title: Adv. Funct. Mater.
– start-page: 2639
  year: 1966
  ident: c4
  publication-title: J. Appl. Phys.
– start-page: 1994
  year: 2016
  ident: c30
  publication-title: Nanoscale
– start-page: 147
  year: 2001
  ident: c31
  publication-title: Chem. Phys. Lett.
– start-page: 245304
  year: 2017
  ident: c19
  publication-title: Phys. Rev. B
– start-page: 12581
  year: 1993
  ident: c39
  publication-title: Phys. Rev. B
– start-page: 025503
  year: 2016
  ident: c34
  publication-title: Phys. Rev. Lett.
– start-page: 1802016
  year: 2018
  ident: c14
  publication-title: Adv. Mater.
– start-page: 124301
  year: 2014
  ident: c17
  publication-title: Phys. Rev. Lett.
– start-page: 2484
  year: 2002
  ident: c9
  publication-title: Appl. Phys. Lett.
– start-page: 109
  year: 2015
  ident: c11
  publication-title: Science
– start-page: 845
  year: 2012
  ident: c26
  publication-title: Nat. Mater.
– start-page: 245207
  year: 2006
  ident: c37
  publication-title: Phys. Rev. B
– start-page: 195205
  year: 2015
  ident: c24
  publication-title: Phys. Rev. B
– volume: 91
  start-page: 115426
  year: 2015
  ident: 2023070602401594200_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.115426
– volume: 361
  start-page: 575
  year: 2018
  ident: 2023070602401594200_c36
  publication-title: Science
  doi: 10.1126/science.aat5522
– volume: 48
  start-page: 12581
  year: 1993
  ident: 2023070602401594200_c39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.48.12581
– volume: 8
  start-page: 13828
  year: 2017
  ident: 2023070602401594200_c13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13828
– volume-title: Thermal Conductivity: Theory, Properties, and Applications
  year: 2005
  ident: 2023070602401594200_c3
– volume: 20
  start-page: 5159
  year: 2018
  ident: 2023070602401594200_c18
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C7CP07821H
– volume: 122
  start-page: 787
  year: 1961
  ident: 2023070602401594200_c6
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.122.787
– volume: 92
  start-page: 195204
  year: 2015
  ident: 2023070602401594200_c23
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.195204
– volume: 344
  start-page: 147
  year: 2001
  ident: 2023070602401594200_c31
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/S0009-2614(01)00686-8
– volume: 97
  start-page: 024903
  year: 2005
  ident: 2023070602401594200_c10
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1835565
– volume: 62
  start-page: 2778
  year: 1987
  ident: 2023070602401594200_c5
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.339406
– volume-title: Molecular Dynamics: Theoretical Developments and Applications in Nanotechnology and Energy
  year: 2012
  ident: 2023070602401594200_c28
– volume: 10
  start-page: 1756
  year: 2014
  ident: 2023070602401594200_c16
  publication-title: Small
  doi: 10.1002/smll.201302966
– volume: 117
  start-page: 025503
  year: 2016
  ident: 2023070602401594200_c34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.025503
– volume: 93
  start-page: 052141
  year: 2016
  ident: 2023070602401594200_c33
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.93.052141
– volume: 3
  start-page: 234
  year: 2016
  ident: 2023070602401594200_c29
  publication-title: Mater. Horiz.
  doi: 10.1039/C5MH00299K
– volume: 8
  start-page: 1994
  year: 2016
  ident: 2023070602401594200_c30
  publication-title: Nanoscale
  doi: 10.1039/C5NR06855J
– volume: 37
  start-page: 2639
  year: 1966
  ident: 2023070602401594200_c4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1782098
– volume: 20
  start-page: 764
  year: 2010
  ident: 2023070602401594200_c12
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200901905
– volume: 11
  start-page: 845
  year: 2012
  ident: 2023070602401594200_c26
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3401
– volume: 31
  start-page: 1900108
  year: 2019
  ident: 2023070602401594200_c21
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900108
– volume: 90
  start-page: 134312
  year: 2014
  ident: 2023070602401594200_c22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.134312
– volume: 74
  start-page: 245207
  year: 2006
  ident: 2023070602401594200_c37
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.245207
– volume: 18
  start-page: 136
  year: 2019
  ident: 2023070602401594200_c15
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0250-y
– volume: 108
  start-page: 1
  year: 2015
  ident: 2023070602401594200_c27
  publication-title: Scr. Mater.
  doi: 10.1016/j.scriptamat.2015.07.021
– volume: 131
  start-page: 1433
  year: 1963
  ident: 2023070602401594200_c7
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.131.1433
– volume: 101
  start-page: 165502
  year: 2008
  ident: 2023070602401594200_c35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.165502
– volume: 37
  start-page: 1
  year: 2017
  ident: 2023070602401594200_c8
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2016.07.036
– volume: 30
  start-page: 1802016
  year: 2018
  ident: 2023070602401594200_c14
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802016
– volume: 117
  start-page: 1
  year: 1995
  ident: 2023070602401594200_c25
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1995.1039
– volume: 17
  start-page: 1587
  year: 2017
  ident: 2023070602401594200_c20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04756
– volume: 134
  start-page: 102402
  year: 2012
  ident: 2023070602401594200_c38
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4006750
– volume: 113
  start-page: 124301
  year: 2014
  ident: 2023070602401594200_c17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.124301
– volume: 80
  start-page: 2484
  year: 2002
  ident: 2023070602401594200_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1465106
– volume: 12
  start-page: 12
  year: 2009
  ident: 2023070602401594200_c1
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(09)70294-9
– volume: 31
  start-page: 197
  year: 1986
  ident: 2023070602401594200_c2
  publication-title: Int. Metals Rev.
  doi: 10.1179/imtr.1986.31.1.197
– volume: 92
  start-page: 195205
  year: 2015
  ident: 2023070602401594200_c24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.195205
– volume: 348
  start-page: 109
  year: 2015
  ident: 2023070602401594200_c11
  publication-title: Science
  doi: 10.1126/science.aaa4166
– volume: 95
  start-page: 245304
  year: 2017
  ident: 2023070602401594200_c19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.245304
SSID ssj0011839
Score 2.4045534
Snippet Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Computer simulation
Crystal defects
Crystal dislocations
Crystal lattices
Dipoles
Dislocation density
Group velocity
Heat conductivity
Heat flux
Heat transfer
Heat transmission
Iron
Molecular dynamics
Nuclear reactors
Phonons
Scattering
Temperature distribution
Thermal conductivity
Title Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
URI http://dx.doi.org/10.1063/1.5127037
https://www.proquest.com/docview/2346932856
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFaIcEBRQFwqygANS5SWxNw8fKx5aVRQhtZXKKdixXRXRZLW74cCvZyZ2HsAKFS5R4oysaOaL89kZf0PISwUcVPPcMSuTnMH3WjBlMskUV6hOnmKxd8y2-JjOz2ZH58n5UKWv3V2y1tPyx8Z9Jf8TVWiDuOIu2X-IbN8pNMA5xBeOEGE4XivGx11t2wPjC8uvDlaXV80ovW1I2cArc7nCb1e46xMckQBetSIhFUq_-loSqCOxDAH7k7mqwFz9qkhPyk-adgT7rLBAyMWwIl03ofmiUUP73K-8Ho3gOW98In8wCmsRHFPaukG82xsQs1z68jBT64fUKJcsS7y8bD_mekGAAK7ZxrEcyBMuK0wT_DnulWF-k8b-qhY3yTaHCQKMcNuHb48_nPR_kJD5-fQe_0SdqlQqXvdd_spFhgnGbWAfPhFixDVO75G7wdX00Ef8Prlhq11yZyQduUtuffLOf0C-9CigHQroCAW0dhRiTD0K8GqMAlpX7d2AAjpGAdoiCh6Ss_fvTt_MWaibwUrBszUrozTKdKycS5UQKoEpJLdljrJHUjqls1jADWAvVsKZVdZpoKEOuKyJnFFaPCJbVV3ZPUKBnUqrdaZTmc_i2CnwmnbczCJrTBnJCXnVebDofIa1Tb4VbXJDKoq4CM6ekOe96cIrqWwy2u_CUIQXbVVwAU8heJ6kE_KiD83fOtlg9b1eDhbFwrjH1-rrCdkZgL5PttbLxj4FGrrWzwLifgK2dIov
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+of+the+effect+of+dislocations+on+the+thermal+conductivity+of+iron&rft.jtitle=Journal+of+applied+physics&rft.au=Sun%2C+Yandong&rft.au=Zhou%2C+Yanguang&rft.au=Han%2C+Jian&rft.au=Hu%2C+Ming&rft.date=2020-01-31&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=127&rft.issue=4&rft_id=info:doi/10.1063%2F1.5127037&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon