Quantification of the strong, phonon-induced Urbach tails in β-Ga2O3 and their implications on electrical breakdown
In ultrawide bandgap (UWBG) nitride and oxide semiconductors, increased bandgap (Eg) correlates with greater ionicity and strong electron–phonon coupling. This limits mobility through phonon scattering, localizes carriers via polarons and self-trapping, broadens optical transitions via dynamic disor...
Saved in:
Published in | Journal of applied physics Vol. 136; no. 3 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
21.07.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 0021-8979 1089-7550 |
DOI | 10.1063/5.0211588 |
Cover
Loading…
Abstract | In ultrawide bandgap (UWBG) nitride and oxide semiconductors, increased bandgap (Eg) correlates with greater ionicity and strong electron–phonon coupling. This limits mobility through phonon scattering, localizes carriers via polarons and self-trapping, broadens optical transitions via dynamic disorder, and modifies the breakdown field. Herein, we use polarized optical transmission spectroscopy from 77 to 633 K to investigate the Urbach energy (Eu) for many orientations of Fe- and Sn-doped β-Ga2O3 bulk crystals. We find Eu values ranging from 60 to 140 meV at 293 K and that static (structural defects plus zero-point phonons) disorder contributes more to Eu than dynamic (finite temperature phonon-induced) disorder. This is evidenced by lack of systematic Eu anisotropy, and Eu correlating more with x-ray diffraction rocking-curve broadening than with Sn-doping. The lowest measured Eu are ∼10× larger than for traditional semiconductors, pointing out that band tail effects need to be carefully considered in these materials for high field electronics. We demonstrate that, because optical transmission through thick samples is sensitive to sub-gap absorption, the commonly used Tauc extraction of a bandgap from transmission through Ga2O3 >1–3 μm thick is subject to errors. Combining our Eu(T) from Fe-doped samples with Eg(T) from ellipsometry, we extract a measure of an effective electron–phonon coupling that increases in weighted second order deformation potential with temperature and a larger value for E||b than E||c. The large electron–phonon coupling in β-Ga2O3 suggests that theories of electrical breakdown for traditional semiconductors need expansion to account not just for lower scattering time but also for impact ionization thresholds fluctuating in both time and space. |
---|---|
AbstractList | In ultrawide bandgap (UWBG) nitride and oxide semiconductors, increased bandgap (Eg) correlates with greater ionicity and strong electron–phonon coupling. This limits mobility through phonon scattering, localizes carriers via polarons and self-trapping, broadens optical transitions via dynamic disorder, and modifies the breakdown field. Herein, we use polarized optical transmission spectroscopy from 77 to 633 K to investigate the Urbach energy (Eu) for many orientations of Fe- and Sn-doped β-Ga2O3 bulk crystals. We find Eu values ranging from 60 to 140 meV at 293 K and that static (structural defects plus zero-point phonons) disorder contributes more to Eu than dynamic (finite temperature phonon-induced) disorder. This is evidenced by lack of systematic Eu anisotropy, and Eu correlating more with x-ray diffraction rocking-curve broadening than with Sn-doping. The lowest measured Eu are ∼10× larger than for traditional semiconductors, pointing out that band tail effects need to be carefully considered in these materials for high field electronics. We demonstrate that, because optical transmission through thick samples is sensitive to sub-gap absorption, the commonly used Tauc extraction of a bandgap from transmission through Ga2O3 >1–3 μm thick is subject to errors. Combining our Eu(T) from Fe-doped samples with Eg(T) from ellipsometry, we extract a measure of an effective electron–phonon coupling that increases in weighted second order deformation potential with temperature and a larger value for E||b than E||c. The large electron–phonon coupling in β-Ga2O3 suggests that theories of electrical breakdown for traditional semiconductors need expansion to account not just for lower scattering time but also for impact ionization thresholds fluctuating in both time and space. |
Author | Scarpulla, Michael A. Islam, Ariful Rock, Nathan David |
Author_xml | – sequence: 1 givenname: Ariful surname: Islam fullname: Islam, Ariful organization: Electrical and Computer Engineering, University of Utah – sequence: 2 givenname: Nathan David surname: Rock fullname: Rock, Nathan David organization: Materials Science and Engineering, University of Utah – sequence: 3 givenname: Michael A. surname: Scarpulla fullname: Scarpulla, Michael A. organization: 2Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, USA |
BookMark | eNp9kM1KAzEUhYNUsK0ufIOAK8Vp8zOZySylaBUKRbDrIZNkbOo0qUmK-Fo-iM9kautGxNWFe79zLucMQM86qwE4x2iEUUHHbIQIxozzI9DHiFdZyRjqgT5K64xXZXUCBiGsEMKY06oP4uNW2GhaI0U0zkLXwrjUMETv7PM13CxdepAZq7ZSK7jwjZBLGIXpAjQWfn5kU0HmFAqrdjrjoVlvuoNZgMlQd1pGnzYdbLwWL8q92VNw3Iou6LPDHILF3e3T5D6bzacPk5tZJikpY9YIxgWtZIURZQVWlBBdqJZLIhUj6ZSrqiFlCqvzlpVtIRWlOcrzghUt4YgOwcXed-Pd61aHWK_c1tv0sqaII54zUpFEXe4p6V0IXrf1xpu18O81RvWu1JrVh1ITO_7FShO_w0afSvlTcbVXhB_yH_sv6uWILw |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1063_5_0244142 |
Cites_doi | 10.1103/PhysRevB.93.125209 10.1103/PhysRevApplied.12.044045 10.1103/PhysRev.92.1324 10.1002/pssa.2210080102 10.1016/0040-6090(85)90092-6 10.1103/PhysRevB.39.1140 10.1002/pssc.201300259 10.1016/0038-1098(86)90169-9 10.1063/5.0131453 10.1088/0953-8984/26/36/365503 10.1103/PhysRevB.92.235201 10.1063/1.1731237 10.1103/PhysRevB.34.2914 10.1143/JPSJ.50.2185 10.1038/s41427-022-00394-4 10.1063/1.5010936 10.1063/1.1763986 10.1063/1.5055238 10.1063/1.4916078 10.7567/JJAP.54.030101 10.1016/j.solmat.2020.110502 10.1103/PhysRevMaterials.7.L061601 10.1088/1361-6463/aa7aff 10.1063/1.4961308 10.1126/science.188.4184.141.b 10.1103/PhysRevLett.47.1480 10.1063/1.2218046 10.1103/PhysRevX.9.041027 10.1103/PhysRevResearch.2.033102 10.1103/PhysRev.174.855 10.1016/0022-4596(84)90284-6 10.1021/acs.jpclett.8b02892 10.1063/1.5034120 10.1063/1.5142195 10.1063/5.0100601 10.1021/acsenergylett.2c00816 |
ContentType | Journal Article |
Copyright | Author(s) 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0211588 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_5_0211588 jap |
GrantInformation_xml | – fundername: Air Force Office of Scientific Research grantid: FA9550-21-0078 funderid: 10.13039/100000181 |
GroupedDBID | -DZ -~X .DC 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 1UP 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-ba58a39c9103561d322e6df8c2cd528a34d9b27588e4f57f6cd334044656f2803 |
IEDL.DBID | AJDQP |
ISSN | 0021-8979 |
IngestDate | Sat Jul 26 03:19:48 EDT 2025 Sun Jul 06 05:07:36 EDT 2025 Thu Apr 24 23:12:37 EDT 2025 Tue Jul 16 03:50:23 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-ba58a39c9103561d322e6df8c2cd528a34d9b27588e4f57f6cd334044656f2803 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2831-6520 0000-0003-4498-098X 0000-0002-6084-6839 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0211588 |
PQID | 3080845292 |
PQPubID | 2050677 |
PageCount | 11 |
ParticipantIDs | proquest_journals_3080845292 crossref_primary_10_1063_5_0211588 crossref_citationtrail_10_1063_5_0211588 scitation_primary_10_1063_5_0211588 |
PublicationCentury | 2000 |
PublicationDate | 20240721 2024-07-21 |
PublicationDateYYYYMMDD | 2024-07-21 |
PublicationDate_xml | – month: 07 year: 2024 text: 20240721 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2024 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Mengle, Kioupakis (c5) Zhang, Mahadevan, Yuan, Ho, Gao, Liu, Zhong, Yan, Zou, Tsang, So (c16) 2022 Fujita (c3) 2015 Higashiwaki, Kuramata, Murakami, Kumagai (c4) 2017 Adler (c33) 1975 Pilipenko, Oparin, Gavrilov (c22) 1986 Ghosh, Singisetti (c7) 2018 Mock, VanDerslice, Korlacki, Woollam, Schubert (c26) 2018 Makuła, Pacia, Macyk (c27) 2018 Lee, Rock, Islam, Scarpulla, Ertekin (c25) 2023 Johnson, Chen, Varley, Jackson, Farzana, Zhang, Arehart, Huang, Genc, Ringel, Van de Walle, Muller, Hwang (c29) 2019 Melsheimer, Ziegler (c15) 1985 Dunn (c17) 1968 Varley, Shen, Higashiwaki (c2) 2022 Schubert, Korlacki, Knight, Hofmann, Schöche, Darakchieva, Janzén, Monemar, Gogova, Thieu, Togashi, Murakami, Kumagai, Goto, Kuramata, Yamakoshi, Higashiwaki (c30) 2016 He, Blanco, Pandey (c37) 2006 McCluskey (c13) 2020 Patrick, Giustino (c19) 2014 Poncé, Giustino (c6) 2020 Peelaers, Kioupakis, Van de Walle (c10) 2015 Grein, John (c20) 1989 Urbach (c11) 1953 Yamada, Kanemitsu (c18) 2022 Lee, Akaiwa, Fujita (c1) 2013 Kasap, Rowlands, Baranovskii, Tanioka (c38) 2004 Sarangapani, Chu, Charles, Klimeck, Kubis (c14) 2019 Ghosh, Singisetti (c8) 2016 Metselaar, Oversluizen (c21) 1984 Cody, Tiedje, Abeles, Brooks, Goldstein (c35) 1981 Kurik (c24) 1971 Geller (c31) 1960 Verma, Adnan, Dhara, Sturm, Rajan, Myers (c28) 2023 Schreiber (c23) 1986 Guo, Verma, Wu, Sun, Hickman, Masui, Kuramata, Higashiwaki, Jena, Luo (c36) 2015 Chantana, Kawano, Nishimura, Mavlonov, Minemoto (c32) 2020 Abe, Toyozawa (c34) 1981 (2024071510075379900_c17) 1968; 174 (2024071510075379900_c6) 2020; 2 (2024071510075379900_c36) 2015; 106 (2024071510075379900_c15) 1985; 129 (2024071510075379900_c3) 2015; 54 (2024071510075379900_c19) 2014; 26 (2024071510075379900_c13) 2020; 127 (2024071510075379900_c4) 2017; 50 (2024071510075379900_c33) 1975; 188 (2024071510075379900_c35) 1981; 47 (2024071510075379900_c10) 2015; 92 (2024071510075379900_c7) 2018; 124 (2024071510075379900_c8) 2016; 109 (2024071510075379900_c20) 1989; 39 (2024071510075379900_c24) 1971; 8 (2024071510075379900_c38) 2004; 96 (2024071510075379900_c2) 2022; 131 (2024071510075379900_c5); 9 (2024071510075379900_c28) 2023; 7 (2024071510075379900_c16) 2022; 7 (2024071510075379900_c37) 2006; 88 (2024071510075379900_c11) 1953; 92 (2024071510075379900_c26) 2018; 112 (2024071510075379900_c29) 2019; 9 (2024071510075379900_c30) 2016; 93 (2024071510075379900_c1) 2013; 10 (2024071510075379900_c23) 1986; 34 2024071510075379900_c9 2024071510075379900_c12 (2024071510075379900_c31) 1960; 33 (2024071510075379900_c34) 1981; 50 (2024071510075379900_c25) 2023; 11 (2024071510075379900_c32) 2020; 210 (2024071510075379900_c18) 2022; 14 (2024071510075379900_c22) 1986; 57 (2024071510075379900_c27) 2018; 9 (2024071510075379900_c14) 2019; 12 (2024071510075379900_c21) 1984; 55 |
References_xml | – start-page: 6814 year: 2018 ident: c27 article-title: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra publication-title: J. Phys. Chem. Lett. – start-page: 261904 year: 2006 ident: c37 article-title: Electronic and thermodynamic properties of β-Ga O publication-title: Appl. Phys. Lett. – start-page: 48 year: 2022 ident: c18 article-title: Electron-phonon interactions in halide perovskites publication-title: NPG Asia Mater. – start-page: 320 year: 1984 ident: c21 article-title: The Meyer-Neldel rule in semiconductors publication-title: J. Solid State Chem. – start-page: 9 year: 1971 ident: c24 article-title: Urbach rule publication-title: Phys. Status Solidi A – start-page: 2914 year: 1986 ident: c23 article-title: Exciton absorption tails in one-dimensional systems publication-title: Phys. Rev. B – start-page: 041905 year: 2018 ident: c26 article-title: Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga O publication-title: Appl. Phys. Lett. – start-page: 030101 year: 2015 ident: c3 article-title: Wide-bandgap semiconductor materials: For their full bloom publication-title: Jpn. J. Appl. Phys. – start-page: 111909 year: 2015 ident: c36 article-title: Anisotropic thermal conductivity in single crystal β-gallium oxide publication-title: Appl. Phys. Lett. – start-page: 1324 year: 1953 ident: c11 article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids publication-title: Phys. Rev. – start-page: 230401 year: 2022 ident: c2 article-title: Wide bandgap semiconductor materials and devices publication-title: J. Appl. Phys. – start-page: 125209 year: 2016 ident: c30 article-title: Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals publication-title: Phys. Rev. B – start-page: 011106 year: 2023 ident: c25 article-title: Electron–phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga O publication-title: APL Mater. – start-page: 2037 year: 2004 ident: c38 article-title: Lucky drift impact ionization in amorphous semiconductors publication-title: J. Appl. Phys. – start-page: 110502 year: 2020 ident: c32 article-title: Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells publication-title: Sol. Energy Mater. Sol. Cells – start-page: 1480 year: 1981 ident: c35 article-title: Disorder and the optical-absorption edge of hydrogenated amorphous silicon publication-title: Phys. Rev. Lett. – start-page: 333002 year: 2017 ident: c4 article-title: State-of-the-art technologies of gallium oxide power devices publication-title: J. Phys. D: Appl. Phys. – start-page: 041027 year: 2019 ident: c29 article-title: Unusual formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga O publication-title: Phys. Rev. X – start-page: 101101 year: 2020 ident: c13 article-title: Point defects in Ga O publication-title: J. Appl. Phys. – start-page: 855 year: 1968 ident: c17 article-title: Urbach’s rule in an electron-phonon model publication-title: Phys. Rev. – start-page: 869 year: 1986 ident: c22 article-title: Fundamental absorption edge and Urbach rule in lithium hydride single crystals publication-title: Solid State Commun. – start-page: 033102 year: 2020 ident: c6 article-title: Structural, electronic, elastic, power, and transport properties of β-Ga O from first principles publication-title: Phys. Rev. Res. – ident: c5 article-title: Vibrational and electron-phonon coupling properties of β-Ga O from first-principles calculations: Impact on the mobility and breakdown field publication-title: AIP Adv. – start-page: L061601 year: 2023 ident: c28 article-title: Anisotropic excitonic photocurrent in β-Ga O publication-title: Phys. Rev. Mater. – start-page: 085707 year: 2018 ident: c7 article-title: Impact ionization in β-Ga O publication-title: J. Appl. Phys. – start-page: 235201 year: 2015 ident: c10 article-title: Free-carrier absorption in transparent conducting oxides phonon and impurity scattering in SnO publication-title: Phys. Rev. B – start-page: 1971 year: 2022 ident: c16 article-title: Unraveling Urbach tail effects in high-performance organic photovoltaics: Dynamic vs static disorder publication-title: ACS Energy Lett. – start-page: 365503 year: 2014 ident: c19 article-title: Unified theory of electron–phonon renormalization and phonon-assisted optical absorption publication-title: J. Phys.: Condens. Matter – start-page: 1592 year: 2013 ident: c1 article-title: Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates publication-title: Phys. Status Solidi C – start-page: 044045 year: 2019 ident: c14 article-title: Band-tail formation and band-gap narrowing driven by polar optical phonons and charged impurities in atomically resolved III–V semiconductors and nanodevices publication-title: Phys. Rev. Appl. – start-page: 2185 year: 1981 ident: c34 article-title: Interband absorption spectra of disordered semiconductors in the coherent potential approximation publication-title: J. Phys. Soc. Jpn. – start-page: 141 year: 1975 ident: c33 article-title: Disordered materials: . J. Tauc, Ed. Plenum, New York, 1974. x, 442 pp., illus. $28. publication-title: Science – start-page: 35 year: 1985 ident: c15 article-title: Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide publication-title: Thin Solid Films – start-page: 1140 year: 1989 ident: c20 article-title: Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands publication-title: Phys. Rev. B – start-page: 676 year: 1960 ident: c31 article-title: Crystal structure of β-Ga O publication-title: J. Chem. Phys. – start-page: 072102 year: 2016 ident: c8 article-title: calculation of electron–phonon coupling in monoclinic β-Ga O crystal publication-title: Appl. Phys. Lett. – volume: 93 start-page: 125209 year: 2016 ident: 2024071510075379900_c30 article-title: Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.125209 – volume: 12 start-page: 044045 year: 2019 ident: 2024071510075379900_c14 article-title: Band-tail formation and band-gap narrowing driven by polar optical phonons and charged impurities in atomically resolved III–V semiconductors and nanodevices publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.044045 – volume: 92 start-page: 1324 year: 1953 ident: 2024071510075379900_c11 article-title: The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids publication-title: Phys. Rev. doi: 10.1103/PhysRev.92.1324 – volume: 8 start-page: 9 year: 1971 ident: 2024071510075379900_c24 article-title: Urbach rule publication-title: Phys. Status Solidi A doi: 10.1002/pssa.2210080102 – volume: 129 start-page: 35 year: 1985 ident: 2024071510075379900_c15 article-title: Band gap energy and Urbach tail studies of amorphous, partially crystalline and polycrystalline tin dioxide publication-title: Thin Solid Films doi: 10.1016/0040-6090(85)90092-6 – volume: 39 start-page: 1140 year: 1989 ident: 2024071510075379900_c20 article-title: Temperature dependence of the Urbach optical absorption edge: A theory of multiple phonon absorption and emission sidebands publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.39.1140 – volume: 10 start-page: 1592 year: 2013 ident: 2024071510075379900_c1 article-title: Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates publication-title: Phys. Status Solidi C doi: 10.1002/pssc.201300259 – volume: 57 start-page: 869 year: 1986 ident: 2024071510075379900_c22 article-title: Fundamental absorption edge and Urbach rule in lithium hydride single crystals publication-title: Solid State Commun. doi: 10.1016/0038-1098(86)90169-9 – volume: 11 start-page: 011106 year: 2023 ident: 2024071510075379900_c25 article-title: Electron–phonon effects and temperature-dependence of the electronic structure of monoclinic β-Ga2O3 publication-title: APL Mater. doi: 10.1063/5.0131453 – volume: 26 start-page: 365503 year: 2014 ident: 2024071510075379900_c19 article-title: Unified theory of electron–phonon renormalization and phonon-assisted optical absorption publication-title: J. Phys.: Condens. Matter doi: 10.1088/0953-8984/26/36/365503 – volume: 92 start-page: 235201 year: 2015 ident: 2024071510075379900_c10 article-title: Free-carrier absorption in transparent conducting oxides phonon and impurity scattering in SnO2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.235201 – volume: 33 start-page: 676 year: 1960 ident: 2024071510075379900_c31 article-title: Crystal structure of β-Ga2O3 publication-title: J. Chem. Phys. doi: 10.1063/1.1731237 – volume: 34 start-page: 2914 year: 1986 ident: 2024071510075379900_c23 article-title: Exciton absorption tails in one-dimensional systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.34.2914 – volume: 50 start-page: 2185 year: 1981 ident: 2024071510075379900_c34 article-title: Interband absorption spectra of disordered semiconductors in the coherent potential approximation publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.50.2185 – volume: 14 start-page: 48 year: 2022 ident: 2024071510075379900_c18 article-title: Electron-phonon interactions in halide perovskites publication-title: NPG Asia Mater. doi: 10.1038/s41427-022-00394-4 – volume: 112 start-page: 041905 year: 2018 ident: 2024071510075379900_c26 article-title: Elevated temperature dependence of the anisotropic visible-to-ultraviolet dielectric function of monoclinic β-Ga2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5010936 – volume: 96 start-page: 2037 year: 2004 ident: 2024071510075379900_c38 article-title: Lucky drift impact ionization in amorphous semiconductors publication-title: J. Appl. Phys. doi: 10.1063/1.1763986 – volume: 9 ident: 2024071510075379900_c5 article-title: Vibrational and electron-phonon coupling properties of β-Ga2O3 from first-principles calculations: Impact on the mobility and breakdown field publication-title: AIP Adv. doi: 10.1063/1.5055238 – volume: 106 start-page: 111909 year: 2015 ident: 2024071510075379900_c36 article-title: Anisotropic thermal conductivity in single crystal β-gallium oxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916078 – volume: 54 start-page: 030101 year: 2015 ident: 2024071510075379900_c3 article-title: Wide-bandgap semiconductor materials: For their full bloom publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.030101 – volume: 210 start-page: 110502 year: 2020 ident: 2024071510075379900_c32 article-title: Impact of Urbach energy on open-circuit voltage deficit of thin-film solar cells publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2020.110502 – volume: 7 start-page: L061601 year: 2023 ident: 2024071510075379900_c28 article-title: Anisotropic excitonic photocurrent in β-Ga2O3 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.7.L061601 – volume: 50 start-page: 333002 year: 2017 ident: 2024071510075379900_c4 article-title: State-of-the-art technologies of gallium oxide power devices publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/aa7aff – volume: 109 start-page: 072102 year: 2016 ident: 2024071510075379900_c8 article-title: Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal publication-title: Appl. Phys. Lett. doi: 10.1063/1.4961308 – volume: 188 start-page: 141 year: 1975 ident: 2024071510075379900_c33 article-title: Disordered materials: Amorphous and liquid semiconductors. J. Tauc, Ed. Plenum, New York, 1974. x, 442 pp., illus. $28. publication-title: Science doi: 10.1126/science.188.4184.141.b – volume: 47 start-page: 1480 year: 1981 ident: 2024071510075379900_c35 article-title: Disorder and the optical-absorption edge of hydrogenated amorphous silicon publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.47.1480 – volume: 88 start-page: 261904 year: 2006 ident: 2024071510075379900_c37 article-title: Electronic and thermodynamic properties of β-Ga2O3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2218046 – volume-title: J. Phys. Chem. Solids ident: 2024071510075379900_c12 article-title: The optical absorption edge in ionic crystals – volume: 9 start-page: 041027 year: 2019 ident: 2024071510075379900_c29 article-title: Unusual formation of point-defect complexes in the ultrawide-band-gap semiconductor β-Ga2O3 publication-title: Phys. Rev. X doi: 10.1103/PhysRevX.9.041027 – volume: 2 start-page: 033102 year: 2020 ident: 2024071510075379900_c6 article-title: Structural, electronic, elastic, power, and transport properties of β-Ga2O3 from first principles publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.033102 – volume: 174 start-page: 855 year: 1968 ident: 2024071510075379900_c17 article-title: Urbach’s rule in an electron-phonon model publication-title: Phys. Rev. doi: 10.1103/PhysRev.174.855 – volume: 55 start-page: 320 year: 1984 ident: 2024071510075379900_c21 article-title: The Meyer-Neldel rule in semiconductors publication-title: J. Solid State Chem. doi: 10.1016/0022-4596(84)90284-6 – volume: 9 start-page: 6814 year: 2018 ident: 2024071510075379900_c27 article-title: How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV-Vis spectra publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b02892 – volume: 124 start-page: 085707 year: 2018 ident: 2024071510075379900_c7 article-title: Impact ionization in β-Ga2O3 publication-title: J. Appl. Phys. doi: 10.1063/1.5034120 – volume-title: Quantum Physics of Semiconductor Materials and Devices ident: 2024071510075379900_c9 – volume: 127 start-page: 101101 year: 2020 ident: 2024071510075379900_c13 article-title: Point defects in Ga2O3 publication-title: J. Appl. Phys. doi: 10.1063/1.5142195 – volume: 131 start-page: 230401 year: 2022 ident: 2024071510075379900_c2 article-title: Wide bandgap semiconductor materials and devices publication-title: J. Appl. Phys. doi: 10.1063/5.0100601 – volume: 7 start-page: 1971 year: 2022 ident: 2024071510075379900_c16 article-title: Unraveling Urbach tail effects in high-performance organic photovoltaics: Dynamic vs static disorder publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00816 |
SSID | ssj0011839 |
Score | 2.47086 |
Snippet | In ultrawide bandgap (UWBG) nitride and oxide semiconductors, increased bandgap (Eg) correlates with greater ionicity and strong electron–phonon coupling. This... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Anisotropy Coupling (molecular) Crystal defects Deformation effects Electrical faults Ellipsometry Energy gap Gallium oxides Phonons Scattering Semiconductors Tin |
Title | Quantification of the strong, phonon-induced Urbach tails in β-Ga2O3 and their implications on electrical breakdown |
URI | http://dx.doi.org/10.1063/5.0211588 https://www.proquest.com/docview/3080845292 |
Volume | 136 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3JTsMwEB2VIgQcEKsomyzKgQOB1nYc-4iAghBlEVTqLXLsGCpQQaT8GB_CNzFO0lIkKnHOxIo8duaN3_MMwJ5Lo6jBtQmYxVyVR8J6EQALVJRYwRV1jYa_4Ny-FhcdftkNuxWoT2DwBTsKDzEMNUMpp2CaIjiWVZg-vjy9ux2RBT7IF0qOZiBVpIYFhMZf_h12frDkLAaagvMeCyutRVgo8SA5Lhy4BJW0vwzzY1UCl2EmV2mabAUGdx-6EPfkY5FXRxC_kcwfZz8eEC8zf-0HmGWjvyzpvCfaPBEvEc1Ir0--PoNzTW8Y0X1LcoKA9Mb05AQHLJrieL8RTJX1s8UcfRU6rbOHk4ugbJsQGEajQZDoUGqmDAIBhujI4pZNhXXSUGNDio-4VQnFPEGm3IWRE8Yyxht55TTnm1WtQRW_Nl0HQp0QaWSNkpJjaqTxZ8i1k9IYZahKdQ32h7MaD-fRt7Z4iXNuW7A4jEsH1GB3ZPpWFNL4y2hr6Jq43EtZzBDUSs8P0xrUR-6aPMjGv6w2YY4iPvHHtLS5BdXB-0e6jfhikOzg-jptX93vlOvsGwXFy4o |
linkProvider | American Institute of Physics |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT-MwEB1BEQIOKz5FWRYs4MABQ2s7jn1Eu0D5BolK3CLHjqG7qFSk_WP7Q_hNjJO0FAkkznFGlifOvOd5ngHY8VkcN4SxlDvkqiKWLogAONVx6qTQzDca4YLz5ZVstcXZfXRfaXPCXRicRL5vOr0iif_X9A6qBaRPiDkHvfeCA5IfRPsYoJqRUpMwhWxcqhpMHZ79ub0ZpRFC-C81Hk2qdKyHpYXGX_4YkN5R5gyGoDIbPhZwjufhR4UUyWE5swWYyLqLMDdWP3ARpgv9ps2XoH87MKXsp7BFnj1BZEfycND9sEeCAP25S5F_oycdab-kxj6SIB7NSadLXv_TE8OuOTFdR4rUAemMKc0JGizb5QSPEiTR5p9D9r4M7eOju98tWjVUoJazuE9TEynDtUWIwBE3OdzMmXReWWZdxPCRcDplyCBUJnwUe2kd56JR1FTzoY3VCtRwttkqEOalzGJntVICSZPB36QwXilrtWU6M3XYHa5qMlzH0PTiKSmy3pInUVI5oA5bo6G9ssTGZ4PWh65Jql2WJxzhrgqZY1aH7ZG7vjay9q1RmzDTuru8SC5Or85_wixDFBMOc1lzHWr9l0H2C1FIP92ovrU3dTbW9Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantification+of+the+strong%2C+phonon-induced+Urbach+tails+in+%CE%B2-Ga2O3+and+their+implications+on+electrical+breakdown&rft.jtitle=Journal+of+applied+physics&rft.au=Islam%2C+Ariful&rft.au=Rock%2C+Nathan+David&rft.au=Scarpulla%2C+Michael+A.&rft.date=2024-07-21&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=136&rft.issue=3&rft_id=info:doi/10.1063%2F5.0211588&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |