The quadratic knapsack problem—a survey

The binary quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in th...

Full description

Saved in:
Bibliographic Details
Published inDiscrete Applied Mathematics Vol. 155; no. 5; pp. 623 - 648
Main Author Pisinger, David
Format Journal Article
LanguageEnglish
Published Lausanne Elsevier B.V 15.03.2007
Amsterdam Elsevier
New York, NY
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The binary quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in the literature, and show the relative tightness of several of the bounds. Techniques for deriving the bounds include relaxation from upper planes, linearization, reformulation, Lagrangian relaxation, Lagrangian decomposition, and semidefinite programming. A short overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation results is given, followed by an overview of valid inequalities for the quadratic knapsack polytope. The paper is concluded by an experimental study where the upper bounds presented are compared with respect to strength and computational effort.
AbstractList The binary quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in the literature, and show the relative tightness of several of the bounds. Techniques for deriving the bounds include relaxation from upper planes, linearization, reformulation, Lagrangian relaxation, Lagrangian decomposition, and semidefinite programming. A short overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation results is given, followed by an overview of valid inequalities for the quadratic knapsack polytope. The paper is concluded by an experimental study where the upper bounds presented are compared with respect to strength and computational effort.
Author Pisinger, David
Author_xml – sequence: 1
  givenname: David
  surname: Pisinger
  fullname: Pisinger, David
  email: pisinger@diku.dk
  organization: Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18603501$$DView record in Pascal Francis
BookMark eNp9kL1qwzAUhUVJoUnaB-jmpUMHu1eyLcl0KqF_EOiSQjch64cqcWxXcgLZ-hB9wj5JFVI6dMh0uXC-A-eboFHbtQahSwwZBkxvlpmW64wA0Ax4BsBO0BhzRlLKGB6hcczQlGD-doYmISwBAMdvjK4X7yb52Ejt5eBUsmplH6RaJb3v6sasvz-_ZBI2fmt25-jUyiaYi987Ra8P94vZUzp_eXye3c1TlRM2pDW2JTekgJqBJkbnWHFS09IS0KXUlS20VhWpFTXakroyVYG5BVowwmzOaT5FV4feXgYlG-tlq1wQvXdr6XcCcwp5CTjm2CGnfBeCN1YoN8QRXTt46RqBQezNiKWIZsTejAAuoplI4n_kX_kR5vbAmDh964wXQTnTKqOdN2oQunNH6B_cF33x
CODEN DAMADU
CitedBy_id crossref_primary_10_1057_jors_2014_76
crossref_primary_10_3390_biomimetics9020082
crossref_primary_10_1016_j_ejor_2023_02_005
crossref_primary_10_1016_j_knosys_2015_10_004
crossref_primary_10_1016_j_ejor_2024_12_019
crossref_primary_10_1016_j_ejor_2024_12_016
crossref_primary_10_1016_j_cor_2013_08_018
crossref_primary_10_1287_moor_1100_0472
crossref_primary_10_3390_su9020236
crossref_primary_10_1016_j_dss_2020_113399
crossref_primary_10_1016_j_pmcj_2017_05_006
crossref_primary_10_1016_j_cor_2012_11_023
crossref_primary_10_1016_j_proeng_2011_08_636
crossref_primary_10_1016_j_dam_2020_09_015
crossref_primary_10_1080_24725579_2023_2231981
crossref_primary_10_1016_j_cor_2016_08_006
crossref_primary_10_1016_j_cie_2019_04_025
crossref_primary_10_1016_j_ejor_2016_06_013
crossref_primary_10_1016_j_ejor_2019_08_020
crossref_primary_10_1007_s10115_020_01456_1
crossref_primary_10_1016_j_ejor_2019_08_027
crossref_primary_10_1155_2020_5974820
crossref_primary_10_1007_s10898_012_9872_9
crossref_primary_10_1287_ijoc_2017_0789
crossref_primary_10_1016_j_ejor_2024_06_034
crossref_primary_10_1016_j_endm_2010_05_013
crossref_primary_10_1016_j_ecmx_2022_100320
crossref_primary_10_1016_j_dam_2017_06_020
crossref_primary_10_1016_j_ejor_2022_06_029
crossref_primary_10_1287_msom_2021_1023
crossref_primary_10_1007_s10878_016_0065_1
crossref_primary_10_1287_ijoc_2018_0840
crossref_primary_10_3934_jimo_2013_9_531
crossref_primary_10_1007_s00500_015_1880_5
crossref_primary_10_1007_s12532_021_00206_w
crossref_primary_10_1002_net_21580
crossref_primary_10_1590_0101_7438_2022_042_00257386
crossref_primary_10_1007_s10898_018_0717_z
crossref_primary_10_1016_j_cam_2015_02_016
crossref_primary_10_2139_ssrn_3198923
crossref_primary_10_1016_j_cor_2015_04_020
crossref_primary_10_1109_TC_2022_3178325
crossref_primary_10_1007_s10589_016_9856_7
crossref_primary_10_1016_j_cor_2017_02_004
crossref_primary_10_1007_s11590_017_1227_5
crossref_primary_10_1016_j_asoc_2022_109513
crossref_primary_10_1007_s11590_016_1055_z
crossref_primary_10_1016_j_apm_2011_10_017
crossref_primary_10_1007_s12532_010_0010_8
crossref_primary_10_1080_0305215X_2018_1509962
crossref_primary_10_1016_j_ejor_2017_03_061
crossref_primary_10_1007_s10957_018_1416_0
crossref_primary_10_1016_j_physa_2017_02_052
crossref_primary_10_1016_j_physa_2022_127628
crossref_primary_10_1137_100802190
crossref_primary_10_1016_j_cor_2021_105692
crossref_primary_10_1016_j_cor_2021_105693
crossref_primary_10_4028_www_scientific_net_AMR_748_666
crossref_primary_10_1109_TASE_2020_2966738
crossref_primary_10_1002_nav_20364
crossref_primary_10_1109_TEVC_2016_2546340
crossref_primary_10_1007_s10479_017_2698_6
crossref_primary_10_1016_j_cor_2010_10_027
crossref_primary_10_1007_s10107_015_0870_9
crossref_primary_10_1016_j_ejor_2016_09_013
crossref_primary_10_1016_j_ejor_2020_10_047
crossref_primary_10_1007_s10589_015_9763_3
crossref_primary_10_1109_ACCESS_2025_3529317
crossref_primary_10_1590_S0101_74382014000100005
crossref_primary_10_1016_j_eswa_2016_11_007
crossref_primary_10_1162_evco_a_00237
crossref_primary_10_4028_www_scientific_net_AMR_748_972
crossref_primary_10_1016_j_orl_2020_03_002
crossref_primary_10_1007_s10107_015_0863_8
crossref_primary_10_1287_moor_1120_0581
crossref_primary_10_1007_s10288_011_0180_x
crossref_primary_10_1142_S0217595912500315
crossref_primary_10_1016_j_solener_2019_03_019
crossref_primary_10_1016_j_fss_2021_03_009
crossref_primary_10_1057_jors_2015_77
crossref_primary_10_1109_TQE_2024_3376721
crossref_primary_10_1016_j_swevo_2015_09_005
crossref_primary_10_1007_s00453_008_9248_1
crossref_primary_10_1016_j_orl_2016_05_005
crossref_primary_10_1080_02331934_2020_1712392
crossref_primary_10_1287_ijoc_2015_0678
crossref_primary_10_1287_ijoc_2021_0186
crossref_primary_10_1287_moor_2022_1345
crossref_primary_10_1016_j_cam_2013_09_052
crossref_primary_10_1007_s10479_014_1720_5
crossref_primary_10_1016_j_ins_2016_07_037
crossref_primary_10_1007_s10957_010_9653_x
crossref_primary_10_1016_j_ejor_2016_05_013
crossref_primary_10_1007_s10898_010_9566_0
crossref_primary_10_1016_j_cor_2019_104769
crossref_primary_10_1142_S0129054110007301
crossref_primary_10_1007_s10479_018_3118_2
crossref_primary_10_1038_s42254_024_00770_9
crossref_primary_10_1016_j_ejor_2024_11_023
crossref_primary_10_1016_j_cor_2016_01_003
crossref_primary_10_1016_j_ejor_2021_11_004
crossref_primary_10_3390_math10162920
crossref_primary_10_1587_transfun_2020KEP0007
crossref_primary_10_2139_ssrn_3453262
crossref_primary_10_1007_s11590_019_01503_z
crossref_primary_10_1016_j_disopt_2020_100579
crossref_primary_10_1016_j_ejor_2024_12_032
crossref_primary_10_1016_j_orl_2024_107205
crossref_primary_10_1007_s12532_025_00275_1
crossref_primary_10_1007_s10589_017_9893_x
crossref_primary_10_1016_j_cor_2010_12_017
crossref_primary_10_1088_1741_4326_acb4a9
crossref_primary_10_1016_j_dam_2023_02_003
crossref_primary_10_1109_ACCESS_2025_3545262
crossref_primary_10_1016_j_endm_2018_07_038
crossref_primary_10_1137_110820762
crossref_primary_10_1007_s00186_022_00788_8
crossref_primary_10_1007_s10479_018_2970_4
crossref_primary_10_1142_S0217595913400095
crossref_primary_10_1007_s11590_018_1361_8
crossref_primary_10_1080_10556788_2015_1134528
crossref_primary_10_1007_s10479_015_2018_y
crossref_primary_10_1007_s10898_014_0189_8
crossref_primary_10_1007_s10957_011_9885_4
crossref_primary_10_1016_j_knosys_2016_01_014
crossref_primary_10_1016_j_ins_2018_09_049
crossref_primary_10_1016_j_landusepol_2015_05_023
crossref_primary_10_1109_TCOMM_2020_2985958
crossref_primary_10_1109_MCOM_001_2000876
crossref_primary_10_1007_s00521_024_10327_7
crossref_primary_10_1016_j_websem_2015_05_004
crossref_primary_10_1080_0305215X_2017_1316844
crossref_primary_10_1080_10556788_2011_627586
crossref_primary_10_4018_IJAEC_2019100101
crossref_primary_10_1007_s00186_020_00702_0
crossref_primary_10_1287_ijoc_2013_0555
crossref_primary_10_1587_transinf_2022PAP0006
crossref_primary_10_1287_ijoc_2016_0716
crossref_primary_10_1145_3514039
Cites_doi 10.6028/NBS.IR.75-737
10.1287/opre.45.5.758
10.1137/0218003
10.1287/ijoc.11.2.125
10.1016/0377-2217(95)00299-5
10.1016/0012-365X(90)90056-N
10.1007/BFb0120892
10.1007/BF01581273
10.1287/mnsc.17.3.200
10.1007/BF01584070
10.1002/net.3230050405
10.1007/BF01541028
10.1080/05695557408974946
10.1016/S0167-6377(02)00122-0
10.1016/0377-2217(94)00286-X
10.1137/0801013
10.1016/0167-6377(84)90010-5
10.1007/978-3-540-24777-7
10.1023/A:1009898604624
10.1007/BF01585164
10.1287/mnsc.27.1.1
10.1007/978-1-4615-4381-7
10.1287/ijoc.7.1.109
10.1007/BF01580440
10.1016/0377-2217(94)00229-0
10.1287/opre.23.4.833
10.1016/0377-2217(93)90097-7
10.1007/BFb0120690
10.1007/BF02592198
10.1007/978-3-642-97881-4
10.1007/BF01589101
10.1007/BF02614517
10.1287/mnsc.32.10.1274
10.1016/S0377-2217(97)00414-1
ContentType Journal Article
Copyright 2006 Elsevier B.V.
2007 INIST-CNRS
Copyright_xml – notice: 2006 Elsevier B.V.
– notice: 2007 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.dam.2006.08.007
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Applied Sciences
EISSN 1872-6771
EndPage 648
ExternalDocumentID 18603501
10_1016_j_dam_2006_08_007
S0166218X06003878
GroupedDBID -~X
6I.
AAFTH
ADEZE
AFTJW
AI.
ALMA_UNASSIGNED_HOLDINGS
FA8
FDB
OAUVE
VH1
WUQ
AAYXX
CITATION
IQODW
ID FETCH-LOGICAL-c327t-b1f58e240b70d2ed31c82b65f20d5ad9f4ddc92bc6edf2b9e9418f064727f3863
IEDL.DBID AIKHN
ISSN 0166-218X
IngestDate Wed Apr 02 07:21:24 EDT 2025
Tue Jul 01 01:42:55 EDT 2025
Thu Apr 24 23:03:45 EDT 2025
Sat Apr 29 22:44:07 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Approximation algorithms
Semidefinite programming
Valid inequalities
Upper bounds
Quadratic knapsack problem
Polytope
Lagrangian
Computer theory
Decomposition method
Semi definite programming
Approximation algorithm
Experimental study
Constrained optimization
Knapsack problem
Relaxation
Upper bound
Objective function
Combinatorics
Quadratic function
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-b1f58e240b70d2ed31c82b65f20d5ad9f4ddc92bc6edf2b9e9418f064727f3863
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0166218X06003878
PageCount 26
ParticipantIDs pascalfrancis_primary_18603501
crossref_citationtrail_10_1016_j_dam_2006_08_007
crossref_primary_10_1016_j_dam_2006_08_007
elsevier_sciencedirect_doi_10_1016_j_dam_2006_08_007
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-03-15
PublicationDateYYYYMMDD 2007-03-15
PublicationDate_xml – month: 03
  year: 2007
  text: 2007-03-15
  day: 15
PublicationDecade 2000
PublicationPlace Lausanne
Amsterdam
New York, NY
PublicationPlace_xml – name: Amsterdam
– name: Lausanne
– name: New York, NY
PublicationTitle Discrete Applied Mathematics
PublicationYear 2007
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Johnson, Mehrotra, Nemhauser (bib29) 1993; 62
Fisher (bib15) 1981; 27
Martello, Toth (bib31) 1990
Helmberg, Rendl, Weismantel (bib27) 1996; vol. 1084
Hammer, Holzman (bib23) 1992; 36
Peterson (bib37) 1974; 6
Pisinger, Toth (bib39) 1998
M. Grötschel, A.S.L. Lovász, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, Springer, Berlin, 1988.
Hammer, Rader (bib24) 1997; 35
Billionnet, Calmels (bib5) 1996; 92
Carraresi, Malucelli (bib10) 1994
Gallo, Hammer, Simeone (bib18) 1980; 12
Balas, Ceria, Cornuejols (bib3) 1993; 58
Adams, Sherali (bib1) 1986; 32
Balas (bib2) 1975; 8
Caprara, Pisinger, Toth (bib9) 1999; 11
Ferreira, Martin, de Souza, Weismantel, Wolsey (bib16) 1996; 74
H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, Germany, 2004.
Brucker (bib8) 1984; 3
Simone (bib43) 1989; 79
J. Sturm, Sedumi 1.05, Matlab toolbox for solving optimization problems over symmetric cones
Rhys (bib42) 1970; 17
2002.
Geoffrion (bib20) 1974; 2
Rader, Woeginger (bib40) 2002; 30
Pisinger (bib38) 1997; 45
Cela (bib11) 1998
Park, Lee, Park (bib35) 1996; 95
Padberg (bib33) 1975; 23
Billionnet, Faye, Soutif (bib6) 1999; 112
P. Crescenzi, V. Kann, A compendium of NP optimization problems
C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report ZIP-Report ZR-00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, habilitationsschrift, TU Berlin, 2000.
Lovász, Schrijver (bib30) 1991; 1
Chaillou, Hansen, Mahieu (bib12) 1989; vol. 1403
Picard, Ratliff (bib36) 1974; 5
H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semidefinite Programming, International Series in Operations Research and Management Science, vol. 27, Kluwer Academic Publishers, Dordrecht, 2000.
Bretthauer, Shetty, Syam (bib7) 1995; 7
Dijkhuizen, Faigle (bib14) 1993; 69
Gallo, Grigoriadis, Tarjan (bib17) 1989; 18
C. Witzgall, Mathematical methods of site selection for electronic message system (EMS), Technical Report, NBS Internal Report, 1975.
M. Bauvin, M. Goemans, Personal communication, see Helmberg, 2000, 1999.
Weismantel (bib45) 1997; 77
Held, Karp (bib25) 1971; 1
Glover, Kochenberger (bib21) 2002; vol. 14
Helmberg, Rendl, Weismantel (bib28) 2000; 4
Michelon, Veilleux (bib32) 1996; 92
A. Rasmussen, R. Sandvik, Kvaliteten af grænseværdier for det kvadratiske knapsack problem, project 02-09-7, DIKU, University of Copenhagen (D. Pisinger, supervisor), 2003.
Padberg (bib34) 1989; 45
Garey, Johnson (bib19) 1979
10.1016/j.dam.2006.08.007_bib41
Rhys (10.1016/j.dam.2006.08.007_bib42) 1970; 17
Garey (10.1016/j.dam.2006.08.007_bib19) 1979
Helmberg (10.1016/j.dam.2006.08.007_bib27) 1996; vol. 1084
Michelon (10.1016/j.dam.2006.08.007_bib32) 1996; 92
10.1016/j.dam.2006.08.007_bib47
10.1016/j.dam.2006.08.007_bib26
10.1016/j.dam.2006.08.007_bib48
Caprara (10.1016/j.dam.2006.08.007_bib9) 1999; 11
Carraresi (10.1016/j.dam.2006.08.007_bib10) 1994
Pisinger (10.1016/j.dam.2006.08.007_bib39) 1998
Simone (10.1016/j.dam.2006.08.007_bib43) 1989; 79
Billionnet (10.1016/j.dam.2006.08.007_bib6) 1999; 112
10.1016/j.dam.2006.08.007_bib22
10.1016/j.dam.2006.08.007_bib44
Adams (10.1016/j.dam.2006.08.007_bib1) 1986; 32
Fisher (10.1016/j.dam.2006.08.007_bib15) 1981; 27
Weismantel (10.1016/j.dam.2006.08.007_bib45) 1997; 77
10.1016/j.dam.2006.08.007_bib46
Cela (10.1016/j.dam.2006.08.007_bib11) 1998
Padberg (10.1016/j.dam.2006.08.007_bib34) 1989; 45
Balas (10.1016/j.dam.2006.08.007_bib2) 1975; 8
Peterson (10.1016/j.dam.2006.08.007_bib37) 1974; 6
Held (10.1016/j.dam.2006.08.007_bib25) 1971; 1
Ferreira (10.1016/j.dam.2006.08.007_bib16) 1996; 74
Gallo (10.1016/j.dam.2006.08.007_bib17) 1989; 18
Pisinger (10.1016/j.dam.2006.08.007_bib38) 1997; 45
Padberg (10.1016/j.dam.2006.08.007_bib33) 1975; 23
10.1016/j.dam.2006.08.007_bib4
Picard (10.1016/j.dam.2006.08.007_bib36) 1974; 5
Brucker (10.1016/j.dam.2006.08.007_bib8) 1984; 3
Balas (10.1016/j.dam.2006.08.007_bib3) 1993; 58
Rader (10.1016/j.dam.2006.08.007_bib40) 2002; 30
Billionnet (10.1016/j.dam.2006.08.007_bib5) 1996; 92
Bretthauer (10.1016/j.dam.2006.08.007_bib7) 1995; 7
Martello (10.1016/j.dam.2006.08.007_bib31) 1990
Geoffrion (10.1016/j.dam.2006.08.007_bib20) 1974; 2
10.1016/j.dam.2006.08.007_bib13
Lovász (10.1016/j.dam.2006.08.007_bib30) 1991; 1
Hammer (10.1016/j.dam.2006.08.007_bib23) 1992; 36
Dijkhuizen (10.1016/j.dam.2006.08.007_bib14) 1993; 69
Hammer (10.1016/j.dam.2006.08.007_bib24) 1997; 35
Gallo (10.1016/j.dam.2006.08.007_bib18) 1980; 12
Johnson (10.1016/j.dam.2006.08.007_bib29) 1993; 62
Helmberg (10.1016/j.dam.2006.08.007_bib28) 2000; 4
Chaillou (10.1016/j.dam.2006.08.007_bib12) 1989; vol. 1403
Glover (10.1016/j.dam.2006.08.007_bib21) 2002; vol. 14
Park (10.1016/j.dam.2006.08.007_bib35) 1996; 95
References_xml – reference: C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report ZIP-Report ZR-00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, habilitationsschrift, TU Berlin, 2000.
– volume: 32
  start-page: 1274
  year: 1986
  end-page: 1290
  ident: bib1
  article-title: A tight linearization and an algorithm for zero–one quadratic programming problems
  publication-title: Management Sci.
– volume: 74
  start-page: 247
  year: 1996
  end-page: 266
  ident: bib16
  article-title: Formulations and valid inequalities for node capacitated graph partitioning
  publication-title: Math. Programming
– volume: 18
  start-page: 30
  year: 1989
  end-page: 55
  ident: bib17
  article-title: A fast parametric maximum flow algorithm and applications
  publication-title: SIAM J. Comput.
– reference: M. Grötschel, A.S.L. Lovász, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, Springer, Berlin, 1988.
– volume: 58
  start-page: 295
  year: 1993
  end-page: 324
  ident: bib3
  article-title: A lift-and-project cutting plane algorithm for mixed 0–1 programs
  publication-title: Math. Programming
– volume: 92
  start-page: 326
  year: 1996
  end-page: 341
  ident: bib32
  article-title: Lagrangean methods for the 0–1 quadratic knapsack problem
  publication-title: Eur. J. Oper. Res.
– reference: , 2002.
– volume: 27
  start-page: 1
  year: 1981
  end-page: 18
  ident: bib15
  article-title: The Lagrangian relaxation method for solving integer programming problems
  publication-title: Management Sci.
– volume: vol. 14
  year: 2002
  ident: bib21
  article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case
  publication-title: Combinatorial and Global Optimization
– year: 1979
  ident: bib19
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 8
  start-page: 146
  year: 1975
  end-page: 164
  ident: bib2
  article-title: Facets of the knapsack polytope
  publication-title: Math. Programming
– reference: M. Bauvin, M. Goemans, Personal communication, see Helmberg, 2000, 1999.
– volume: 69
  start-page: 121
  year: 1993
  end-page: 130
  ident: bib14
  article-title: A cutting-plane approach to the edge-weighted maximal clique problem
  publication-title: Eur. J. Oper. Res.
– volume: 23
  start-page: 833
  year: 1975
  end-page: 837
  ident: bib33
  article-title: A note on zero–one programming
  publication-title: Oper. Res.
– volume: 6
  start-page: 143
  year: 1974
  end-page: 150
  ident: bib37
  article-title: A capital budgeting heuristic algorithm using exchange operations
  publication-title: AIIE Trans.
– volume: 45
  start-page: 139
  year: 1989
  end-page: 172
  ident: bib34
  article-title: The Boolean quadratic polytope: some characteristics, facets and relatives
  publication-title: Math. Programming
– year: 1998
  ident: bib11
  article-title: The Quadratic Assignment Problem: Theory and Algorithms
– reference: J. Sturm, Sedumi 1.05, Matlab toolbox for solving optimization problems over symmetric cones,
– reference: H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semidefinite Programming, International Series in Operations Research and Management Science, vol. 27, Kluwer Academic Publishers, Dordrecht, 2000.
– volume: 2
  start-page: 82
  year: 1974
  end-page: 114
  ident: bib20
  article-title: Lagrangian relaxation for integer programming
  publication-title: Math. Programming Study
– volume: 30
  start-page: 159
  year: 2002
  end-page: 166
  ident: bib40
  article-title: The quadratic 0–1 knapsack problem with series–parallel support
  publication-title: Oper. Res. Lett.
– reference: H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, Germany, 2004.
– volume: 92
  start-page: 310
  year: 1996
  end-page: 325
  ident: bib5
  article-title: Linear programming for the 0–1 quadratic knapsack problem
  publication-title: European J. Oper. Res.
– volume: 7
  start-page: 109
  year: 1995
  end-page: 116
  ident: bib7
  article-title: A branch-and-bound algorithm for integer quadratic knapsack problems
  publication-title: ORSA J. Comput.
– volume: 95
  start-page: 671
  year: 1996
  end-page: 682
  ident: bib35
  article-title: An extended formulation approach to the edge-weighted maximal clique problem
  publication-title: Eur. J. Oper. Res.
– volume: 5
  start-page: 357
  year: 1974
  end-page: 370
  ident: bib36
  article-title: Minimum cuts and related problems
  publication-title: Networks
– start-page: 1
  year: 1998
  end-page: 89
  ident: bib39
  article-title: Knapsack problems
  publication-title: Handbook of Combinatorial Optimization
– volume: 112
  start-page: 664
  year: 1999
  end-page: 672
  ident: bib6
  article-title: A new upper-bound and an exact algorithm for the 0–1 quadratic knapsack problem
  publication-title: Eur. J. Oper. Res.
– volume: 35
  start-page: 170
  year: 1997
  end-page: 182
  ident: bib24
  article-title: Efficient methods for solving quadratic 0–1 knapsack problems
  publication-title: INFOR
– year: 1990
  ident: bib31
  article-title: Knapsack Problems: Algorithms and Computer Implementations
– reference: A. Rasmussen, R. Sandvik, Kvaliteten af grænseværdier for det kvadratiske knapsack problem, project 02-09-7, DIKU, University of Copenhagen (D. Pisinger, supervisor), 2003.
– volume: vol. 1084
  start-page: 175
  year: 1996
  end-page: 189
  ident: bib27
  article-title: Quadratic knapsack relaxations using cutting planes and semidefinite programming
  publication-title: Proceedings of the Fifth IPCO Conference, Lecture Notes in Computer Science
– volume: 3
  start-page: 163
  year: 1984
  end-page: 166
  ident: bib8
  article-title: An
  publication-title: Oper. Res. Lett.
– volume: 77
  start-page: 49
  year: 1997
  end-page: 68
  ident: bib45
  article-title: On the 0/1 knapsack polytope
  publication-title: Math. Programming
– reference: P. Crescenzi, V. Kann, A compendium of NP optimization problems,
– volume: 11
  start-page: 125
  year: 1999
  end-page: 137
  ident: bib9
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
– volume: 1
  start-page: 166
  year: 1991
  end-page: 190
  ident: bib30
  article-title: Cones of matrices and set-functions and 0–1 optimization
  publication-title: SIAM J. Optim.
– volume: 36
  start-page: 3
  year: 1992
  end-page: 21
  ident: bib23
  article-title: Approximations of pseudo-Boolean functions; application to game theory
  publication-title: ZOR—Methods Models Oper. Res.
– volume: 12
  start-page: 132
  year: 1980
  end-page: 149
  ident: bib18
  article-title: Quadratic knapsack problems
  publication-title: Math. Programming Study
– volume: 62
  start-page: 133
  year: 1993
  end-page: 152
  ident: bib29
  article-title: Min-cut clustering
  publication-title: Math. Programming
– volume: 45
  start-page: 758
  year: 1997
  end-page: 767
  ident: bib38
  article-title: A minimal algorithm for the 0–1 knapsack problem
  publication-title: Oper. Res.
– reference: C. Witzgall, Mathematical methods of site selection for electronic message system (EMS), Technical Report, NBS Internal Report, 1975.
– volume: 17
  start-page: 200
  year: 1970
  end-page: 207
  ident: bib42
  article-title: A selection problem of shared fixed costs and network flows
  publication-title: Management Sci.
– volume: vol. 1403
  start-page: 225
  year: 1989
  end-page: 235
  ident: bib12
  article-title: Best network flow bound for the quadratic knapsack problem
  publication-title: Combinatorial Optimization, Lecture Notes in Mathematics
– volume: 4
  start-page: 197
  year: 2000
  end-page: 215
  ident: bib28
  article-title: A semidefinite programming approach to the quadratic knapsack problem
  publication-title: J. Combin. Optim.
– start-page: 147
  year: 1994
  end-page: 160
  ident: bib10
  article-title: A reformulation scheme and new lower bounds for the qap
  publication-title: Quadratic Assignment and Related Problems
– volume: 79
  start-page: 71
  year: 1989
  end-page: 75
  ident: bib43
  article-title: The cut polytope and the Boolean quadric polytope
  publication-title: Discrete Math.
– volume: 1
  start-page: 6
  year: 1971
  end-page: 25
  ident: bib25
  article-title: The traveling salesman problem and minimum spanning trees: part ii
  publication-title: Math. Programming
– ident: 10.1016/j.dam.2006.08.007_bib46
  doi: 10.6028/NBS.IR.75-737
– volume: 45
  start-page: 758
  year: 1997
  ident: 10.1016/j.dam.2006.08.007_bib38
  article-title: A minimal algorithm for the 0–1 knapsack problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.45.5.758
– volume: 18
  start-page: 30
  year: 1989
  ident: 10.1016/j.dam.2006.08.007_bib17
  article-title: A fast parametric maximum flow algorithm and applications
  publication-title: SIAM J. Comput.
  doi: 10.1137/0218003
– volume: vol. 14
  year: 2002
  ident: 10.1016/j.dam.2006.08.007_bib21
  article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case
– volume: 11
  start-page: 125
  year: 1999
  ident: 10.1016/j.dam.2006.08.007_bib9
  article-title: Exact solution of the quadratic knapsack problem
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.11.2.125
– start-page: 147
  year: 1994
  ident: 10.1016/j.dam.2006.08.007_bib10
  article-title: A reformulation scheme and new lower bounds for the qap
– ident: 10.1016/j.dam.2006.08.007_bib44
– volume: 95
  start-page: 671
  year: 1996
  ident: 10.1016/j.dam.2006.08.007_bib35
  article-title: An extended formulation approach to the edge-weighted maximal clique problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(95)00299-5
– volume: 79
  start-page: 71
  year: 1989
  ident: 10.1016/j.dam.2006.08.007_bib43
  article-title: The cut polytope and the Boolean quadric polytope
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(90)90056-N
– volume: 12
  start-page: 132
  year: 1980
  ident: 10.1016/j.dam.2006.08.007_bib18
  article-title: Quadratic knapsack problems
  publication-title: Math. Programming Study
  doi: 10.1007/BFb0120892
– volume: vol. 1403
  start-page: 225
  year: 1989
  ident: 10.1016/j.dam.2006.08.007_bib12
  article-title: Best network flow bound for the quadratic knapsack problem
– ident: 10.1016/j.dam.2006.08.007_bib13
– volume: vol. 1084
  start-page: 175
  year: 1996
  ident: 10.1016/j.dam.2006.08.007_bib27
  article-title: Quadratic knapsack relaxations using cutting planes and semidefinite programming
– year: 1979
  ident: 10.1016/j.dam.2006.08.007_bib19
– volume: 58
  start-page: 295
  year: 1993
  ident: 10.1016/j.dam.2006.08.007_bib3
  article-title: A lift-and-project cutting plane algorithm for mixed 0–1 programs
  publication-title: Math. Programming
  doi: 10.1007/BF01581273
– year: 1998
  ident: 10.1016/j.dam.2006.08.007_bib11
– volume: 17
  start-page: 200
  year: 1970
  ident: 10.1016/j.dam.2006.08.007_bib42
  article-title: A selection problem of shared fixed costs and network flows
  publication-title: Management Sci.
  doi: 10.1287/mnsc.17.3.200
– volume: 1
  start-page: 6
  year: 1971
  ident: 10.1016/j.dam.2006.08.007_bib25
  article-title: The traveling salesman problem and minimum spanning trees: part ii
  publication-title: Math. Programming
  doi: 10.1007/BF01584070
– volume: 5
  start-page: 357
  year: 1974
  ident: 10.1016/j.dam.2006.08.007_bib36
  article-title: Minimum cuts and related problems
  publication-title: Networks
  doi: 10.1002/net.3230050405
– volume: 36
  start-page: 3
  year: 1992
  ident: 10.1016/j.dam.2006.08.007_bib23
  article-title: Approximations of pseudo-Boolean functions; application to game theory
  publication-title: ZOR—Methods Models Oper. Res.
  doi: 10.1007/BF01541028
– volume: 6
  start-page: 143
  year: 1974
  ident: 10.1016/j.dam.2006.08.007_bib37
  article-title: A capital budgeting heuristic algorithm using exchange operations
  publication-title: AIIE Trans.
  doi: 10.1080/05695557408974946
– volume: 30
  start-page: 159
  year: 2002
  ident: 10.1016/j.dam.2006.08.007_bib40
  article-title: The quadratic 0–1 knapsack problem with series–parallel support
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(02)00122-0
– volume: 92
  start-page: 326
  year: 1996
  ident: 10.1016/j.dam.2006.08.007_bib32
  article-title: Lagrangean methods for the 0–1 quadratic knapsack problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(94)00286-X
– volume: 1
  start-page: 166
  year: 1991
  ident: 10.1016/j.dam.2006.08.007_bib30
  article-title: Cones of matrices and set-functions and 0–1 optimization
  publication-title: SIAM J. Optim.
  doi: 10.1137/0801013
– volume: 3
  start-page: 163
  year: 1984
  ident: 10.1016/j.dam.2006.08.007_bib8
  article-title: An O(n) algorithm for quadratic knapsack problems
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(84)90010-5
– ident: 10.1016/j.dam.2006.08.007_bib26
– year: 1990
  ident: 10.1016/j.dam.2006.08.007_bib31
– ident: 10.1016/j.dam.2006.08.007_bib48
  doi: 10.1007/978-3-540-24777-7
– volume: 4
  start-page: 197
  year: 2000
  ident: 10.1016/j.dam.2006.08.007_bib28
  article-title: A semidefinite programming approach to the quadratic knapsack problem
  publication-title: J. Combin. Optim.
  doi: 10.1023/A:1009898604624
– volume: 62
  start-page: 133
  year: 1993
  ident: 10.1016/j.dam.2006.08.007_bib29
  article-title: Min-cut clustering
  publication-title: Math. Programming
  doi: 10.1007/BF01585164
– volume: 27
  start-page: 1
  year: 1981
  ident: 10.1016/j.dam.2006.08.007_bib15
  article-title: The Lagrangian relaxation method for solving integer programming problems
  publication-title: Management Sci.
  doi: 10.1287/mnsc.27.1.1
– volume: 35
  start-page: 170
  year: 1997
  ident: 10.1016/j.dam.2006.08.007_bib24
  article-title: Efficient methods for solving quadratic 0–1 knapsack problems
  publication-title: INFOR
– ident: 10.1016/j.dam.2006.08.007_bib47
  doi: 10.1007/978-1-4615-4381-7
– ident: 10.1016/j.dam.2006.08.007_bib41
– volume: 7
  start-page: 109
  year: 1995
  ident: 10.1016/j.dam.2006.08.007_bib7
  article-title: A branch-and-bound algorithm for integer quadratic knapsack problems
  publication-title: ORSA J. Comput.
  doi: 10.1287/ijoc.7.1.109
– volume: 8
  start-page: 146
  year: 1975
  ident: 10.1016/j.dam.2006.08.007_bib2
  article-title: Facets of the knapsack polytope
  publication-title: Math. Programming
  doi: 10.1007/BF01580440
– volume: 92
  start-page: 310
  year: 1996
  ident: 10.1016/j.dam.2006.08.007_bib5
  article-title: Linear programming for the 0–1 quadratic knapsack problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(94)00229-0
– volume: 23
  start-page: 833
  year: 1975
  ident: 10.1016/j.dam.2006.08.007_bib33
  article-title: A note on zero–one programming
  publication-title: Oper. Res.
  doi: 10.1287/opre.23.4.833
– volume: 69
  start-page: 121
  year: 1993
  ident: 10.1016/j.dam.2006.08.007_bib14
  article-title: A cutting-plane approach to the edge-weighted maximal clique problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/0377-2217(93)90097-7
– volume: 2
  start-page: 82
  year: 1974
  ident: 10.1016/j.dam.2006.08.007_bib20
  article-title: Lagrangian relaxation for integer programming
  publication-title: Math. Programming Study
  doi: 10.1007/BFb0120690
– volume: 74
  start-page: 247
  year: 1996
  ident: 10.1016/j.dam.2006.08.007_bib16
  article-title: Formulations and valid inequalities for node capacitated graph partitioning
  publication-title: Math. Programming
  doi: 10.1007/BF02592198
– ident: 10.1016/j.dam.2006.08.007_bib22
  doi: 10.1007/978-3-642-97881-4
– ident: 10.1016/j.dam.2006.08.007_bib4
– volume: 45
  start-page: 139
  year: 1989
  ident: 10.1016/j.dam.2006.08.007_bib34
  article-title: The Boolean quadratic polytope: some characteristics, facets and relatives
  publication-title: Math. Programming
  doi: 10.1007/BF01589101
– volume: 77
  start-page: 49
  year: 1997
  ident: 10.1016/j.dam.2006.08.007_bib45
  article-title: On the 0/1 knapsack polytope
  publication-title: Math. Programming
  doi: 10.1007/BF02614517
– start-page: 1
  year: 1998
  ident: 10.1016/j.dam.2006.08.007_bib39
  article-title: Knapsack problems
– volume: 32
  start-page: 1274
  year: 1986
  ident: 10.1016/j.dam.2006.08.007_bib1
  article-title: A tight linearization and an algorithm for zero–one quadratic programming problems
  publication-title: Management Sci.
  doi: 10.1287/mnsc.32.10.1274
– volume: 112
  start-page: 664
  year: 1999
  ident: 10.1016/j.dam.2006.08.007_bib6
  article-title: A new upper-bound and an exact algorithm for the 0–1 quadratic knapsack problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(97)00414-1
SSID ssj0001218
ssj0000186
ssj0006644
Score 2.247189
Snippet The binary quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 623
SubjectTerms Algorithmics. Computability. Computer arithmetics
Applied sciences
Approximation algorithms
Computer science; control theory; systems
Exact sciences and technology
Mathematical programming
Operational research and scientific management
Operational research. Management science
Quadratic knapsack problem
Semidefinite programming
Theoretical computing
Upper bounds
Valid inequalities
Title The quadratic knapsack problem—a survey
URI https://dx.doi.org/10.1016/j.dam.2006.08.007
Volume 155
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKewEhxCrWKgcuIIU6dmInx1JRtWxCLFJvkeNFKkspXZC4ID6CL-RLGDdOgQMcuI5iJxpP5o08M28Q2jVYAG7DD8gBTfyQZLEvwBH6guKM2HicTJrCzs5Z6yY87kSdEmoUvTC2rNL5_tynT7y1k9ScNmv9brd2BcEKA4DqYGbTWzyeQRVCEwamXam3T1rn31ikLEXabHHv8pVmALgNHfk38-1WRdpzUgCmxINLVthyS_4bcM33xRDUafI5GN_AqbmIFlxU6dXzD19CJd1bRnNnU0rW4QraA4PwnsZC2SOX3l1P9IdC3nluoszH27vwhuPBs35ZRTfNo-tGy3dzEnxJCR_5WWCiWAM0ZxwrohUNZEwyFhmCVSRUYkKlZEIyybQyJEt0EgaxsV2mhBsaM7qGyr3Hnl5HHge50AEWIuShhPBPaawlo5oaYe-KNhAulJBKRyJuZ1ncp0W12G0KerPDLVlq51tivoH2p0v6OYPGXw-HhWbTH2aQgof_a1n1xyl8vShmk9Tp5v_23UKz-V0u9YNoG5VHg7HegSBklFXRzMFrUAVTa1yeXlSdyYG03Tn8BLVW2Vs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOVCEEKsoS8mBC0ihjuPY6RFVVAXaXmil3iLHi1QKpXRB4oL4CL6QL8FOnC4HeuBqxXY0npk3mhWACwWZxm0tgFSjiYtRHLpMK0KX-TBGxh5HSVFYs0XqHXzfDbo5UM1qYUxapdX9qU5PtLVdKVtqloe9XvlRGytEA1QXEhPeouEaWMdafI10Xn96Cz2kTIO0QuZ1mQcZNNhi2_qbuOagLOiZpH8J9mJDFSbZkv4FW1tDNtbEVOkUjAVoqu2AbWtTOjfpb--CnBzsgc3mrCHreB9canZw3qZMmAfnTn_AhmPG-46dJ_Pz9c2c8XT0Lj8OQKd2267WXTslweU-ohM39lQQSg3MMYUCSeF7PEQxCRSCImCiorAQvIJiTqRQKK7ICvZCZWpMEVV-SPxDkB-8DuQRcKheZ9KDjGGKuTb-hISSE1_6ihlPURHAjAgRty3EzSSL5yjLFXuKNN3MaEsSmemWkBbB1WzLMO2fsepjnFE2WmKCSOv3VdtKS68wvygkSeD0-H_nnoONervZiBp3rYcTUEi9ur7rBacgPxlN5Zk2RyZxKWG3X5nh14Y
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+quadratic+knapsack+problem%E2%80%94a+survey&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Pisinger%2C+David&rft.date=2007-03-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=155&rft.issue=5&rft.spage=623&rft.epage=648&rft_id=info:doi/10.1016%2Fj.dam.2006.08.007&rft.externalDocID=S0166218X06003878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon