Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron
Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under tran...
Saved in:
Published in | Journal of applied physics Vol. 127; no. 4 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
31.01.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under transient heat flow. However, the phonon–dislocation scattering rate in iron is unknown, and the details of the scattering process have not been well studied. In this paper, the effect of dislocations on lattice thermal conductivity in pure iron is studied using molecular dynamics simulations. The temperature distribution in the neighborhood of the dislocation, the spectral heat flux, and the frequency-dependent phonon mean free paths are obtained. From a comparison with the results for a perfect crystal, we find that the dislocation can significantly decrease the lattice thermal conductivity. By using an average phonon group velocity, the phonon–dislocation scattering rate under a given dislocation density is obtained from the phonon mean free paths. Moreover, eigenmode analysis of a dislocation dipole model indicates that the phonons have a certain degree of localization, which reduces their ability to transport heat. Our study reveals the details of the phonon–dislocation scattering process and may help to interpret the reduced thermal conductivity caused by the dislocations that are generated during the service lives of iron-based structural materials. |
---|---|
AbstractList | Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in thermal conductivity caused by defects such as dislocations will decrease the efficiency of nuclear reactors or lead to melting failure under transient heat flow. However, the phonon–dislocation scattering rate in iron is unknown, and the details of the scattering process have not been well studied. In this paper, the effect of dislocations on lattice thermal conductivity in pure iron is studied using molecular dynamics simulations. The temperature distribution in the neighborhood of the dislocation, the spectral heat flux, and the frequency-dependent phonon mean free paths are obtained. From a comparison with the results for a perfect crystal, we find that the dislocation can significantly decrease the lattice thermal conductivity. By using an average phonon group velocity, the phonon–dislocation scattering rate under a given dislocation density is obtained from the phonon mean free paths. Moreover, eigenmode analysis of a dislocation dipole model indicates that the phonons have a certain degree of localization, which reduces their ability to transport heat. Our study reveals the details of the phonon–dislocation scattering process and may help to interpret the reduced thermal conductivity caused by the dislocations that are generated during the service lives of iron-based structural materials. |
Author | Sun, Yandong Hu, Ming Xu, Ben Liu, Wei Zhou, Yanguang Han, Jian |
Author_xml | – sequence: 1 givenname: Yandong surname: Sun fullname: Sun, Yandong organization: Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University – sequence: 2 givenname: Yanguang surname: Zhou fullname: Zhou, Yanguang organization: Department of Mechanical and Aerospace Engineering, University of California Los Angeles – sequence: 3 givenname: Jian surname: Han fullname: Han, Jian organization: State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University – sequence: 4 givenname: Ming surname: Hu fullname: Hu, Ming email: hu@sc.edu organization: Department of Mechanical Engineering, University of South Carolina – sequence: 5 givenname: Ben surname: Xu fullname: Xu, Ben email: xuben@mail.tsinghua.edu.cn organization: 4Department of Mechanical Engineering, University of South Carolina, Columbia, South Carolina 29208, USA – sequence: 6 givenname: Wei surname: Liu fullname: Liu, Wei email: liuw@mail.tsinghua.edu.cn organization: Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University |
BookMark | eNp9kF1PwyAUhomZidv0wn_QxCtNukFpC1yaxa9kxhu9RkohsrQwgS7Zv1_3pYkaL044h_d5X8IZgYF1VgFwieAEwRJP0aRAGYGYnIAhgpSlpCjgAAwhzFBKGWFnYBTCAkKEKGZD8P7sGiW7RvikXlvRGhmSYNr-IhpnQ-J0Ej9UorRWMm6n2oTGyaNqd2pfvhVNIp2tOxnNysT1ljXe2XNwqkUT1MXhHIO3-7vX2WM6f3l4mt3OU4kzElMJS0gqJLQuBcaiQDTLlKQUkpwxLSqCcC_kCCvWd0ooXRU01yUiNdS1qPAYXO1zl959dipEvnCdt_2TPMN5yXBGi7KnpntKeheCV5pLE3efiV6YhiPIt2vkiB_W2DuufziW3rTCr_9kb_ZsOKZ-wSvnv0G-rPV_8O_kDXFrkOA |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1063_5_0054078 crossref_primary_10_1007_s12598_023_02483_x crossref_primary_10_7498_aps_71_20211451 crossref_primary_10_1039_D4NH00487F crossref_primary_10_1063_5_0171550 crossref_primary_10_1039_D2CP01117D crossref_primary_10_1039_D0CP03372C crossref_primary_10_1016_j_ijheatmasstransfer_2022_123789 crossref_primary_10_1007_s11837_021_05061_7 crossref_primary_10_1063_5_0078669 crossref_primary_10_1088_1674_1056_ad0290 crossref_primary_10_1016_j_actamat_2022_118143 crossref_primary_10_1021_acsaem_1c01859 |
Cites_doi | 10.1103/PhysRevB.91.115426 10.1126/science.aat5522 10.1103/PhysRevB.48.12581 10.1038/ncomms13828 10.1039/C7CP07821H 10.1103/PhysRev.122.787 10.1103/PhysRevB.92.195204 10.1016/S0009-2614(01)00686-8 10.1063/1.1835565 10.1063/1.339406 10.1002/smll.201302966 10.1103/PhysRevLett.117.025503 10.1103/PhysRevE.93.052141 10.1039/C5MH00299K 10.1039/C5NR06855J 10.1063/1.1782098 10.1002/adfm.200901905 10.1038/nmat3401 10.1002/adma.201900108 10.1103/PhysRevB.90.134312 10.1103/PhysRevB.74.245207 10.1038/s41563-018-0250-y 10.1016/j.scriptamat.2015.07.021 10.1103/PhysRev.131.1433 10.1103/PhysRevLett.101.165502 10.1016/j.jeurceramsoc.2016.07.036 10.1002/adma.201802016 10.1006/jcph.1995.1039 10.1021/acs.nanolett.6b04756 10.1115/1.4006750 10.1103/PhysRevLett.113.124301 10.1063/1.1465106 10.1016/S1369-7021(09)70294-9 10.1179/imtr.1986.31.1.197 10.1103/PhysRevB.92.195205 10.1126/science.aaa4166 10.1103/PhysRevB.95.245304 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5127037 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_5127037 jap |
GrantInformation_xml | – fundername: NSF award grantid: 1905775 – fundername: SC EPSCoR/IDeA grantid: NSF OIA-1655740 via SC EPSCoR/IDeA 19-SA06 and GEAR-CRP2019 19-GC02 – fundername: Basic Science Center Project of NSFC grantid: No.51788104 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-c0607b1aff6a33a51822ec8807499fab7136a3413e9136eaefb584f617d0fdab3 |
ISSN | 0021-8979 |
IngestDate | Mon Jun 30 06:09:31 EDT 2025 Tue Jul 01 02:01:15 EDT 2025 Thu Apr 24 23:11:54 EDT 2025 Wed Nov 11 00:04:58 EST 2020 Fri Jun 21 00:14:31 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 0021-8979/2020/127(4)/045106/6/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-c0607b1aff6a33a51822ec8807499fab7136a3413e9136eaefb584f617d0fdab3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-4491-208X 0000-0002-8209-0139 0000-0002-1557-0052 |
PQID | 2346932856 |
PQPubID | 2050677 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1063_1_5127037 proquest_journals_2346932856 scitation_primary_10_1063_1_5127037 crossref_primary_10_1063_1_5127037 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200131 2020-01-31 |
PublicationDateYYYYMMDD | 2020-01-31 |
PublicationDate_xml | – month: 01 year: 2020 text: 20200131 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Togo, Tanaka (c27) 2015 Xiong, Ma, Volz, Dumitricǎ (c16) 2014 Wang, Carrete, van Roekeghem, Mingo, Madsen (c19) 2017 Zhou, Zhang, Hu (c23) 2015 Plimpton (c25) 1995 Kim, Lee, Mun, Kim, Hwang, Roh, Yang, Shin, Li, Lee (c11) 2015 Sääskilahti, Oksanen, Volz, Tulkki (c32) 2015 Termentzidis, Isaiev, Salnikova, Belabbas, Lacroix, Kioseoglou (c18) 2018 Allen, Feldman (c39) 1993 Zinkle, Busby (c1) 2009 Sääskilahti, Oksanen, Tulkki, Volz (c22) 2014 Proville, Rodney, Marinica (c26) 2012 Savić, Mingo, Stewart (c35) 2008 Kang, Li, Wu, Nguyen, Hu (c36) 2018 Li, Ding, Meng, Zhou, Zhu, Liu, Dresselhaus, Chen (c20) 2017 Xiong, Sääskilahti, Kosevich, Han, Donadio, Volz (c34) 2016 Jobic, Smirnov, Bougeard (c31) 2001 Sääskilahti, Oksanen, Tulkki, Volz (c33) 2016 Bodapati, Schelling, Phillpot, Keblinski (c37) 2006 Zhao, Freund (c10) 2005 Schelling, Phillpot, Keblinski (c9) 2002 Ni, Xiong, Volz, Dumitricǎ (c17) 2014 Chen, Ge, Li, Lin, Shen, Chang, Hanus, Snyder, Pei (c13) 2017 Klemens, Williams (c2) 1986 Zhang, Hu, Giapis, Poulikakos (c38) 2012 Zhao, Pan, Wan, Qu, Li, Yang (c8) 2017 Hanus, Agne, Rettie, Chen, Tan, Chung, Kanatzidis, Pei, Voorhees, Snyder (c21) 2019 Zhou, Hu (c24) 2015 Zhou, Zhang, Hu (c30) 2016 Walker, Pohl (c7) 1963 Williams, Graves, Weaver, Yarbrough (c5) 1987 He, Girard, Kanatzidis, Dravid (c12) 2010 Kim, Kang, Tang, Hanus, Snyder (c29) 2016 Callaway (c6) 1961 Fulkerson, Moore, McElroy (c4) 1966 Pan, Aydemir, Grovogui, Witting, Hanus, Xu, Wu, Wu, Sun, Zhuang (c14) 2018 Sun, Haunschild, Polanco, Lindsay, Koblmüller, Koh (c15) 2019 (2023070602401594200_c36) 2018; 361 (2023070602401594200_c38) 2012; 134 (2023070602401594200_c22) 2014; 90 (2023070602401594200_c27) 2015; 108 (2023070602401594200_c35) 2008; 101 (2023070602401594200_c25) 1995; 117 (2023070602401594200_c5) 1987; 62 (2023070602401594200_c34) 2016; 117 (2023070602401594200_c15) 2019; 18 (2023070602401594200_c37) 2006; 74 (2023070602401594200_c13) 2017; 8 (2023070602401594200_c23) 2015; 92 (2023070602401594200_c39) 1993; 48 (2023070602401594200_c7) 1963; 131 (2023070602401594200_c6) 1961; 122 (2023070602401594200_c29) 2016; 3 (2023070602401594200_c17) 2014; 113 (2023070602401594200_c18) 2018; 20 (2023070602401594200_c20) 2017; 17 (2023070602401594200_c28) 2012 (2023070602401594200_c10) 2005; 97 (2023070602401594200_c21) 2019; 31 (2023070602401594200_c4) 1966; 37 (2023070602401594200_c30) 2016; 8 (2023070602401594200_c19) 2017; 95 (2023070602401594200_c9) 2002; 80 (2023070602401594200_c31) 2001; 344 (2023070602401594200_c32) 2015; 91 (2023070602401594200_c2) 1986; 31 (2023070602401594200_c1) 2009; 12 (2023070602401594200_c12) 2010; 20 (2023070602401594200_c24) 2015; 92 (2023070602401594200_c14) 2018; 30 (2023070602401594200_c33) 2016; 93 (2023070602401594200_c26) 2012; 11 (2023070602401594200_c3) 2005 (2023070602401594200_c8) 2017; 37 (2023070602401594200_c16) 2014; 10 (2023070602401594200_c11) 2015; 348 |
References_xml | – start-page: 5159 year: 2018 ident: c18 publication-title: Phys. Chem. Chem. Phys. – start-page: 1 year: 2015 ident: c27 publication-title: Scr. Mater. – start-page: 197 year: 1986 ident: c2 publication-title: Int. Metals Rev. – start-page: 024903 year: 2005 ident: c10 publication-title: J. Appl. Phys. – start-page: 1 year: 2017 ident: c8 publication-title: J. Eur. Ceram. Soc. – start-page: 165502 year: 2008 ident: c35 publication-title: Phys. Rev. Lett. – start-page: 102402 year: 2012 ident: c38 publication-title: J. Heat Transfer – start-page: 136 year: 2019 ident: c15 publication-title: Nat. Mater. – start-page: 195204 year: 2015 ident: c23 publication-title: Phys. Rev. B – start-page: 134312 year: 2014 ident: c22 publication-title: Phys. Rev. B – start-page: 13828 year: 2017 ident: c13 publication-title: Nat. Commun. – start-page: 575 year: 2018 ident: c36 publication-title: Science – start-page: 2778 year: 1987 ident: c5 publication-title: J. Appl. Phys. – start-page: 1587 year: 2017 ident: c20 publication-title: Nano Lett. – start-page: 052141 year: 2016 ident: c33 publication-title: Phys. Rev. E – start-page: 115426 year: 2015 ident: c32 publication-title: Phys. Rev. B – start-page: 12 year: 2009 ident: c1 publication-title: Mater. Today – start-page: 787 year: 1961 ident: c6 publication-title: Phys. Rev. – start-page: 234 year: 2016 ident: c29 publication-title: Mater. Horiz. – start-page: 1756 year: 2014 ident: c16 publication-title: Small – start-page: 1900108 year: 2019 ident: c21 publication-title: Adv. Mater. – start-page: 1 year: 1995 ident: c25 publication-title: J. Comput. Phys. – start-page: 1433 year: 1963 ident: c7 publication-title: Phys. Rev. – start-page: 764 year: 2010 ident: c12 publication-title: Adv. Funct. Mater. – start-page: 2639 year: 1966 ident: c4 publication-title: J. Appl. Phys. – start-page: 1994 year: 2016 ident: c30 publication-title: Nanoscale – start-page: 147 year: 2001 ident: c31 publication-title: Chem. Phys. Lett. – start-page: 245304 year: 2017 ident: c19 publication-title: Phys. Rev. B – start-page: 12581 year: 1993 ident: c39 publication-title: Phys. Rev. B – start-page: 025503 year: 2016 ident: c34 publication-title: Phys. Rev. Lett. – start-page: 1802016 year: 2018 ident: c14 publication-title: Adv. Mater. – start-page: 124301 year: 2014 ident: c17 publication-title: Phys. Rev. Lett. – start-page: 2484 year: 2002 ident: c9 publication-title: Appl. Phys. Lett. – start-page: 109 year: 2015 ident: c11 publication-title: Science – start-page: 845 year: 2012 ident: c26 publication-title: Nat. Mater. – start-page: 245207 year: 2006 ident: c37 publication-title: Phys. Rev. B – start-page: 195205 year: 2015 ident: c24 publication-title: Phys. Rev. B – volume: 91 start-page: 115426 year: 2015 ident: 2023070602401594200_c32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.115426 – volume: 361 start-page: 575 year: 2018 ident: 2023070602401594200_c36 publication-title: Science doi: 10.1126/science.aat5522 – volume: 48 start-page: 12581 year: 1993 ident: 2023070602401594200_c39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.48.12581 – volume: 8 start-page: 13828 year: 2017 ident: 2023070602401594200_c13 publication-title: Nat. Commun. doi: 10.1038/ncomms13828 – volume-title: Thermal Conductivity: Theory, Properties, and Applications year: 2005 ident: 2023070602401594200_c3 – volume: 20 start-page: 5159 year: 2018 ident: 2023070602401594200_c18 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C7CP07821H – volume: 122 start-page: 787 year: 1961 ident: 2023070602401594200_c6 publication-title: Phys. Rev. doi: 10.1103/PhysRev.122.787 – volume: 92 start-page: 195204 year: 2015 ident: 2023070602401594200_c23 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.195204 – volume: 344 start-page: 147 year: 2001 ident: 2023070602401594200_c31 publication-title: Chem. Phys. Lett. doi: 10.1016/S0009-2614(01)00686-8 – volume: 97 start-page: 024903 year: 2005 ident: 2023070602401594200_c10 publication-title: J. Appl. Phys. doi: 10.1063/1.1835565 – volume: 62 start-page: 2778 year: 1987 ident: 2023070602401594200_c5 publication-title: J. Appl. Phys. doi: 10.1063/1.339406 – volume-title: Molecular Dynamics: Theoretical Developments and Applications in Nanotechnology and Energy year: 2012 ident: 2023070602401594200_c28 – volume: 10 start-page: 1756 year: 2014 ident: 2023070602401594200_c16 publication-title: Small doi: 10.1002/smll.201302966 – volume: 117 start-page: 025503 year: 2016 ident: 2023070602401594200_c34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.025503 – volume: 93 start-page: 052141 year: 2016 ident: 2023070602401594200_c33 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.93.052141 – volume: 3 start-page: 234 year: 2016 ident: 2023070602401594200_c29 publication-title: Mater. Horiz. doi: 10.1039/C5MH00299K – volume: 8 start-page: 1994 year: 2016 ident: 2023070602401594200_c30 publication-title: Nanoscale doi: 10.1039/C5NR06855J – volume: 37 start-page: 2639 year: 1966 ident: 2023070602401594200_c4 publication-title: J. Appl. Phys. doi: 10.1063/1.1782098 – volume: 20 start-page: 764 year: 2010 ident: 2023070602401594200_c12 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901905 – volume: 11 start-page: 845 year: 2012 ident: 2023070602401594200_c26 publication-title: Nat. Mater. doi: 10.1038/nmat3401 – volume: 31 start-page: 1900108 year: 2019 ident: 2023070602401594200_c21 publication-title: Adv. Mater. doi: 10.1002/adma.201900108 – volume: 90 start-page: 134312 year: 2014 ident: 2023070602401594200_c22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.134312 – volume: 74 start-page: 245207 year: 2006 ident: 2023070602401594200_c37 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.74.245207 – volume: 18 start-page: 136 year: 2019 ident: 2023070602401594200_c15 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0250-y – volume: 108 start-page: 1 year: 2015 ident: 2023070602401594200_c27 publication-title: Scr. Mater. doi: 10.1016/j.scriptamat.2015.07.021 – volume: 131 start-page: 1433 year: 1963 ident: 2023070602401594200_c7 publication-title: Phys. Rev. doi: 10.1103/PhysRev.131.1433 – volume: 101 start-page: 165502 year: 2008 ident: 2023070602401594200_c35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.165502 – volume: 37 start-page: 1 year: 2017 ident: 2023070602401594200_c8 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2016.07.036 – volume: 30 start-page: 1802016 year: 2018 ident: 2023070602401594200_c14 publication-title: Adv. Mater. doi: 10.1002/adma.201802016 – volume: 117 start-page: 1 year: 1995 ident: 2023070602401594200_c25 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1995.1039 – volume: 17 start-page: 1587 year: 2017 ident: 2023070602401594200_c20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04756 – volume: 134 start-page: 102402 year: 2012 ident: 2023070602401594200_c38 publication-title: J. Heat Transfer doi: 10.1115/1.4006750 – volume: 113 start-page: 124301 year: 2014 ident: 2023070602401594200_c17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.124301 – volume: 80 start-page: 2484 year: 2002 ident: 2023070602401594200_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1465106 – volume: 12 start-page: 12 year: 2009 ident: 2023070602401594200_c1 publication-title: Mater. Today doi: 10.1016/S1369-7021(09)70294-9 – volume: 31 start-page: 197 year: 1986 ident: 2023070602401594200_c2 publication-title: Int. Metals Rev. doi: 10.1179/imtr.1986.31.1.197 – volume: 92 start-page: 195205 year: 2015 ident: 2023070602401594200_c24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.195205 – volume: 348 start-page: 109 year: 2015 ident: 2023070602401594200_c11 publication-title: Science doi: 10.1126/science.aaa4166 – volume: 95 start-page: 245304 year: 2017 ident: 2023070602401594200_c19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.245304 |
SSID | ssj0011839 |
Score | 2.4045534 |
Snippet | Phonons contribute an appreciable proportion of the thermal conductivity of iron-based structural materials used in the nuclear industry. The decrease in... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Computer simulation Crystal defects Crystal dislocations Crystal lattices Dipoles Dislocation density Group velocity Heat conductivity Heat flux Heat transfer Heat transmission Iron Molecular dynamics Nuclear reactors Phonons Scattering Temperature distribution Thermal conductivity |
Title | Molecular dynamics simulations of the effect of dislocations on the thermal conductivity of iron |
URI | http://dx.doi.org/10.1063/1.5127037 https://www.proquest.com/docview/2346932856 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagFaIcEBRQFwqygANS5SWxNw8fKx5aVRQhtZXKKdixXRXRZLW74cCvZyZ2HsAKFS5R4oysaOaL89kZf0PISwUcVPPcMSuTnMH3WjBlMskUV6hOnmKxd8y2-JjOz2ZH58n5UKWv3V2y1tPyx8Z9Jf8TVWiDuOIu2X-IbN8pNMA5xBeOEGE4XivGx11t2wPjC8uvDlaXV80ovW1I2cArc7nCb1e46xMckQBetSIhFUq_-loSqCOxDAH7k7mqwFz9qkhPyk-adgT7rLBAyMWwIl03ofmiUUP73K-8Ho3gOW98In8wCmsRHFPaukG82xsQs1z68jBT64fUKJcsS7y8bD_mekGAAK7ZxrEcyBMuK0wT_DnulWF-k8b-qhY3yTaHCQKMcNuHb48_nPR_kJD5-fQe_0SdqlQqXvdd_spFhgnGbWAfPhFixDVO75G7wdX00Ef8Prlhq11yZyQduUtuffLOf0C-9CigHQroCAW0dhRiTD0K8GqMAlpX7d2AAjpGAdoiCh6Ss_fvTt_MWaibwUrBszUrozTKdKycS5UQKoEpJLdljrJHUjqls1jADWAvVsKZVdZpoKEOuKyJnFFaPCJbVV3ZPUKBnUqrdaZTmc_i2CnwmnbczCJrTBnJCXnVebDofIa1Tb4VbXJDKoq4CM6ekOe96cIrqWwy2u_CUIQXbVVwAU8heJ6kE_KiD83fOtlg9b1eDhbFwrjH1-rrCdkZgL5PttbLxj4FGrrWzwLifgK2dIov |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Molecular+dynamics+simulations+of+the+effect+of+dislocations+on+the+thermal+conductivity+of+iron&rft.jtitle=Journal+of+applied+physics&rft.au=Sun%2C+Yandong&rft.au=Zhou%2C+Yanguang&rft.au=Han%2C+Jian&rft.au=Hu%2C+Ming&rft.date=2020-01-31&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=127&rft.issue=4&rft_id=info:doi/10.1063%2F1.5127037&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |