Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration
Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted b...
Saved in:
Published in | Journal of fluids and structures Vol. 106; p. 103380 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.10.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0889-9746 1095-8622 |
DOI | 10.1016/j.jfluidstructs.2021.103380 |
Cover
Loading…
Abstract | Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted box girder during VIVs, sectional model wind tunnel tests involving the synchronous measurement of pressure distributions and VIV responses were performed. The computational fluid dynamics (CFD) technique was also used to demonstrate the flow pattern development during VIV before qualitatively explaining the VIV mechanism of the central-slotted box girder. The surface pressure distributions at various amplitude-dependent VIV stages were measured and examined. The evolution of the aerodynamics was investigated from the perspective of the work done by the vortex-excited force (VEF). It was found that the aerodynamic effects on a central-slotted box girder during VIVs are featured with apparent nonlinear evolutionary characteristics. During the lock-in period, the wind-induced pressures at both upper and lower surfaces of the downstream box and the pressures at upper surface of the upstream box make greater contributions to the VEF, which are the main excitation sources of the torsional VIV. However, the contributions of the downstream and upstream boxes are opposite, showing positive and negative correlations with the VEF, respectively. It demonstrated that the positive contribution of the pressures at both upper and lower surfaces of the downstream box weakens the VIV performance of the central-slotted box girder as compared with a streamlined box girder. In addition, the central slot, which improves the correlating flow between the upper and lower regions around the downstream box, causes the distributed aerodynamic forces in these regions to enhance the VEF and perform positive work. This provides a reasonable explanation as to why the VIV effects of central-slotted box girders are typically stronger than those of streamlined box girders.
•Torsional VIV characteristics of a central-slotted box girder is analyzed.•Aerodynamic evolution during VIV is discussed by wind tunnel test and CFD simulation.•The mechanism of torsional VIV for a central-slotted box girder is examined.•Reasonable explanation for weak VIV performance of central-slotted box girders. |
---|---|
AbstractList | Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot can degrade their performance under vortex-induced vibrations (VIVs). To clarify the aerodynamic characteristics of a typical central-slotted box girder during VIVs, sectional model wind tunnel tests involving the synchronous measurement of pressure distributions and VIV responses were performed. The computational fluid dynamics (CFD) technique was also used to demonstrate the flow pattern development during VIV before qualitatively explaining the VIV mechanism of the central-slotted box girder. The surface pressure distributions at various amplitude-dependent VIV stages were measured and examined. The evolution of the aerodynamics was investigated from the perspective of the work done by the vortex-excited force (VEF). It was found that the aerodynamic effects on a central-slotted box girder during VIVs are featured with apparent nonlinear evolutionary characteristics. During the lock-in period, the wind-induced pressures at both upper and lower surfaces of the downstream box and the pressures at upper surface of the upstream box make greater contributions to the VEF, which are the main excitation sources of the torsional VIV. However, the contributions of the downstream and upstream boxes are opposite, showing positive and negative correlations with the VEF, respectively. It demonstrated that the positive contribution of the pressures at both upper and lower surfaces of the downstream box weakens the VIV performance of the central-slotted box girder as compared with a streamlined box girder. In addition, the central slot, which improves the correlating flow between the upper and lower regions around the downstream box, causes the distributed aerodynamic forces in these regions to enhance the VEF and perform positive work. This provides a reasonable explanation as to why the VIV effects of central-slotted box girders are typically stronger than those of streamlined box girders.
•Torsional VIV characteristics of a central-slotted box girder is analyzed.•Aerodynamic evolution during VIV is discussed by wind tunnel test and CFD simulation.•The mechanism of torsional VIV for a central-slotted box girder is examined.•Reasonable explanation for weak VIV performance of central-slotted box girders. |
ArticleNumber | 103380 |
Author | Zhao, Lin Fang, Genshen Hu, Chuanxin Liu, Shengyuan Ge, Yaojun |
Author_xml | – sequence: 1 givenname: Shengyuan orcidid: 0000-0003-0243-1069 surname: Liu fullname: Liu, Shengyuan organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China – sequence: 2 givenname: Lin surname: Zhao fullname: Zhao, Lin email: zhaolin@tongji.edu.cn organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China – sequence: 3 givenname: Genshen orcidid: 0000-0002-4034-0478 surname: Fang fullname: Fang, Genshen organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China – sequence: 4 givenname: Chuanxin surname: Hu fullname: Hu, Chuanxin organization: School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430081, China – sequence: 5 givenname: Yaojun surname: Ge fullname: Ge, Yaojun organization: State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China |
BookMark | eNqNkMFqwzAMhs3oYG23dzDsnM6xkzhhp1K6rVDYZTsbx1GKQ2oP2wntbY8-t91lOxWEhdCvX9Y3QxNjDSD0mJJFStLiqVt0bT_oxgc3qOAXlNA0dhgryQ2apqTKk7KgdIKmpCyrpOJZcYdm3neEkCpj6RR9b8wIPuidDNoaHEOCs83RyL1WuLVOAY5Le21AOgyj7YezMHawxApMcLJPfG9DgAbX9oB32jXg8GBOb7DOR7ns8WhdgEOiTTOoqBx17c4r79FtK3sPD795jj5f1h-rt2T7_rpZLbeJYpSHpFYt54zmtCkYAckzmleyKHJKWalyWRZZxrisaUvqWHAKkjLS5pyVlaqlbNkcPV98lbPeO2jFl9N76Y4iJeIEU3TiD0xxgikuMOP08t-00uH8_3i_7q_0WF88IJ45anDCKw0m0tAOVBCN1Vf5_ABj6qJ_ |
CitedBy_id | crossref_primary_10_3390_app12063147 crossref_primary_10_1016_j_jweia_2023_105367 crossref_primary_10_1061_JBENF2_BEENG_6285 crossref_primary_10_1016_j_jweia_2022_105086 crossref_primary_10_1177_09544062231179985 crossref_primary_10_1016_j_jweia_2022_105066 crossref_primary_10_1016_j_engstruct_2024_117459 crossref_primary_10_1177_13694332231205056 crossref_primary_10_1016_j_jweia_2023_105548 crossref_primary_10_1142_S0219455424501803 crossref_primary_10_1016_j_jweia_2023_105589 crossref_primary_10_1016_j_istruc_2024_106444 crossref_primary_10_1007_s40430_024_05144_x crossref_primary_10_1016_j_jweia_2024_105719 crossref_primary_10_1061__ASCE_BE_1943_5592_0001977 crossref_primary_10_1007_s11071_021_07082_y crossref_primary_10_1016_j_jweia_2022_105158 crossref_primary_10_3390_app13169314 crossref_primary_10_1016_j_engstruct_2023_117420 crossref_primary_10_1016_j_jweia_2022_105297 crossref_primary_10_1016_j_jweia_2023_105493 crossref_primary_10_1142_S021945542450007X crossref_primary_10_1016_j_engstruct_2024_118611 crossref_primary_10_1016_j_apor_2024_104037 crossref_primary_10_1016_j_jweia_2023_105316 crossref_primary_10_1016_j_istruc_2024_107889 crossref_primary_10_1061_JBENF2_BEENG_6959 crossref_primary_10_3390_atmos13020318 crossref_primary_10_1016_j_jweia_2025_106020 crossref_primary_10_1063_5_0133526 crossref_primary_10_1016_j_engstruct_2023_115762 crossref_primary_10_1063_5_0215136 crossref_primary_10_1016_j_oceaneng_2022_113429 crossref_primary_10_1016_j_istruc_2023_105381 crossref_primary_10_1142_S0219455422501656 crossref_primary_10_1061_JSENDH_STENG_11925 |
Cites_doi | 10.1016/0167-6105(83)90043-0 10.1061/(ASCE)BE.1943-5592.0000941 10.1016/j.jfluidstructs.2017.12.005 10.1016/j.jfluidstructs.2020.103017 10.1016/j.jfluidstructs.2016.08.010 10.1016/0167-6105(93)90041-L 10.1016/j.jweia.2017.10.022 10.1016/j.jfluidstructs.2017.06.016 10.1016/j.jweia.2013.11.006 10.1016/j.jsv.2019.02.002 10.1016/j.engstruct.2011.02.017 10.1016/j.jweia.2012.04.018 10.1061/(ASCE)0733-9445(1998)124:4(450) 10.1016/j.jfluidstructs.2017.01.015 10.1016/j.jsv.2014.06.009 10.1016/0167-6105(79)90026-6 10.1016/j.engstruct.2018.12.067 10.1006/jfls.1999.0249 10.1016/j.jweia.2019.04.015 10.1016/j.jweia.2010.06.001 10.1016/j.jweia.2015.01.009 10.1016/j.jweia.2012.07.010 10.1016/j.jweia.2008.02.052 10.1016/j.jweia.2018.09.025 10.1016/j.jweia.2014.02.004 10.1016/j.jweia.2007.06.020 10.1016/j.jweia.2014.06.015 10.1016/0167-6105(95)00008-F 10.1016/j.jfluidstructs.2010.06.006 10.1016/j.jfluidstructs.2014.06.027 10.1016/j.jweia.2017.04.016 10.1016/j.jfluidstructs.2012.10.009 10.1016/j.jfluidstructs.2017.03.011 10.1016/j.jsv.2011.10.016 10.1016/j.jweia.2006.01.017 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd |
Copyright_xml | – notice: 2021 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.jfluidstructs.2021.103380 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1095-8622 |
ExternalDocumentID | 10_1016_j_jfluidstructs_2021_103380 S0889974621001638 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADFGL ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AI. AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LG5 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SST SSZ T5K TN5 VH1 WUQ XPP ZMT ~A~ ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH |
ID | FETCH-LOGICAL-c327t-bcf773252d630ea74259a6652238c5a864437ab2f0ba8672ea230f57389cbaaf3 |
IEDL.DBID | .~1 |
ISSN | 0889-9746 |
IngestDate | Thu Apr 24 23:10:52 EDT 2025 Tue Jul 01 00:47:22 EDT 2025 Fri Feb 23 02:43:12 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Evolutionary characteristics Aerodynamic force contribution Central-slotted box girder Torsional vortex-induced vibration Energy conversion |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-bcf773252d630ea74259a6652238c5a864437ab2f0ba8672ea230f57389cbaaf3 |
ORCID | 0000-0003-0243-1069 0000-0002-4034-0478 |
ParticipantIDs | crossref_primary_10_1016_j_jfluidstructs_2021_103380 crossref_citationtrail_10_1016_j_jfluidstructs_2021_103380 elsevier_sciencedirect_doi_10_1016_j_jfluidstructs_2021_103380 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | Journal of fluids and structures |
PublicationYear | 2021 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhou, Ge, Yang, Du, Liu, Zhang (b39) 2019; 447 Matsumoto, Shiraishi, Shirato, Stoyanoff, Yagi (b28) 1993; 49 Scanlan (b30) 1998; 124 Matsumoto (b27) 1999; 13 Hu, Zhao, Ge (b9) 2018; 182 Li, Laima, Ou, Zhao, Zhou, Yu, Li, Liu (b24) 2011; 33 Ge, Zhao, Xu (b8) 2019; 32 Li, Laima, Zhang, Li, Liu (b25) 2014; 124 Yuan, Laima, Chen, Li, Hu (b37) 2017; 70 Bergh, Tijdeman (b1) 1965 Chen, Li, Hu (b2) 2014; 132 Li, Laima, Li (b23) 2018; 172 Fang, Yang, Ge, Zhou (b6) 2017; 50 Ge, Y.J., 2018. 2D and 3D nonlinear numerical simulation of cable-supported bridge aerodynamics, aeroelasticity and their coupling. In: The 7th International Symposium on Computational Wind Engineering. Seoul, Republic of Korea. Larsen, Wall (b19) 2012; 104 Larsen, Savage, Lafrenière, Hui, Larsen (b18) 2008; 96 Xu, Zhao, Ge (b34) 2017; 167 Chen, Xu (b3) 2012; 331 Li, Chen, Xu, Li, Ou (b21) 2010; 26 Diana, Resta, Rocchi (b5) 2008; 96 Shiraishi, Matsumoto (b31) 1983; 14 Diana, Resta, Belloli, Rocchi (b4) 2006; 94 Yang, Chen, Li (b35) 2020; 96 Li, Laima, Jing (b22) 2014; 50 Laima, Li, Chen, Li (b14) 2013; 39 Larsen (b16) 1995; 57 Laima, Li (b13) 2015; 139 Larsen, Larose (b17) 2015; 334 Xu, Bi, Han, Li, Du (b32) 2019; 182 Zhu, Xu, Zhu, Chen (b40) 2017; 71 Lee, Kwon, Yoon (b20) 2014; 127 Xu, Ying, Li, Zhang (b33) 2016; 21 Laima, Li, Chen, Ou (b15) 2018; 77 Liu, S.Y., Ge, Y.J., 2014. 2D pure-numerical simulation for whole-process wind-induced responses of long-span bridge decks. In: The 6th International Symposium on Computational Wind Engineering. Hamburg, Germany. Irwin, Cooper, Girard (b11) 1979; 5 Kwok, Qin, Fok, Hitchcock (b12) 2012; 110 Sarwar, Ishihara (b29) 2010; 98 Hu, Zhao, Ge (b10) 2019; 189 Yang, Zhou, Ge, Zhang (b36) 2016; 66 Zhang, Zhang, Yang, Ge (b38) 2017; 74 10.1016/j.jfluidstructs.2021.103380_b7 Li (10.1016/j.jfluidstructs.2021.103380_b22) 2014; 50 Sarwar (10.1016/j.jfluidstructs.2021.103380_b29) 2010; 98 Larsen (10.1016/j.jfluidstructs.2021.103380_b16) 1995; 57 Diana (10.1016/j.jfluidstructs.2021.103380_b4) 2006; 94 Zhang (10.1016/j.jfluidstructs.2021.103380_b38) 2017; 74 Laima (10.1016/j.jfluidstructs.2021.103380_b14) 2013; 39 Zhou (10.1016/j.jfluidstructs.2021.103380_b39) 2019; 447 Chen (10.1016/j.jfluidstructs.2021.103380_b2) 2014; 132 Zhu (10.1016/j.jfluidstructs.2021.103380_b40) 2017; 71 Ge (10.1016/j.jfluidstructs.2021.103380_b8) 2019; 32 Lee (10.1016/j.jfluidstructs.2021.103380_b20) 2014; 127 Diana (10.1016/j.jfluidstructs.2021.103380_b5) 2008; 96 Irwin (10.1016/j.jfluidstructs.2021.103380_b11) 1979; 5 Fang (10.1016/j.jfluidstructs.2021.103380_b6) 2017; 50 Larsen (10.1016/j.jfluidstructs.2021.103380_b19) 2012; 104 Hu (10.1016/j.jfluidstructs.2021.103380_b9) 2018; 182 Yang (10.1016/j.jfluidstructs.2021.103380_b36) 2016; 66 Laima (10.1016/j.jfluidstructs.2021.103380_b15) 2018; 77 Larsen (10.1016/j.jfluidstructs.2021.103380_b17) 2015; 334 Larsen (10.1016/j.jfluidstructs.2021.103380_b18) 2008; 96 Matsumoto (10.1016/j.jfluidstructs.2021.103380_b27) 1999; 13 Bergh (10.1016/j.jfluidstructs.2021.103380_b1) 1965 Laima (10.1016/j.jfluidstructs.2021.103380_b13) 2015; 139 Li (10.1016/j.jfluidstructs.2021.103380_b21) 2010; 26 Shiraishi (10.1016/j.jfluidstructs.2021.103380_b31) 1983; 14 Hu (10.1016/j.jfluidstructs.2021.103380_b10) 2019; 189 Matsumoto (10.1016/j.jfluidstructs.2021.103380_b28) 1993; 49 Li (10.1016/j.jfluidstructs.2021.103380_b23) 2018; 172 Yuan (10.1016/j.jfluidstructs.2021.103380_b37) 2017; 70 Kwok (10.1016/j.jfluidstructs.2021.103380_b12) 2012; 110 10.1016/j.jfluidstructs.2021.103380_b26 Xu (10.1016/j.jfluidstructs.2021.103380_b33) 2016; 21 Li (10.1016/j.jfluidstructs.2021.103380_b25) 2014; 124 Scanlan (10.1016/j.jfluidstructs.2021.103380_b30) 1998; 124 Xu (10.1016/j.jfluidstructs.2021.103380_b34) 2017; 167 Yang (10.1016/j.jfluidstructs.2021.103380_b35) 2020; 96 Chen (10.1016/j.jfluidstructs.2021.103380_b3) 2012; 331 Li (10.1016/j.jfluidstructs.2021.103380_b24) 2011; 33 Xu (10.1016/j.jfluidstructs.2021.103380_b32) 2019; 182 |
References_xml | – volume: 96 start-page: 1871 year: 2008 end-page: 1884 ident: b5 article-title: A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain publication-title: J. Wind Eng. Ind. Aerodyn. – reference: Ge, Y.J., 2018. 2D and 3D nonlinear numerical simulation of cable-supported bridge aerodynamics, aeroelasticity and their coupling. In: The 7th International Symposium on Computational Wind Engineering. Seoul, Republic of Korea. – volume: 96 start-page: 934 year: 2008 end-page: 944 ident: b18 article-title: Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 71 start-page: 183 year: 2017 end-page: 198 ident: b40 article-title: A semi-empirical model for vortex-induced vertical forces on a twin-box deck under turbulent wind flow publication-title: J. Fluids Struct. – volume: 70 start-page: 145 year: 2017 end-page: 161 ident: b37 article-title: Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder publication-title: J. Fluids Struct. – volume: 98 start-page: 701 year: 2010 end-page: 711 ident: b29 article-title: Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 5 start-page: 93 year: 1979 end-page: 107 ident: b11 article-title: Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures publication-title: J. Ind. Aerodyn. – volume: 13 start-page: 791 year: 1999 end-page: 811 ident: b27 article-title: Vortex shedding of bluff bodies: A review publication-title: J. Fluids Struct. – volume: 139 start-page: 37 year: 2015 end-page: 49 ident: b13 article-title: Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 26 start-page: 1195 year: 2010 end-page: 1215 ident: b21 article-title: A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration publication-title: J. Fluids Struct. – volume: 57 start-page: 281 year: 1995 end-page: 294 ident: b16 article-title: A generalized-model for assessment of vortex-induced vibrations of flexible structures publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 172 start-page: 196 year: 2018 end-page: 211 ident: b23 article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 21 year: 2016 ident: b33 article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck publication-title: J. Bridge Eng. – volume: 66 start-page: 476 year: 2016 end-page: 489 ident: b36 article-title: Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios publication-title: J. Fluids Struct. – volume: 331 start-page: 1164 year: 2012 end-page: 1182 ident: b3 article-title: Investigation of a hybrid approach combining experimental tests and numerical simulations to study vortex-induced vibration in a circular cylinder publication-title: J. Sound Vib. – reference: Liu, S.Y., Ge, Y.J., 2014. 2D pure-numerical simulation for whole-process wind-induced responses of long-span bridge decks. In: The 6th International Symposium on Computational Wind Engineering. Hamburg, Germany. – volume: 182 start-page: 330 year: 2018 end-page: 343 ident: b9 article-title: Time-frequency evolutionary characteristics of aerodynamic forces around a streamlined closed-box girder during vortex-induced vibration publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 110 start-page: 50 year: 2012 end-page: 61 ident: b12 article-title: Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 447 start-page: 221 year: 2019 end-page: 235 ident: b39 article-title: Nonlinear behaviors of the flutter occurrences for a twin-box girder bridge with passive countermeasures publication-title: J. Sound Vib. – volume: 74 start-page: 413 year: 2017 end-page: 426 ident: b38 article-title: Nonlinear aerodynamic and energy input properties of a twin-box girder bridge deck section publication-title: J. Fluids Struct. – volume: 127 start-page: 59 year: 2014 end-page: 68 ident: b20 article-title: Reynolds number sensitivity to aerodynamic forces of twin box bridge girder publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 49 start-page: 467 year: 1993 end-page: 476 ident: b28 article-title: Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 96 year: 2020 ident: b35 article-title: Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method publication-title: J. Fluids Struct. – volume: 77 start-page: 115 year: 2018 end-page: 133 ident: b15 article-title: Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder publication-title: J. Fluids Struct. – volume: 39 start-page: 205 year: 2013 end-page: 221 ident: b14 article-title: Investigation and control of vortex-induced vibration of twin box girders publication-title: J. Fluids Struct. – volume: 94 start-page: 341 year: 2006 end-page: 363 ident: b4 article-title: On the vortex shedding forcing on suspension bridge deck publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 182 start-page: 101 year: 2019 end-page: 111 ident: b32 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng. Struct. – volume: 334 start-page: 2 year: 2015 end-page: 28 ident: b17 article-title: Dynamic wind effects on suspension and cable-stayed bridges publication-title: J. Sound Vib. – volume: 104 start-page: 159 year: 2012 end-page: 165 ident: b19 article-title: Shaping of bridge box girders to avoid vortex shedding response publication-title: J. Wind Eng. Ind. Aerodyn. – year: 1965 ident: b1 article-title: Theoretical and Experimental Results for the Dynamic Response of Pressure Measuring Systems – volume: 132 start-page: 27 year: 2014 end-page: 36 ident: b2 article-title: An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 124 start-page: 54 year: 2014 end-page: 67 ident: b25 article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 189 start-page: 314 year: 2019 end-page: 331 ident: b10 article-title: Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 50 start-page: 358 year: 2014 end-page: 375 ident: b22 article-title: Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder publication-title: J. Fluids Struct. – volume: 124 start-page: 450 year: 1998 end-page: 458 ident: b30 article-title: Bridge flutter derivatives at vortex lock-in publication-title: J. Struct. Eng. – volume: 32 start-page: 1 year: 2019 end-page: 18 ident: b8 article-title: Review and reflection on vortex-induced vibration of main girders of long-span bridges publication-title: China J. Highw. Transp. – volume: 14 start-page: 419 year: 1983 end-page: 430 ident: b31 article-title: On classification of vortex-induced oscillation and its application for bridge structures publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 33 start-page: 1894 year: 2011 end-page: 1907 ident: b24 article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements publication-title: Eng. Struct. – volume: 50 start-page: 74 year: 2017 end-page: 82 ident: b6 article-title: Vortex-induced vibration performance and aerodynamic countermeasures of semi-open separated twin-box deck publication-title: China Civil Eng. J. – volume: 167 start-page: 228 year: 2017 end-page: 241 ident: b34 article-title: Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges publication-title: J. Wind Eng. Ind. Aerodyn. – volume: 14 start-page: 419 year: 1983 ident: 10.1016/j.jfluidstructs.2021.103380_b31 article-title: On classification of vortex-induced oscillation and its application for bridge structures publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(83)90043-0 – volume: 21 year: 2016 ident: 10.1016/j.jfluidstructs.2021.103380_b33 article-title: Experimental explorations of the torsional vortex-induced vibrations of a bridge deck publication-title: J. Bridge Eng. doi: 10.1061/(ASCE)BE.1943-5592.0000941 – volume: 77 start-page: 115 year: 2018 ident: 10.1016/j.jfluidstructs.2021.103380_b15 article-title: Effects of attachments on aerodynamic characteristics and vortex-induced vibration of twin-box girder publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.12.005 – volume: 96 year: 2020 ident: 10.1016/j.jfluidstructs.2021.103380_b35 article-title: Suppression of vortex-induced vibration of single-box girder with various angles of attack by self-issuing jet method publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2020.103017 – volume: 66 start-page: 476 year: 2016 ident: 10.1016/j.jfluidstructs.2021.103380_b36 article-title: Experimental studies on VIV performance and countermeasures for twin-box girder bridges with various slot width ratios publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2016.08.010 – volume: 49 start-page: 467 year: 1993 ident: 10.1016/j.jfluidstructs.2021.103380_b28 article-title: Mechanism of, and turbulence effect on vortex-induced oscillations for bridge box girders publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(93)90041-L – volume: 172 start-page: 196 year: 2018 ident: 10.1016/j.jfluidstructs.2021.103380_b23 article-title: Data-driven modeling of vortex-induced vibration of a long-span suspension bridge using decision tree learning and support vector regression publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2017.10.022 – volume: 74 start-page: 413 year: 2017 ident: 10.1016/j.jfluidstructs.2021.103380_b38 article-title: Nonlinear aerodynamic and energy input properties of a twin-box girder bridge deck section publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.06.016 – volume: 124 start-page: 54 year: 2014 ident: 10.1016/j.jfluidstructs.2021.103380_b25 article-title: Field monitoring and validation of vortex-induced vibrations of a long-span suspension bridge publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2013.11.006 – ident: 10.1016/j.jfluidstructs.2021.103380_b26 – volume: 447 start-page: 221 year: 2019 ident: 10.1016/j.jfluidstructs.2021.103380_b39 article-title: Nonlinear behaviors of the flutter occurrences for a twin-box girder bridge with passive countermeasures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2019.02.002 – volume: 33 start-page: 1894 year: 2011 ident: 10.1016/j.jfluidstructs.2021.103380_b24 article-title: Investigation of vortex-induced vibration of a suspension bridge with two separated steel box girders based on field measurements publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2011.02.017 – volume: 104 start-page: 159 year: 2012 ident: 10.1016/j.jfluidstructs.2021.103380_b19 article-title: Shaping of bridge box girders to avoid vortex shedding response publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2012.04.018 – volume: 124 start-page: 450 year: 1998 ident: 10.1016/j.jfluidstructs.2021.103380_b30 article-title: Bridge flutter derivatives at vortex lock-in publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1998)124:4(450) – volume: 70 start-page: 145 year: 2017 ident: 10.1016/j.jfluidstructs.2021.103380_b37 article-title: Investigation on the vortex-and-wake-induced vibration of a separated-box bridge girder publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.01.015 – volume: 334 start-page: 2 year: 2015 ident: 10.1016/j.jfluidstructs.2021.103380_b17 article-title: Dynamic wind effects on suspension and cable-stayed bridges publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.06.009 – volume: 5 start-page: 93 year: 1979 ident: 10.1016/j.jfluidstructs.2021.103380_b11 article-title: Correction of distortion effects caused by tubing systems in measurements of fluctuating pressures publication-title: J. Ind. Aerodyn. doi: 10.1016/0167-6105(79)90026-6 – volume: 182 start-page: 101 year: 2019 ident: 10.1016/j.jfluidstructs.2021.103380_b32 article-title: Using tuned mass damper inerter to mitigate vortex-induced vibration of long-span bridges: Analytical study publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2018.12.067 – volume: 13 start-page: 791 year: 1999 ident: 10.1016/j.jfluidstructs.2021.103380_b27 article-title: Vortex shedding of bluff bodies: A review publication-title: J. Fluids Struct. doi: 10.1006/jfls.1999.0249 – volume: 189 start-page: 314 year: 2019 ident: 10.1016/j.jfluidstructs.2021.103380_b10 article-title: Mechanism of suppression of vortex-induced vibrations of a streamlined closed-box girder using additional small-scale components publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2019.04.015 – year: 1965 ident: 10.1016/j.jfluidstructs.2021.103380_b1 – volume: 98 start-page: 701 year: 2010 ident: 10.1016/j.jfluidstructs.2021.103380_b29 article-title: Numerical study on suppression of vortex-induced vibrations of box girder bridge section by aerodynamic countermeasures publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2010.06.001 – volume: 139 start-page: 37 year: 2015 ident: 10.1016/j.jfluidstructs.2021.103380_b13 article-title: Effects of gap width on flow motions around twin-box girders and vortex-induced vibrations publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2015.01.009 – volume: 110 start-page: 50 year: 2012 ident: 10.1016/j.jfluidstructs.2021.103380_b12 article-title: Wind-induced pressures around a sectional twin-deck bridge model: Effects of gap-width on the aerodynamic forces and vortex shedding mechanisms publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2012.07.010 – volume: 50 start-page: 74 year: 2017 ident: 10.1016/j.jfluidstructs.2021.103380_b6 article-title: Vortex-induced vibration performance and aerodynamic countermeasures of semi-open separated twin-box deck publication-title: China Civil Eng. J. – ident: 10.1016/j.jfluidstructs.2021.103380_b7 – volume: 96 start-page: 1871 year: 2008 ident: 10.1016/j.jfluidstructs.2021.103380_b5 article-title: A new numerical approach to reproduce bridge aerodynamic non-linearities in time domain publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2008.02.052 – volume: 182 start-page: 330 year: 2018 ident: 10.1016/j.jfluidstructs.2021.103380_b9 article-title: Time-frequency evolutionary characteristics of aerodynamic forces around a streamlined closed-box girder during vortex-induced vibration publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2018.09.025 – volume: 127 start-page: 59 year: 2014 ident: 10.1016/j.jfluidstructs.2021.103380_b20 article-title: Reynolds number sensitivity to aerodynamic forces of twin box bridge girder publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2014.02.004 – volume: 96 start-page: 934 year: 2008 ident: 10.1016/j.jfluidstructs.2021.103380_b18 article-title: Investigation of vortex response of a twin box bridge section at high and low Reynolds numbers publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2007.06.020 – volume: 132 start-page: 27 year: 2014 ident: 10.1016/j.jfluidstructs.2021.103380_b2 article-title: An experimental study on the unsteady vortices and turbulent flow structures around twin-box-girder bridge deck models with different gap ratios publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2014.06.015 – volume: 57 start-page: 281 year: 1995 ident: 10.1016/j.jfluidstructs.2021.103380_b16 article-title: A generalized-model for assessment of vortex-induced vibrations of flexible structures publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/0167-6105(95)00008-F – volume: 26 start-page: 1195 year: 2010 ident: 10.1016/j.jfluidstructs.2021.103380_b21 article-title: A numerical and experimental hybrid approach for the investigation of aerodynamic forces on stay cables suffering from rain-wind induced vibration publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2010.06.006 – volume: 50 start-page: 358 year: 2014 ident: 10.1016/j.jfluidstructs.2021.103380_b22 article-title: Reynolds number effects on aerodynamic characteristics and vortex-induced vibration of a twin-box girder publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2014.06.027 – volume: 167 start-page: 228 year: 2017 ident: 10.1016/j.jfluidstructs.2021.103380_b34 article-title: Reduced-order modeling and calculation of vortex-induced vibration for large-span bridges publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2017.04.016 – volume: 32 start-page: 1 year: 2019 ident: 10.1016/j.jfluidstructs.2021.103380_b8 article-title: Review and reflection on vortex-induced vibration of main girders of long-span bridges publication-title: China J. Highw. Transp. – volume: 39 start-page: 205 year: 2013 ident: 10.1016/j.jfluidstructs.2021.103380_b14 article-title: Investigation and control of vortex-induced vibration of twin box girders publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.10.009 – volume: 71 start-page: 183 year: 2017 ident: 10.1016/j.jfluidstructs.2021.103380_b40 article-title: A semi-empirical model for vortex-induced vertical forces on a twin-box deck under turbulent wind flow publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2017.03.011 – volume: 331 start-page: 1164 year: 2012 ident: 10.1016/j.jfluidstructs.2021.103380_b3 article-title: Investigation of a hybrid approach combining experimental tests and numerical simulations to study vortex-induced vibration in a circular cylinder publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2011.10.016 – volume: 94 start-page: 341 year: 2006 ident: 10.1016/j.jfluidstructs.2021.103380_b4 article-title: On the vortex shedding forcing on suspension bridge deck publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2006.01.017 |
SSID | ssj0009431 |
Score | 2.5170357 |
Snippet | Central-slotted box girders are widely employed in long-span bridges owing to their advantageous flutter stability. However, the existence of a central slot... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 103380 |
SubjectTerms | Aerodynamic force contribution Central-slotted box girder Energy conversion Evolutionary characteristics Torsional vortex-induced vibration |
Title | Investigation on aerodynamic force nonlinear evolution for a central-slotted box girder under torsional vortex-induced vibration |
URI | https://dx.doi.org/10.1016/j.jfluidstructs.2021.103380 |
Volume | 106 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jguhB_Inzxwjota5N2qb1IIzhmIq76GC3kqSpdIxtzDl2Ev9031ta3cDDQOglbRpC3mvyvfK97xFyHUs3dFMB37dWgeOHhjuKx9rxsijWjAspNOY7P3fDTs9_7Af9CmmVuTBIqyz2frunL3fr4k6jWM3GJM8bL0jQATQcMpQRAjfCDHZfoH7-zecvzSP2bU1CZPNg721y9cvxGmTDjzy1Sq2o3c08TELnqBH51ym1cvK098leARlp087qgFTM6JDsrggJHpGvFbmM8YjCJQ3sjLbaPAVcqg0dWVEMOaVmXvgbPqGSFgRN5304ngEApWq8oG85anJSTDGbUqzIs_xlSOfIzV04EMiDS6R0jsE2jnRMeu3711bHKWorOJozMXOUzoTgLGBpyF0jIUAOYhmGgMZ4pAMZAUwCQymWuQoaghkJsUoWCMA3WkmZ8RNShXmbU0KjUHMDsFcwDcOknkoDP4tlyjwpIbjxauS2XMtEF8LjWP9imJQMs0GyZogEDZFYQ9SI__PyxOpvbPbaXWm0ZM2dEjgpNhng7L8DnJMdbFne3wWpQg9zCfhlpupLB62TrebDU6f7DZcf9nY |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB58gI-D-MT6DOh1bTfZ3XQ9CCKWqm0vttDbkmSzUimt1Fo8iT_dmWZrW_BQEPaym2wImdnkm-WbbwAuY1WKSqnE79vo0AsiKzwtYuP5WTk2XEglDeU71xtRtRU8tsP2EtxNcmGIVpnv_W5PH-_W-ZNivprFt06n-EwEHUTDEScZIXSjZVgNQiHJta--pjyPOHBFCYnOQ93X4GJK8nrNuh-d1Em1kng39ykLXZBI5F_H1MzRU9mGrRwzsls3rR1Ysr1d2JxREtyD7xm9jH6P4aUsbo2u3DxDYGos6zlVDDVgdpQ7HLUwxXKGpvfe7Q8RgTLd_2QvHRLlZJRjNmBUkmf8z5CNiJz76WEkjz6RshFF2zTSPrQq9827qpcXV_CM4HLoaZNJKXjI00iUrMIIOYxVFCEcE2UTqjLiJLSU5llJ443kVmGwkoUSAY7RSmXiAFZw3vYQWDkywiLuldzgMKmv0zDIYpVyXymMbvwCXE_WMjG58jgVwOgmE4rZazJniIQMkThDFCD4ffnNCXAs9trNxGjJnD8leFQsMsDRfwc4h_Vqs15Lag-Np2PYoBZHAjyBFextTxHMDPXZ2Fl_AEfd-Aw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+on+aerodynamic+force+nonlinear+evolution+for+a+central-slotted+box+girder+under+torsional+vortex-induced+vibration&rft.jtitle=Journal+of+fluids+and+structures&rft.au=Liu%2C+Shengyuan&rft.au=Zhao%2C+Lin&rft.au=Fang%2C+Genshen&rft.au=Hu%2C+Chuanxin&rft.date=2021-10-01&rft.pub=Elsevier+Ltd&rft.issn=0889-9746&rft.eissn=1095-8622&rft.volume=106&rft_id=info:doi/10.1016%2Fj.jfluidstructs.2021.103380&rft.externalDocID=S0889974621001638 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0889-9746&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0889-9746&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0889-9746&client=summon |