Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration

Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted b...

Full description

Saved in:
Bibliographic Details
Published inJournal of fluids and structures Vol. 106; p. 103380
Main Authors Liu, Shengyuan, Zhao, Lin, Fang, Genshen, Hu, Chuanxin, Ge, Yaojun
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2021
Subjects
Online AccessGet full text
ISSN0889-9746
1095-8622
DOI10.1016/j.jfluidstructs.2021.103380

Cover

Loading…
Abstract Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted box girder during VIVs, sectional model wind tunnel tests involving the synchronous measurement of pressure distributions and VIV responses were performed. The computational fluid dynamics (CFD) technique was also used to demonstrate the flow pattern development during VIV before qualitatively explaining the VIV mechanism of the central-slotted box girder. The surface pressure distributions at various amplitude-dependent VIV stages were measured and examined. The evolution of the aerodynamics was investigated from the perspective of the work done by the vortex-excited force (VEF). It was found that the aerodynamic effects on a central-slotted box girder during VIVs are featured with apparent nonlinear evolutionary characteristics. During the lock-in period, the wind-induced pressures at both upper and lower surfaces of the downstream box and the pressures at upper surface of the upstream box make greater contributions to the VEF, which are the main excitation sources of the torsional VIV. However, the contributions of the downstream and upstream boxes are opposite, showing positive and negative correlations with the VEF, respectively. It demonstrated that the positive contribution of the pressures at both upper and lower surfaces of the downstream box weakens the VIV performance of the central-slotted box girder as compared with a streamlined box girder. In addition, the central slot, which improves the correlating flow between the upper and lower regions around the downstream box, causes the distributed aerodynamic forces in these regions to enhance the VEF and perform positive work. This provides a reasonable explanation as to why the VIV effects of central-slotted box girders are typically stronger than those of streamlined box girders. •Torsional VIV characteristics of a central-slotted box girder is analyzed.•Aerodynamic evolution during VIV is discussed by wind tunnel test and CFD simulation.•The mechanism of torsional VIV for a central-slotted box girder is examined.•Reasonable explanation for weak VIV performance of central-slotted box girders.
AbstractList Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted box girder during VIVs, sectional model wind tunnel tests involving the synchronous measurement of pressure distributions and VIV responses were performed. The computational fluid dynamics (CFD) technique was also used to demonstrate the flow pattern development during VIV before qualitatively explaining the VIV mechanism of the central-slotted box girder. The surface pressure distributions at various amplitude-dependent VIV stages were measured and examined. The evolution of the aerodynamics was investigated from the perspective of the work done by the vortex-excited force (VEF). It was found that the aerodynamic effects on a central-slotted box girder during VIVs are featured with apparent nonlinear evolutionary characteristics. During the lock-in period, the wind-induced pressures at both upper and lower surfaces of the downstream box and the pressures at upper surface of the upstream box make greater contributions to the VEF, which are the main excitation sources of the torsional VIV. However, the contributions of the downstream and upstream boxes are opposite, showing positive and negative correlations with the VEF, respectively. It demonstrated that the positive contribution of the pressures at both upper and lower surfaces of the downstream box weakens the VIV performance of the central-slotted box girder as compared with a streamlined box girder. In addition, the central slot, which improves the correlating flow between the upper and lower regions around the downstream box, causes the distributed aerodynamic forces in these regions to enhance the VEF and perform positive work. This provides a reasonable explanation as to why the VIV effects of central-slotted box girders are typically stronger than those of streamlined box girders. •Torsional VIV characteristics of a central-slotted box girder is analyzed.•Aerodynamic evolution during VIV is discussed by wind tunnel test and CFD simulation.•The mechanism of torsional VIV for a central-slotted box girder is examined.•Reasonable explanation for weak VIV performance of central-slotted box girders.
ArticleNumber 103380
Author Zhao, Lin
Fang, Genshen
Hu, Chuanxin
Liu, Shengyuan
Ge, Yaojun
Author_xml – sequence: 1
  givenname: Shengyuan
  orcidid: 0000-0003-0243-1069
  surname: Liu
  fullname: Liu, Shengyuan
  organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
– sequence: 2
  givenname: Lin
  surname: Zhao
  fullname: Zhao, Lin
  email: zhaolin@tongji.edu.cn
  organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
– sequence: 3
  givenname: Genshen
  orcidid: 0000-0002-4034-0478
  surname: Fang
  fullname: Fang, Genshen
  organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
– sequence: 4
  givenname: Chuanxin
  surname: Hu
  fullname: Hu, Chuanxin
  organization: School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China
– sequence: 5
  givenname: Yaojun
  surname: Ge
  fullname: Ge, Yaojun
  organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China
BookMark eNqNkMFqwzAMhs3oYG23dzDsnM6xkzhhp1K6rVDYZTsbx1GKQ2oP2wntbY8-t91lOxWEhdCvX9Y3QxNjDSD0mJJFStLiqVt0bT_oxgc3qOAXlNA0dhgryQ2apqTKk7KgdIKmpCyrpOJZcYdm3neEkCpj6RR9b8wIPuidDNoaHEOCs83RyL1WuLVOAY5Le21AOgyj7YezMHawxApMcLJPfG9DgAbX9oB32jXg8GBOb7DOR7ns8WhdgEOiTTOoqBx17c4r79FtK3sPD795jj5f1h-rt2T7_rpZLbeJYpSHpFYt54zmtCkYAckzmleyKHJKWalyWRZZxrisaUvqWHAKkjLS5pyVlaqlbNkcPV98lbPeO2jFl9N76Y4iJeIEU3TiD0xxgikuMOP08t-00uH8_3i_7q_0WF88IJ45anDCKw0m0tAOVBCN1Vf5_ABj6qJ_
CitedBy_id crossref_primary_10_3390_app12063147
crossref_primary_10_1016_j_jweia_2023_105367
crossref_primary_10_1061_JBENF2_BEENG_6285
crossref_primary_10_1016_j_jweia_2022_105086
crossref_primary_10_1177_09544062231179985
crossref_primary_10_1016_j_jweia_2022_105066
crossref_primary_10_1016_j_engstruct_2024_117459
crossref_primary_10_1177_13694332231205056
crossref_primary_10_1016_j_jweia_2023_105548
crossref_primary_10_1142_S0219455424501803
crossref_primary_10_1016_j_jweia_2023_105589
crossref_primary_10_1016_j_istruc_2024_106444
crossref_primary_10_1007_s40430_024_05144_x
crossref_primary_10_1016_j_jweia_2024_105719
crossref_primary_10_1061__ASCE_BE_1943_5592_0001977
crossref_primary_10_1007_s11071_021_07082_y
crossref_primary_10_1016_j_jweia_2022_105158
crossref_primary_10_3390_app13169314
crossref_primary_10_1016_j_engstruct_2023_117420
crossref_primary_10_1016_j_jweia_2022_105297
crossref_primary_10_1016_j_jweia_2023_105493
crossref_primary_10_1142_S021945542450007X
crossref_primary_10_1016_j_engstruct_2024_118611
crossref_primary_10_1016_j_apor_2024_104037
crossref_primary_10_1016_j_jweia_2023_105316
crossref_primary_10_1016_j_istruc_2024_107889
crossref_primary_10_1061_JBENF2_BEENG_6959
crossref_primary_10_3390_atmos13020318
crossref_primary_10_1016_j_jweia_2025_106020
crossref_primary_10_1063_5_0133526
crossref_primary_10_1016_j_engstruct_2023_115762
crossref_primary_10_1063_5_0215136
crossref_primary_10_1016_j_oceaneng_2022_113429
crossref_primary_10_1016_j_istruc_2023_105381
crossref_primary_10_1142_S0219455422501656
crossref_primary_10_1061_JSENDH_STENG_11925
Cites_doi 10.1016/0167-6105(83)90043-0
10.1061/(ASCE)BE.1943-5592.0000941
10.1016/j.jfluidstructs.2017.12.005
10.1016/j.jfluidstructs.2020.103017
10.1016/j.jfluidstructs.2016.08.010
10.1016/0167-6105(93)90041-L
10.1016/j.jweia.2017.10.022
10.1016/j.jfluidstructs.2017.06.016
10.1016/j.jweia.2013.11.006
10.1016/j.jsv.2019.02.002
10.1016/j.engstruct.2011.02.017
10.1016/j.jweia.2012.04.018
10.1061/(ASCE)0733-9445(1998)124:4(450)
10.1016/j.jfluidstructs.2017.01.015
10.1016/j.jsv.2014.06.009
10.1016/0167-6105(79)90026-6
10.1016/j.engstruct.2018.12.067
10.1006/jfls.1999.0249
10.1016/j.jweia.2019.04.015
10.1016/j.jweia.2010.06.001
10.1016/j.jweia.2015.01.009
10.1016/j.jweia.2012.07.010
10.1016/j.jweia.2008.02.052
10.1016/j.jweia.2018.09.025
10.1016/j.jweia.2014.02.004
10.1016/j.jweia.2007.06.020
10.1016/j.jweia.2014.06.015
10.1016/0167-6105(95)00008-F
10.1016/j.jfluidstructs.2010.06.006
10.1016/j.jfluidstructs.2014.06.027
10.1016/j.jweia.2017.04.016
10.1016/j.jfluidstructs.2012.10.009
10.1016/j.jfluidstructs.2017.03.011
10.1016/j.jsv.2011.10.016
10.1016/j.jweia.2006.01.017
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.jfluidstructs.2021.103380
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1095-8622
ExternalDocumentID 10_1016_j_jfluidstructs_2021_103380
S0889974621001638
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG5
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
TN5
VH1
WUQ
XPP
ZMT
~A~
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
ID FETCH-LOGICAL-c327t-bcf773252d630ea74259a6652238c5a864437ab2f0ba8672ea230f57389cbaaf3
IEDL.DBID .~1
ISSN 0889-9746
IngestDate Thu Apr 24 23:10:52 EDT 2025
Tue Jul 01 00:47:22 EDT 2025
Fri Feb 23 02:43:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Evolutionary characteristics
Aerodynamic force contribution
Central-slotted box girder
Torsional vortex-induced vibration
Energy conversion
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-bcf773252d630ea74259a6652238c5a864437ab2f0ba8672ea230f57389cbaaf3
ORCID 0000-0003-0243-1069
0000-0002-4034-0478
ParticipantIDs crossref_primary_10_1016_j_jfluidstructs_2021_103380
crossref_citationtrail_10_1016_j_jfluidstructs_2021_103380
elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2021_103380
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2021
2021-10-00
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: October 2021
PublicationDecade 2020
PublicationTitle Journal of fluids and structures
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhou, Ge, Yang, Du, Liu, Zhang (b39) 2019; 447
Matsumoto, Shiraishi, Shirato, Stoyanoff, Yagi (b28) 1993; 49
Scanlan (b30) 1998; 124
Matsumoto (b27) 1999; 13
Hu, Zhao, Ge (b9) 2018; 182
Li, Laima, Ou, Zhao, Zhou, Yu, Li, Liu (b24) 2011; 33
Ge, Zhao, Xu (b8) 2019; 32
Li, Laima, Zhang, Li, Liu (b25) 2014; 124
Yuan, Laima, Chen, Li, Hu (b37) 2017; 70
Bergh, Tijdeman (b1) 1965
Chen, Li, Hu (b2) 2014; 132
Li, Laima, Li (b23) 2018; 172
Fang, Yang, Ge, Zhou (b6) 2017; 50
Ge, Y.J., 2018. 2D and 3D nonlinear numerical simulation of cable-supported bridge aerodynamics, aeroelasticity and their coupling. In: The 7th International Symposium on Computational Wind Engineering. Seoul, Republic of Korea.
Larsen, Wall (b19) 2012; 104
Larsen, Savage, Lafrenière, Hui, Larsen (b18) 2008; 96
Xu, Zhao, Ge (b34) 2017; 167
Chen, Xu (b3) 2012; 331
Li, Chen, Xu, Li, Ou (b21) 2010; 26
Diana, Resta, Rocchi (b5) 2008; 96
Shiraishi, Matsumoto (b31) 1983; 14
Diana, Resta, Belloli, Rocchi (b4) 2006; 94
Yang, Chen, Li (b35) 2020; 96
Li, Laima, Jing (b22) 2014; 50
Laima, Li, Chen, Li (b14) 2013; 39
Larsen (b16) 1995; 57
Laima, Li (b13) 2015; 139
Larsen, Larose (b17) 2015; 334
Xu, Bi, Han, Li, Du (b32) 2019; 182
Zhu, Xu, Zhu, Chen (b40) 2017; 71
Lee, Kwon, Yoon (b20) 2014; 127
Xu, Ying, Li, Zhang (b33) 2016; 21
Laima, Li, Chen, Ou (b15) 2018; 77
Liu, S.Y., Ge, Y.J., 2014. 2D pure-numerical simulation for whole-process wind-induced responses of long-span bridge decks. In: The 6th International Symposium on Computational Wind Engineering. Hamburg, Germany.
Irwin, Cooper, Girard (b11) 1979; 5
Kwok, Qin, Fok, Hitchcock (b12) 2012; 110
Sarwar, Ishihara (b29) 2010; 98
Hu, Zhao, Ge (b10) 2019; 189
Yang, Zhou, Ge, Zhang (b36) 2016; 66
Zhang, Zhang, Yang, Ge (b38) 2017; 74
10.1016/j.jfluidstructs.2021.103380_b7
Li (10.1016/j.jfluidstructs.2021.103380_b22) 2014; 50
Sarwar (10.1016/j.jfluidstructs.2021.103380_b29) 2010; 98
Larsen (10.1016/j.jfluidstructs.2021.103380_b16) 1995; 57
Diana (10.1016/j.jfluidstructs.2021.103380_b4) 2006; 94
Zhang (10.1016/j.jfluidstructs.2021.103380_b38) 2017; 74
Laima (10.1016/j.jfluidstructs.2021.103380_b14) 2013; 39
Zhou (10.1016/j.jfluidstructs.2021.103380_b39) 2019; 447
Chen (10.1016/j.jfluidstructs.2021.103380_b2) 2014; 132
Zhu (10.1016/j.jfluidstructs.2021.103380_b40) 2017; 71
Ge (10.1016/j.jfluidstructs.2021.103380_b8) 2019; 32
Lee (10.1016/j.jfluidstructs.2021.103380_b20) 2014; 127
Diana (10.1016/j.jfluidstructs.2021.103380_b5) 2008; 96
Irwin (10.1016/j.jfluidstructs.2021.103380_b11) 1979; 5
Fang (10.1016/j.jfluidstructs.2021.103380_b6) 2017; 50
Larsen (10.1016/j.jfluidstructs.2021.103380_b19) 2012; 104
Hu (10.1016/j.jfluidstructs.2021.103380_b9) 2018; 182
Yang (10.1016/j.jfluidstructs.2021.103380_b36) 2016; 66
Laima (10.1016/j.jfluidstructs.2021.103380_b15) 2018; 77
Larsen (10.1016/j.jfluidstructs.2021.103380_b17) 2015; 334
Larsen (10.1016/j.jfluidstructs.2021.103380_b18) 2008; 96
Matsumoto (10.1016/j.jfluidstructs.2021.103380_b27) 1999; 13
Bergh (10.1016/j.jfluidstructs.2021.103380_b1) 1965
Laima (10.1016/j.jfluidstructs.2021.103380_b13) 2015; 139
Li (10.1016/j.jfluidstructs.2021.103380_b21) 2010; 26
Shiraishi (10.1016/j.jfluidstructs.2021.103380_b31) 1983; 14
Hu (10.1016/j.jfluidstructs.2021.103380_b10) 2019; 189
Matsumoto (10.1016/j.jfluidstructs.2021.103380_b28) 1993; 49
Li (10.1016/j.jfluidstructs.2021.103380_b23) 2018; 172
Yuan (10.1016/j.jfluidstructs.2021.103380_b37) 2017; 70
Kwok (10.1016/j.jfluidstructs.2021.103380_b12) 2012; 110
10.1016/j.jfluidstructs.2021.103380_b26
Xu (10.1016/j.jfluidstructs.2021.103380_b33) 2016; 21
Li (10.1016/j.jfluidstructs.2021.103380_b25) 2014; 124
Scanlan (10.1016/j.jfluidstructs.2021.103380_b30) 1998; 124
Xu (10.1016/j.jfluidstructs.2021.103380_b34) 2017; 167
Yang (10.1016/j.jfluidstructs.2021.103380_b35) 2020; 96
Chen (10.1016/j.jfluidstructs.2021.103380_b3) 2012; 331
Li (10.1016/j.jfluidstructs.2021.103380_b24) 2011; 33
Xu (10.1016/j.jfluidstructs.2021.103380_b32) 2019; 182
References_xml – volume: 96
  start-page: 1871
  year: 2008
  end-page: 1884
  ident: b5
  article-title: A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain
  publication-title: J. Wind Eng. Ind. Aerodyn.
– reference: Ge, Y.J., 2018. 2D and 3D nonlinear numerical simulation of cable-supported bridge aerodynamics, aeroelasticity and their coupling. In: The 7th International Symposium on Computational Wind Engineering. Seoul, Republic of Korea.
– volume: 96
  start-page: 934
  year: 2008
  end-page: 944
  ident: b18
  article-title: Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 71
  start-page: 183
  year: 2017
  end-page: 198
  ident: b40
  article-title: A semi-empirical model for vortex-induced vertical forces on a twin-box deck under turbulent wind flow
  publication-title: J. Fluids Struct.
– volume: 70
  start-page: 145
  year: 2017
  end-page: 161
  ident: b37
  article-title: Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder
  publication-title: J. Fluids Struct.
– volume: 98
  start-page: 701
  year: 2010
  end-page: 711
  ident: b29
  article-title: Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 5
  start-page: 93
  year: 1979
  end-page: 107
  ident: b11
  article-title: Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures
  publication-title: J. Ind. Aerodyn.
– volume: 13
  start-page: 791
  year: 1999
  end-page: 811
  ident: b27
  article-title: Vortex shedding of bluff bodies: A review
  publication-title: J. Fluids Struct.
– volume: 139
  start-page: 37
  year: 2015
  end-page: 49
  ident: b13
  article-title: Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 26
  start-page: 1195
  year: 2010
  end-page: 1215
  ident: b21
  article-title: A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration
  publication-title: J. Fluids Struct.
– volume: 57
  start-page: 281
  year: 1995
  end-page: 294
  ident: b16
  article-title: A generalized-model for assessment of vortex-induced vibrations of flexible structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 172
  start-page: 196
  year: 2018
  end-page: 211
  ident: b23
  article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 21
  year: 2016
  ident: b33
  article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck
  publication-title: J. Bridge Eng.
– volume: 66
  start-page: 476
  year: 2016
  end-page: 489
  ident: b36
  article-title: Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios
  publication-title: J. Fluids Struct.
– volume: 331
  start-page: 1164
  year: 2012
  end-page: 1182
  ident: b3
  article-title: Investigation of a hybrid approach combining experimental tests and numerical simulations to study vortex-induced vibration in a circular cylinder
  publication-title: J. Sound Vib.
– reference: Liu, S.Y., Ge, Y.J., 2014. 2D pure-numerical simulation for whole-process wind-induced responses of long-span bridge decks. In: The 6th International Symposium on Computational Wind Engineering. Hamburg, Germany.
– volume: 182
  start-page: 330
  year: 2018
  end-page: 343
  ident: b9
  article-title: Time-frequency evolutionary characteristics of aerodynamic forces around a streamlined closed-box girder during vortex-induced vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 110
  start-page: 50
  year: 2012
  end-page: 61
  ident: b12
  article-title: Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 447
  start-page: 221
  year: 2019
  end-page: 235
  ident: b39
  article-title: Nonlinear behaviors of the flutter occurrences for a twin-box girder bridge with passive countermeasures
  publication-title: J. Sound Vib.
– volume: 74
  start-page: 413
  year: 2017
  end-page: 426
  ident: b38
  article-title: Nonlinear aerodynamic and energy input properties of a twin-box girder bridge deck section
  publication-title: J. Fluids Struct.
– volume: 127
  start-page: 59
  year: 2014
  end-page: 68
  ident: b20
  article-title: Reynolds number sensitivity to aerodynamic forces of twin box bridge girder
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 49
  start-page: 467
  year: 1993
  end-page: 476
  ident: b28
  article-title: Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 96
  year: 2020
  ident: b35
  article-title: Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method
  publication-title: J. Fluids Struct.
– volume: 77
  start-page: 115
  year: 2018
  end-page: 133
  ident: b15
  article-title: Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder
  publication-title: J. Fluids Struct.
– volume: 39
  start-page: 205
  year: 2013
  end-page: 221
  ident: b14
  article-title: Investigation and control of vortex-induced vibration of twin box girders
  publication-title: J. Fluids Struct.
– volume: 94
  start-page: 341
  year: 2006
  end-page: 363
  ident: b4
  article-title: On the vortex shedding forcing on suspension bridge deck
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 182
  start-page: 101
  year: 2019
  end-page: 111
  ident: b32
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng. Struct.
– volume: 334
  start-page: 2
  year: 2015
  end-page: 28
  ident: b17
  article-title: Dynamic wind effects on suspension and cable-stayed bridges
  publication-title: J. Sound Vib.
– volume: 104
  start-page: 159
  year: 2012
  end-page: 165
  ident: b19
  article-title: Shaping of bridge box girders to avoid vortex shedding response
  publication-title: J. Wind Eng. Ind. Aerodyn.
– year: 1965
  ident: b1
  article-title: Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems
– volume: 132
  start-page: 27
  year: 2014
  end-page: 36
  ident: b2
  article-title: An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 124
  start-page: 54
  year: 2014
  end-page: 67
  ident: b25
  article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 189
  start-page: 314
  year: 2019
  end-page: 331
  ident: b10
  article-title: Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 50
  start-page: 358
  year: 2014
  end-page: 375
  ident: b22
  article-title: Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder
  publication-title: J. Fluids Struct.
– volume: 124
  start-page: 450
  year: 1998
  end-page: 458
  ident: b30
  article-title: Bridge flutter derivatives at vortex lock-in
  publication-title: J. Struct. Eng.
– volume: 32
  start-page: 1
  year: 2019
  end-page: 18
  ident: b8
  article-title: Review and reflection on vortex-induced vibration of main girders of long-span bridges
  publication-title: China J. Highw. Transp.
– volume: 14
  start-page: 419
  year: 1983
  end-page: 430
  ident: b31
  article-title: On classification of vortex-induced oscillation and its application for bridge structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 33
  start-page: 1894
  year: 2011
  end-page: 1907
  ident: b24
  article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements
  publication-title: Eng. Struct.
– volume: 50
  start-page: 74
  year: 2017
  end-page: 82
  ident: b6
  article-title: Vortex-induced vibration performance and aerodynamic countermeasures of semi-open separated twin-box deck
  publication-title: China Civil Eng. J.
– volume: 167
  start-page: 228
  year: 2017
  end-page: 241
  ident: b34
  article-title: Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
– volume: 14
  start-page: 419
  year: 1983
  ident: 10.1016/j.jfluidstructs.2021.103380_b31
  article-title: On classification of vortex-induced oscillation and its application for bridge structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(83)90043-0
– volume: 21
  year: 2016
  ident: 10.1016/j.jfluidstructs.2021.103380_b33
  article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck
  publication-title: J. Bridge Eng.
  doi: 10.1061/(ASCE)BE.1943-5592.0000941
– volume: 77
  start-page: 115
  year: 2018
  ident: 10.1016/j.jfluidstructs.2021.103380_b15
  article-title: Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.12.005
– volume: 96
  year: 2020
  ident: 10.1016/j.jfluidstructs.2021.103380_b35
  article-title: Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2020.103017
– volume: 66
  start-page: 476
  year: 2016
  ident: 10.1016/j.jfluidstructs.2021.103380_b36
  article-title: Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2016.08.010
– volume: 49
  start-page: 467
  year: 1993
  ident: 10.1016/j.jfluidstructs.2021.103380_b28
  article-title: Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(93)90041-L
– volume: 172
  start-page: 196
  year: 2018
  ident: 10.1016/j.jfluidstructs.2021.103380_b23
  article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.10.022
– volume: 74
  start-page: 413
  year: 2017
  ident: 10.1016/j.jfluidstructs.2021.103380_b38
  article-title: Nonlinear aerodynamic and energy input properties of a twin-box girder bridge deck section
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.06.016
– volume: 124
  start-page: 54
  year: 2014
  ident: 10.1016/j.jfluidstructs.2021.103380_b25
  article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2013.11.006
– ident: 10.1016/j.jfluidstructs.2021.103380_b26
– volume: 447
  start-page: 221
  year: 2019
  ident: 10.1016/j.jfluidstructs.2021.103380_b39
  article-title: Nonlinear behaviors of the flutter occurrences for a twin-box girder bridge with passive countermeasures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2019.02.002
– volume: 33
  start-page: 1894
  year: 2011
  ident: 10.1016/j.jfluidstructs.2021.103380_b24
  article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.02.017
– volume: 104
  start-page: 159
  year: 2012
  ident: 10.1016/j.jfluidstructs.2021.103380_b19
  article-title: Shaping of bridge box girders to avoid vortex shedding response
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2012.04.018
– volume: 124
  start-page: 450
  year: 1998
  ident: 10.1016/j.jfluidstructs.2021.103380_b30
  article-title: Bridge flutter derivatives at vortex lock-in
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1998)124:4(450)
– volume: 70
  start-page: 145
  year: 2017
  ident: 10.1016/j.jfluidstructs.2021.103380_b37
  article-title: Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.01.015
– volume: 334
  start-page: 2
  year: 2015
  ident: 10.1016/j.jfluidstructs.2021.103380_b17
  article-title: Dynamic wind effects on suspension and cable-stayed bridges
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.06.009
– volume: 5
  start-page: 93
  year: 1979
  ident: 10.1016/j.jfluidstructs.2021.103380_b11
  article-title: Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures
  publication-title: J. Ind. Aerodyn.
  doi: 10.1016/0167-6105(79)90026-6
– volume: 182
  start-page: 101
  year: 2019
  ident: 10.1016/j.jfluidstructs.2021.103380_b32
  article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2018.12.067
– volume: 13
  start-page: 791
  year: 1999
  ident: 10.1016/j.jfluidstructs.2021.103380_b27
  article-title: Vortex shedding of bluff bodies: A review
  publication-title: J. Fluids Struct.
  doi: 10.1006/jfls.1999.0249
– volume: 189
  start-page: 314
  year: 2019
  ident: 10.1016/j.jfluidstructs.2021.103380_b10
  article-title: Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2019.04.015
– year: 1965
  ident: 10.1016/j.jfluidstructs.2021.103380_b1
– volume: 98
  start-page: 701
  year: 2010
  ident: 10.1016/j.jfluidstructs.2021.103380_b29
  article-title: Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2010.06.001
– volume: 139
  start-page: 37
  year: 2015
  ident: 10.1016/j.jfluidstructs.2021.103380_b13
  article-title: Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2015.01.009
– volume: 110
  start-page: 50
  year: 2012
  ident: 10.1016/j.jfluidstructs.2021.103380_b12
  article-title: Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2012.07.010
– volume: 50
  start-page: 74
  year: 2017
  ident: 10.1016/j.jfluidstructs.2021.103380_b6
  article-title: Vortex-induced vibration performance and aerodynamic countermeasures of semi-open separated twin-box deck
  publication-title: China Civil Eng. J.
– ident: 10.1016/j.jfluidstructs.2021.103380_b7
– volume: 96
  start-page: 1871
  year: 2008
  ident: 10.1016/j.jfluidstructs.2021.103380_b5
  article-title: A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2008.02.052
– volume: 182
  start-page: 330
  year: 2018
  ident: 10.1016/j.jfluidstructs.2021.103380_b9
  article-title: Time-frequency evolutionary characteristics of aerodynamic forces around a streamlined closed-box girder during vortex-induced vibration
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2018.09.025
– volume: 127
  start-page: 59
  year: 2014
  ident: 10.1016/j.jfluidstructs.2021.103380_b20
  article-title: Reynolds number sensitivity to aerodynamic forces of twin box bridge girder
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2014.02.004
– volume: 96
  start-page: 934
  year: 2008
  ident: 10.1016/j.jfluidstructs.2021.103380_b18
  article-title: Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2007.06.020
– volume: 132
  start-page: 27
  year: 2014
  ident: 10.1016/j.jfluidstructs.2021.103380_b2
  article-title: An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2014.06.015
– volume: 57
  start-page: 281
  year: 1995
  ident: 10.1016/j.jfluidstructs.2021.103380_b16
  article-title: A generalized-model for assessment of vortex-induced vibrations of flexible structures
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/0167-6105(95)00008-F
– volume: 26
  start-page: 1195
  year: 2010
  ident: 10.1016/j.jfluidstructs.2021.103380_b21
  article-title: A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2010.06.006
– volume: 50
  start-page: 358
  year: 2014
  ident: 10.1016/j.jfluidstructs.2021.103380_b22
  article-title: Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2014.06.027
– volume: 167
  start-page: 228
  year: 2017
  ident: 10.1016/j.jfluidstructs.2021.103380_b34
  article-title: Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2017.04.016
– volume: 32
  start-page: 1
  year: 2019
  ident: 10.1016/j.jfluidstructs.2021.103380_b8
  article-title: Review and reflection on vortex-induced vibration of main girders of long-span bridges
  publication-title: China J. Highw. Transp.
– volume: 39
  start-page: 205
  year: 2013
  ident: 10.1016/j.jfluidstructs.2021.103380_b14
  article-title: Investigation and control of vortex-induced vibration of twin box girders
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2012.10.009
– volume: 71
  start-page: 183
  year: 2017
  ident: 10.1016/j.jfluidstructs.2021.103380_b40
  article-title: A semi-empirical model for vortex-induced vertical forces on a twin-box deck under turbulent wind flow
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2017.03.011
– volume: 331
  start-page: 1164
  year: 2012
  ident: 10.1016/j.jfluidstructs.2021.103380_b3
  article-title: Investigation of a hybrid approach combining experimental tests and numerical simulations to study vortex-induced vibration in a circular cylinder
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2011.10.016
– volume: 94
  start-page: 341
  year: 2006
  ident: 10.1016/j.jfluidstructs.2021.103380_b4
  article-title: On the vortex shedding forcing on suspension bridge deck
  publication-title: J. Wind Eng. Ind. Aerodyn.
  doi: 10.1016/j.jweia.2006.01.017
SSID ssj0009431
Score 2.5170357
Snippet Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 103380
SubjectTerms Aerodynamic force contribution
Central-slotted box girder
Energy conversion
Evolutionary characteristics
Torsional vortex-induced vibration
Title Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration
URI https://dx.doi.org/10.1016/j.jfluidstructs.2021.103380
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_Inzxwjota5N2qb1IIzhmIq76GC3kqSpdIxtzDl2Ev9031ta3cDDQOglbRpC3mvyvfK97xFyHUs3dFMB37dWgeOHhjuKx9rxsijWjAspNOY7P3fDTs9_7Af9CmmVuTBIqyz2frunL3fr4k6jWM3GJM8bL0jQATQcMpQRAjfCDHZfoH7-zecvzSP2bU1CZPNg721y9cvxGmTDjzy1Sq2o3c08TELnqBH51ym1cvK098leARlp087qgFTM6JDsrggJHpGvFbmM8YjCJQ3sjLbaPAVcqg0dWVEMOaVmXvgbPqGSFgRN5304ngEApWq8oG85anJSTDGbUqzIs_xlSOfIzV04EMiDS6R0jsE2jnRMeu3711bHKWorOJozMXOUzoTgLGBpyF0jIUAOYhmGgMZ4pAMZAUwCQymWuQoaghkJsUoWCMA3WkmZ8RNShXmbU0KjUHMDsFcwDcOknkoDP4tlyjwpIbjxauS2XMtEF8LjWP9imJQMs0GyZogEDZFYQ9SI__PyxOpvbPbaXWm0ZM2dEjgpNhng7L8DnJMdbFne3wWpQg9zCfhlpupLB62TrebDU6f7DZcf9nY
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58gI-D-MT6DOh1bTfZ3XQ9CCKWqm0vttDbkmSzUimt1Fo8iT_dmWZrW_BQEPaym2wImdnkm-WbbwAuY1WKSqnE79vo0AsiKzwtYuP5WTk2XEglDeU71xtRtRU8tsP2EtxNcmGIVpnv_W5PH-_W-ZNivprFt06n-EwEHUTDEScZIXSjZVgNQiHJta--pjyPOHBFCYnOQ93X4GJK8nrNuh-d1Em1kng39ykLXZBI5F_H1MzRU9mGrRwzsls3rR1Ysr1d2JxREtyD7xm9jH6P4aUsbo2u3DxDYGos6zlVDDVgdpQ7HLUwxXKGpvfe7Q8RgTLd_2QvHRLlZJRjNmBUkmf8z5CNiJz76WEkjz6RshFF2zTSPrQq9827qpcXV_CM4HLoaZNJKXjI00iUrMIIOYxVFCEcE2UTqjLiJLSU5llJ443kVmGwkoUSAY7RSmXiAFZw3vYQWDkywiLuldzgMKmv0zDIYpVyXymMbvwCXE_WMjG58jgVwOgmE4rZazJniIQMkThDFCD4ffnNCXAs9trNxGjJnD8leFQsMsDRfwc4h_Vqs15Lag-Np2PYoBZHAjyBFextTxHMDPXZ2Fl_AEfd-Aw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+aerodynamic+force+nonlinear+evolution+for+a+central-slotted+box+girder+under+torsional+vortex-induced+vibration&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Liu%2C+Shengyuan&rft.au=Zhao%2C+Lin&rft.au=Fang%2C+Genshen&rft.au=Hu%2C+Chuanxin&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=106&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2021.103380&rft.externalDocID=S0889974621001638
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon