The quadratic knapsack problem—a survey
The binary quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in th...
Saved in:
Published in | Discrete Applied Mathematics Vol. 155; no. 5; pp. 623 - 648 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Lausanne
Elsevier B.V
15.03.2007
Amsterdam Elsevier New York, NY |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The binary
quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in the literature, and show the relative tightness of several of the bounds. Techniques for deriving the bounds include relaxation from upper planes, linearization, reformulation, Lagrangian relaxation, Lagrangian decomposition, and semidefinite programming. A short overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation results is given, followed by an overview of valid inequalities for the quadratic knapsack polytope. The paper is concluded by an experimental study where the upper bounds presented are compared with respect to strength and computational effort. |
---|---|
AbstractList | The binary
quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and challenging difficulty it has been studied intensively during the last two decades. The present paper gives a survey of upper bounds presented in the literature, and show the relative tightness of several of the bounds. Techniques for deriving the bounds include relaxation from upper planes, linearization, reformulation, Lagrangian relaxation, Lagrangian decomposition, and semidefinite programming. A short overview of heuristics, reduction techniques, branch-and-bound algorithms and approximation results is given, followed by an overview of valid inequalities for the quadratic knapsack polytope. The paper is concluded by an experimental study where the upper bounds presented are compared with respect to strength and computational effort. |
Author | Pisinger, David |
Author_xml | – sequence: 1 givenname: David surname: Pisinger fullname: Pisinger, David email: pisinger@diku.dk organization: Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18603501$$DView record in Pascal Francis |
BookMark | eNp9kL1qwzAUhUVJoUnaB-jmpUMHu1eyLcl0KqF_EOiSQjch64cqcWxXcgLZ-hB9wj5JFVI6dMh0uXC-A-eboFHbtQahSwwZBkxvlpmW64wA0Ax4BsBO0BhzRlLKGB6hcczQlGD-doYmISwBAMdvjK4X7yb52Ejt5eBUsmplH6RaJb3v6sasvz-_ZBI2fmt25-jUyiaYi987Ra8P94vZUzp_eXye3c1TlRM2pDW2JTekgJqBJkbnWHFS09IS0KXUlS20VhWpFTXakroyVYG5BVowwmzOaT5FV4feXgYlG-tlq1wQvXdr6XcCcwp5CTjm2CGnfBeCN1YoN8QRXTt46RqBQezNiKWIZsTejAAuoplI4n_kX_kR5vbAmDh964wXQTnTKqOdN2oQunNH6B_cF33x |
CODEN | DAMADU |
CitedBy_id | crossref_primary_10_1057_jors_2014_76 crossref_primary_10_3390_biomimetics9020082 crossref_primary_10_1016_j_ejor_2023_02_005 crossref_primary_10_1016_j_knosys_2015_10_004 crossref_primary_10_1016_j_ejor_2024_12_019 crossref_primary_10_1016_j_ejor_2024_12_016 crossref_primary_10_1016_j_cor_2013_08_018 crossref_primary_10_1287_moor_1100_0472 crossref_primary_10_3390_su9020236 crossref_primary_10_1016_j_dss_2020_113399 crossref_primary_10_1016_j_pmcj_2017_05_006 crossref_primary_10_1016_j_cor_2012_11_023 crossref_primary_10_1016_j_proeng_2011_08_636 crossref_primary_10_1016_j_dam_2020_09_015 crossref_primary_10_1080_24725579_2023_2231981 crossref_primary_10_1016_j_cor_2016_08_006 crossref_primary_10_1016_j_cie_2019_04_025 crossref_primary_10_1016_j_ejor_2016_06_013 crossref_primary_10_1016_j_ejor_2019_08_020 crossref_primary_10_1007_s10115_020_01456_1 crossref_primary_10_1016_j_ejor_2019_08_027 crossref_primary_10_1155_2020_5974820 crossref_primary_10_1007_s10898_012_9872_9 crossref_primary_10_1287_ijoc_2017_0789 crossref_primary_10_1016_j_ejor_2024_06_034 crossref_primary_10_1016_j_endm_2010_05_013 crossref_primary_10_1016_j_ecmx_2022_100320 crossref_primary_10_1016_j_dam_2017_06_020 crossref_primary_10_1016_j_ejor_2022_06_029 crossref_primary_10_1287_msom_2021_1023 crossref_primary_10_1007_s10878_016_0065_1 crossref_primary_10_1287_ijoc_2018_0840 crossref_primary_10_3934_jimo_2013_9_531 crossref_primary_10_1007_s00500_015_1880_5 crossref_primary_10_1007_s12532_021_00206_w crossref_primary_10_1002_net_21580 crossref_primary_10_1590_0101_7438_2022_042_00257386 crossref_primary_10_1007_s10898_018_0717_z crossref_primary_10_1016_j_cam_2015_02_016 crossref_primary_10_2139_ssrn_3198923 crossref_primary_10_1016_j_cor_2015_04_020 crossref_primary_10_1109_TC_2022_3178325 crossref_primary_10_1007_s10589_016_9856_7 crossref_primary_10_1016_j_cor_2017_02_004 crossref_primary_10_1007_s11590_017_1227_5 crossref_primary_10_1016_j_asoc_2022_109513 crossref_primary_10_1007_s11590_016_1055_z crossref_primary_10_1016_j_apm_2011_10_017 crossref_primary_10_1007_s12532_010_0010_8 crossref_primary_10_1080_0305215X_2018_1509962 crossref_primary_10_1016_j_ejor_2017_03_061 crossref_primary_10_1007_s10957_018_1416_0 crossref_primary_10_1016_j_physa_2017_02_052 crossref_primary_10_1016_j_physa_2022_127628 crossref_primary_10_1137_100802190 crossref_primary_10_1016_j_cor_2021_105692 crossref_primary_10_1016_j_cor_2021_105693 crossref_primary_10_4028_www_scientific_net_AMR_748_666 crossref_primary_10_1109_TASE_2020_2966738 crossref_primary_10_1002_nav_20364 crossref_primary_10_1109_TEVC_2016_2546340 crossref_primary_10_1007_s10479_017_2698_6 crossref_primary_10_1016_j_cor_2010_10_027 crossref_primary_10_1007_s10107_015_0870_9 crossref_primary_10_1016_j_ejor_2016_09_013 crossref_primary_10_1016_j_ejor_2020_10_047 crossref_primary_10_1007_s10589_015_9763_3 crossref_primary_10_1109_ACCESS_2025_3529317 crossref_primary_10_1590_S0101_74382014000100005 crossref_primary_10_1016_j_eswa_2016_11_007 crossref_primary_10_1162_evco_a_00237 crossref_primary_10_4028_www_scientific_net_AMR_748_972 crossref_primary_10_1016_j_orl_2020_03_002 crossref_primary_10_1007_s10107_015_0863_8 crossref_primary_10_1287_moor_1120_0581 crossref_primary_10_1007_s10288_011_0180_x crossref_primary_10_1142_S0217595912500315 crossref_primary_10_1016_j_solener_2019_03_019 crossref_primary_10_1016_j_fss_2021_03_009 crossref_primary_10_1057_jors_2015_77 crossref_primary_10_1109_TQE_2024_3376721 crossref_primary_10_1016_j_swevo_2015_09_005 crossref_primary_10_1007_s00453_008_9248_1 crossref_primary_10_1016_j_orl_2016_05_005 crossref_primary_10_1080_02331934_2020_1712392 crossref_primary_10_1287_ijoc_2015_0678 crossref_primary_10_1287_ijoc_2021_0186 crossref_primary_10_1287_moor_2022_1345 crossref_primary_10_1016_j_cam_2013_09_052 crossref_primary_10_1007_s10479_014_1720_5 crossref_primary_10_1016_j_ins_2016_07_037 crossref_primary_10_1007_s10957_010_9653_x crossref_primary_10_1016_j_ejor_2016_05_013 crossref_primary_10_1007_s10898_010_9566_0 crossref_primary_10_1016_j_cor_2019_104769 crossref_primary_10_1142_S0129054110007301 crossref_primary_10_1007_s10479_018_3118_2 crossref_primary_10_1038_s42254_024_00770_9 crossref_primary_10_1016_j_ejor_2024_11_023 crossref_primary_10_1016_j_cor_2016_01_003 crossref_primary_10_1016_j_ejor_2021_11_004 crossref_primary_10_3390_math10162920 crossref_primary_10_1587_transfun_2020KEP0007 crossref_primary_10_2139_ssrn_3453262 crossref_primary_10_1007_s11590_019_01503_z crossref_primary_10_1016_j_disopt_2020_100579 crossref_primary_10_1016_j_ejor_2024_12_032 crossref_primary_10_1016_j_orl_2024_107205 crossref_primary_10_1007_s12532_025_00275_1 crossref_primary_10_1007_s10589_017_9893_x crossref_primary_10_1016_j_cor_2010_12_017 crossref_primary_10_1088_1741_4326_acb4a9 crossref_primary_10_1016_j_dam_2023_02_003 crossref_primary_10_1109_ACCESS_2025_3545262 crossref_primary_10_1016_j_endm_2018_07_038 crossref_primary_10_1137_110820762 crossref_primary_10_1007_s00186_022_00788_8 crossref_primary_10_1007_s10479_018_2970_4 crossref_primary_10_1142_S0217595913400095 crossref_primary_10_1007_s11590_018_1361_8 crossref_primary_10_1080_10556788_2015_1134528 crossref_primary_10_1007_s10479_015_2018_y crossref_primary_10_1007_s10898_014_0189_8 crossref_primary_10_1007_s10957_011_9885_4 crossref_primary_10_1016_j_knosys_2016_01_014 crossref_primary_10_1016_j_ins_2018_09_049 crossref_primary_10_1016_j_landusepol_2015_05_023 crossref_primary_10_1109_TCOMM_2020_2985958 crossref_primary_10_1109_MCOM_001_2000876 crossref_primary_10_1007_s00521_024_10327_7 crossref_primary_10_1016_j_websem_2015_05_004 crossref_primary_10_1080_0305215X_2017_1316844 crossref_primary_10_1080_10556788_2011_627586 crossref_primary_10_4018_IJAEC_2019100101 crossref_primary_10_1007_s00186_020_00702_0 crossref_primary_10_1287_ijoc_2013_0555 crossref_primary_10_1587_transinf_2022PAP0006 crossref_primary_10_1287_ijoc_2016_0716 crossref_primary_10_1145_3514039 |
Cites_doi | 10.6028/NBS.IR.75-737 10.1287/opre.45.5.758 10.1137/0218003 10.1287/ijoc.11.2.125 10.1016/0377-2217(95)00299-5 10.1016/0012-365X(90)90056-N 10.1007/BFb0120892 10.1007/BF01581273 10.1287/mnsc.17.3.200 10.1007/BF01584070 10.1002/net.3230050405 10.1007/BF01541028 10.1080/05695557408974946 10.1016/S0167-6377(02)00122-0 10.1016/0377-2217(94)00286-X 10.1137/0801013 10.1016/0167-6377(84)90010-5 10.1007/978-3-540-24777-7 10.1023/A:1009898604624 10.1007/BF01585164 10.1287/mnsc.27.1.1 10.1007/978-1-4615-4381-7 10.1287/ijoc.7.1.109 10.1007/BF01580440 10.1016/0377-2217(94)00229-0 10.1287/opre.23.4.833 10.1016/0377-2217(93)90097-7 10.1007/BFb0120690 10.1007/BF02592198 10.1007/978-3-642-97881-4 10.1007/BF01589101 10.1007/BF02614517 10.1287/mnsc.32.10.1274 10.1016/S0377-2217(97)00414-1 |
ContentType | Journal Article |
Copyright | 2006 Elsevier B.V. 2007 INIST-CNRS |
Copyright_xml | – notice: 2006 Elsevier B.V. – notice: 2007 INIST-CNRS |
DBID | 6I. AAFTH AAYXX CITATION IQODW |
DOI | 10.1016/j.dam.2006.08.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics Applied Sciences |
EISSN | 1872-6771 |
EndPage | 648 |
ExternalDocumentID | 18603501 10_1016_j_dam_2006_08_007 S0166218X06003878 |
GroupedDBID | -~X 6I. AAFTH ADEZE AFTJW AI. ALMA_UNASSIGNED_HOLDINGS FA8 FDB OAUVE VH1 WUQ AAYXX CITATION IQODW |
ID | FETCH-LOGICAL-c327t-b1f58e240b70d2ed31c82b65f20d5ad9f4ddc92bc6edf2b9e9418f064727f3863 |
IEDL.DBID | AIKHN |
ISSN | 0166-218X |
IngestDate | Wed Apr 02 07:21:24 EDT 2025 Tue Jul 01 01:42:55 EDT 2025 Thu Apr 24 23:03:45 EDT 2025 Sat Apr 29 22:44:07 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Approximation algorithms Semidefinite programming Valid inequalities Upper bounds Quadratic knapsack problem Polytope Lagrangian Computer theory Decomposition method Semi definite programming Approximation algorithm Experimental study Constrained optimization Knapsack problem Relaxation Upper bound Objective function Combinatorics Quadratic function |
Language | English |
License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-b1f58e240b70d2ed31c82b65f20d5ad9f4ddc92bc6edf2b9e9418f064727f3863 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0166218X06003878 |
PageCount | 26 |
ParticipantIDs | pascalfrancis_primary_18603501 crossref_citationtrail_10_1016_j_dam_2006_08_007 crossref_primary_10_1016_j_dam_2006_08_007 elsevier_sciencedirect_doi_10_1016_j_dam_2006_08_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-03-15 |
PublicationDateYYYYMMDD | 2007-03-15 |
PublicationDate_xml | – month: 03 year: 2007 text: 2007-03-15 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Lausanne Amsterdam New York, NY |
PublicationPlace_xml | – name: Amsterdam – name: Lausanne – name: New York, NY |
PublicationTitle | Discrete Applied Mathematics |
PublicationYear | 2007 |
Publisher | Elsevier B.V Elsevier |
Publisher_xml | – name: Elsevier B.V – name: Elsevier |
References | Johnson, Mehrotra, Nemhauser (bib29) 1993; 62 Fisher (bib15) 1981; 27 Martello, Toth (bib31) 1990 Helmberg, Rendl, Weismantel (bib27) 1996; vol. 1084 Hammer, Holzman (bib23) 1992; 36 Peterson (bib37) 1974; 6 Pisinger, Toth (bib39) 1998 M. Grötschel, A.S.L. Lovász, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, Springer, Berlin, 1988. Hammer, Rader (bib24) 1997; 35 Billionnet, Calmels (bib5) 1996; 92 Carraresi, Malucelli (bib10) 1994 Gallo, Hammer, Simeone (bib18) 1980; 12 Balas, Ceria, Cornuejols (bib3) 1993; 58 Adams, Sherali (bib1) 1986; 32 Balas (bib2) 1975; 8 Caprara, Pisinger, Toth (bib9) 1999; 11 Ferreira, Martin, de Souza, Weismantel, Wolsey (bib16) 1996; 74 H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, Germany, 2004. Brucker (bib8) 1984; 3 Simone (bib43) 1989; 79 J. Sturm, Sedumi 1.05, Matlab toolbox for solving optimization problems over symmetric cones Rhys (bib42) 1970; 17 2002. Geoffrion (bib20) 1974; 2 Rader, Woeginger (bib40) 2002; 30 Pisinger (bib38) 1997; 45 Cela (bib11) 1998 Park, Lee, Park (bib35) 1996; 95 Padberg (bib33) 1975; 23 Billionnet, Faye, Soutif (bib6) 1999; 112 P. Crescenzi, V. Kann, A compendium of NP optimization problems C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report ZIP-Report ZR-00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, habilitationsschrift, TU Berlin, 2000. Lovász, Schrijver (bib30) 1991; 1 Chaillou, Hansen, Mahieu (bib12) 1989; vol. 1403 Picard, Ratliff (bib36) 1974; 5 H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semidefinite Programming, International Series in Operations Research and Management Science, vol. 27, Kluwer Academic Publishers, Dordrecht, 2000. Bretthauer, Shetty, Syam (bib7) 1995; 7 Dijkhuizen, Faigle (bib14) 1993; 69 Gallo, Grigoriadis, Tarjan (bib17) 1989; 18 C. Witzgall, Mathematical methods of site selection for electronic message system (EMS), Technical Report, NBS Internal Report, 1975. M. Bauvin, M. Goemans, Personal communication, see Helmberg, 2000, 1999. Weismantel (bib45) 1997; 77 Held, Karp (bib25) 1971; 1 Glover, Kochenberger (bib21) 2002; vol. 14 Helmberg, Rendl, Weismantel (bib28) 2000; 4 Michelon, Veilleux (bib32) 1996; 92 A. Rasmussen, R. Sandvik, Kvaliteten af grænseværdier for det kvadratiske knapsack problem, project 02-09-7, DIKU, University of Copenhagen (D. Pisinger, supervisor), 2003. Padberg (bib34) 1989; 45 Garey, Johnson (bib19) 1979 10.1016/j.dam.2006.08.007_bib41 Rhys (10.1016/j.dam.2006.08.007_bib42) 1970; 17 Garey (10.1016/j.dam.2006.08.007_bib19) 1979 Helmberg (10.1016/j.dam.2006.08.007_bib27) 1996; vol. 1084 Michelon (10.1016/j.dam.2006.08.007_bib32) 1996; 92 10.1016/j.dam.2006.08.007_bib47 10.1016/j.dam.2006.08.007_bib26 10.1016/j.dam.2006.08.007_bib48 Caprara (10.1016/j.dam.2006.08.007_bib9) 1999; 11 Carraresi (10.1016/j.dam.2006.08.007_bib10) 1994 Pisinger (10.1016/j.dam.2006.08.007_bib39) 1998 Simone (10.1016/j.dam.2006.08.007_bib43) 1989; 79 Billionnet (10.1016/j.dam.2006.08.007_bib6) 1999; 112 10.1016/j.dam.2006.08.007_bib22 10.1016/j.dam.2006.08.007_bib44 Adams (10.1016/j.dam.2006.08.007_bib1) 1986; 32 Fisher (10.1016/j.dam.2006.08.007_bib15) 1981; 27 Weismantel (10.1016/j.dam.2006.08.007_bib45) 1997; 77 10.1016/j.dam.2006.08.007_bib46 Cela (10.1016/j.dam.2006.08.007_bib11) 1998 Padberg (10.1016/j.dam.2006.08.007_bib34) 1989; 45 Balas (10.1016/j.dam.2006.08.007_bib2) 1975; 8 Peterson (10.1016/j.dam.2006.08.007_bib37) 1974; 6 Held (10.1016/j.dam.2006.08.007_bib25) 1971; 1 Ferreira (10.1016/j.dam.2006.08.007_bib16) 1996; 74 Gallo (10.1016/j.dam.2006.08.007_bib17) 1989; 18 Pisinger (10.1016/j.dam.2006.08.007_bib38) 1997; 45 Padberg (10.1016/j.dam.2006.08.007_bib33) 1975; 23 10.1016/j.dam.2006.08.007_bib4 Picard (10.1016/j.dam.2006.08.007_bib36) 1974; 5 Brucker (10.1016/j.dam.2006.08.007_bib8) 1984; 3 Balas (10.1016/j.dam.2006.08.007_bib3) 1993; 58 Rader (10.1016/j.dam.2006.08.007_bib40) 2002; 30 Billionnet (10.1016/j.dam.2006.08.007_bib5) 1996; 92 Bretthauer (10.1016/j.dam.2006.08.007_bib7) 1995; 7 Martello (10.1016/j.dam.2006.08.007_bib31) 1990 Geoffrion (10.1016/j.dam.2006.08.007_bib20) 1974; 2 10.1016/j.dam.2006.08.007_bib13 Lovász (10.1016/j.dam.2006.08.007_bib30) 1991; 1 Hammer (10.1016/j.dam.2006.08.007_bib23) 1992; 36 Dijkhuizen (10.1016/j.dam.2006.08.007_bib14) 1993; 69 Hammer (10.1016/j.dam.2006.08.007_bib24) 1997; 35 Gallo (10.1016/j.dam.2006.08.007_bib18) 1980; 12 Johnson (10.1016/j.dam.2006.08.007_bib29) 1993; 62 Helmberg (10.1016/j.dam.2006.08.007_bib28) 2000; 4 Chaillou (10.1016/j.dam.2006.08.007_bib12) 1989; vol. 1403 Glover (10.1016/j.dam.2006.08.007_bib21) 2002; vol. 14 Park (10.1016/j.dam.2006.08.007_bib35) 1996; 95 |
References_xml | – reference: C. Helmberg, Semidefinite programming for combinatorial optimization, Technical Report ZIP-Report ZR-00-34, Konrad-Zuse-Zentrum für Informationstechnik Berlin, habilitationsschrift, TU Berlin, 2000. – volume: 32 start-page: 1274 year: 1986 end-page: 1290 ident: bib1 article-title: A tight linearization and an algorithm for zero–one quadratic programming problems publication-title: Management Sci. – volume: 74 start-page: 247 year: 1996 end-page: 266 ident: bib16 article-title: Formulations and valid inequalities for node capacitated graph partitioning publication-title: Math. Programming – volume: 18 start-page: 30 year: 1989 end-page: 55 ident: bib17 article-title: A fast parametric maximum flow algorithm and applications publication-title: SIAM J. Comput. – reference: M. Grötschel, A.S.L. Lovász, Geometric Algorithms and Combinatorial Optimization, Algorithms and Combinatorics, vol. 2, Springer, Berlin, 1988. – volume: 58 start-page: 295 year: 1993 end-page: 324 ident: bib3 article-title: A lift-and-project cutting plane algorithm for mixed 0–1 programs publication-title: Math. Programming – volume: 92 start-page: 326 year: 1996 end-page: 341 ident: bib32 article-title: Lagrangean methods for the 0–1 quadratic knapsack problem publication-title: Eur. J. Oper. Res. – reference: , 2002. – volume: 27 start-page: 1 year: 1981 end-page: 18 ident: bib15 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Management Sci. – volume: vol. 14 year: 2002 ident: bib21 article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case publication-title: Combinatorial and Global Optimization – year: 1979 ident: bib19 article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness – volume: 8 start-page: 146 year: 1975 end-page: 164 ident: bib2 article-title: Facets of the knapsack polytope publication-title: Math. Programming – reference: M. Bauvin, M. Goemans, Personal communication, see Helmberg, 2000, 1999. – volume: 69 start-page: 121 year: 1993 end-page: 130 ident: bib14 article-title: A cutting-plane approach to the edge-weighted maximal clique problem publication-title: Eur. J. Oper. Res. – volume: 23 start-page: 833 year: 1975 end-page: 837 ident: bib33 article-title: A note on zero–one programming publication-title: Oper. Res. – volume: 6 start-page: 143 year: 1974 end-page: 150 ident: bib37 article-title: A capital budgeting heuristic algorithm using exchange operations publication-title: AIIE Trans. – volume: 45 start-page: 139 year: 1989 end-page: 172 ident: bib34 article-title: The Boolean quadratic polytope: some characteristics, facets and relatives publication-title: Math. Programming – year: 1998 ident: bib11 article-title: The Quadratic Assignment Problem: Theory and Algorithms – reference: J. Sturm, Sedumi 1.05, Matlab toolbox for solving optimization problems over symmetric cones, – reference: H. Wolkowicz, R. Saigal, L. Vandenberghe (Eds.), Handbook of Semidefinite Programming, International Series in Operations Research and Management Science, vol. 27, Kluwer Academic Publishers, Dordrecht, 2000. – volume: 2 start-page: 82 year: 1974 end-page: 114 ident: bib20 article-title: Lagrangian relaxation for integer programming publication-title: Math. Programming Study – volume: 30 start-page: 159 year: 2002 end-page: 166 ident: bib40 article-title: The quadratic 0–1 knapsack problem with series–parallel support publication-title: Oper. Res. Lett. – reference: H. Kellerer, U. Pferschy, D. Pisinger, Knapsack Problems, Springer, Berlin, Germany, 2004. – volume: 92 start-page: 310 year: 1996 end-page: 325 ident: bib5 article-title: Linear programming for the 0–1 quadratic knapsack problem publication-title: European J. Oper. Res. – volume: 7 start-page: 109 year: 1995 end-page: 116 ident: bib7 article-title: A branch-and-bound algorithm for integer quadratic knapsack problems publication-title: ORSA J. Comput. – volume: 95 start-page: 671 year: 1996 end-page: 682 ident: bib35 article-title: An extended formulation approach to the edge-weighted maximal clique problem publication-title: Eur. J. Oper. Res. – volume: 5 start-page: 357 year: 1974 end-page: 370 ident: bib36 article-title: Minimum cuts and related problems publication-title: Networks – start-page: 1 year: 1998 end-page: 89 ident: bib39 article-title: Knapsack problems publication-title: Handbook of Combinatorial Optimization – volume: 112 start-page: 664 year: 1999 end-page: 672 ident: bib6 article-title: A new upper-bound and an exact algorithm for the 0–1 quadratic knapsack problem publication-title: Eur. J. Oper. Res. – volume: 35 start-page: 170 year: 1997 end-page: 182 ident: bib24 article-title: Efficient methods for solving quadratic 0–1 knapsack problems publication-title: INFOR – year: 1990 ident: bib31 article-title: Knapsack Problems: Algorithms and Computer Implementations – reference: A. Rasmussen, R. Sandvik, Kvaliteten af grænseværdier for det kvadratiske knapsack problem, project 02-09-7, DIKU, University of Copenhagen (D. Pisinger, supervisor), 2003. – volume: vol. 1084 start-page: 175 year: 1996 end-page: 189 ident: bib27 article-title: Quadratic knapsack relaxations using cutting planes and semidefinite programming publication-title: Proceedings of the Fifth IPCO Conference, Lecture Notes in Computer Science – volume: 3 start-page: 163 year: 1984 end-page: 166 ident: bib8 article-title: An publication-title: Oper. Res. Lett. – volume: 77 start-page: 49 year: 1997 end-page: 68 ident: bib45 article-title: On the 0/1 knapsack polytope publication-title: Math. Programming – reference: P. Crescenzi, V. Kann, A compendium of NP optimization problems, – volume: 11 start-page: 125 year: 1999 end-page: 137 ident: bib9 article-title: Exact solution of the quadratic knapsack problem publication-title: INFORMS J. Comput. – volume: 1 start-page: 166 year: 1991 end-page: 190 ident: bib30 article-title: Cones of matrices and set-functions and 0–1 optimization publication-title: SIAM J. Optim. – volume: 36 start-page: 3 year: 1992 end-page: 21 ident: bib23 article-title: Approximations of pseudo-Boolean functions; application to game theory publication-title: ZOR—Methods Models Oper. Res. – volume: 12 start-page: 132 year: 1980 end-page: 149 ident: bib18 article-title: Quadratic knapsack problems publication-title: Math. Programming Study – volume: 62 start-page: 133 year: 1993 end-page: 152 ident: bib29 article-title: Min-cut clustering publication-title: Math. Programming – volume: 45 start-page: 758 year: 1997 end-page: 767 ident: bib38 article-title: A minimal algorithm for the 0–1 knapsack problem publication-title: Oper. Res. – reference: C. Witzgall, Mathematical methods of site selection for electronic message system (EMS), Technical Report, NBS Internal Report, 1975. – volume: 17 start-page: 200 year: 1970 end-page: 207 ident: bib42 article-title: A selection problem of shared fixed costs and network flows publication-title: Management Sci. – volume: vol. 1403 start-page: 225 year: 1989 end-page: 235 ident: bib12 article-title: Best network flow bound for the quadratic knapsack problem publication-title: Combinatorial Optimization, Lecture Notes in Mathematics – volume: 4 start-page: 197 year: 2000 end-page: 215 ident: bib28 article-title: A semidefinite programming approach to the quadratic knapsack problem publication-title: J. Combin. Optim. – start-page: 147 year: 1994 end-page: 160 ident: bib10 article-title: A reformulation scheme and new lower bounds for the qap publication-title: Quadratic Assignment and Related Problems – volume: 79 start-page: 71 year: 1989 end-page: 75 ident: bib43 article-title: The cut polytope and the Boolean quadric polytope publication-title: Discrete Math. – volume: 1 start-page: 6 year: 1971 end-page: 25 ident: bib25 article-title: The traveling salesman problem and minimum spanning trees: part ii publication-title: Math. Programming – ident: 10.1016/j.dam.2006.08.007_bib46 doi: 10.6028/NBS.IR.75-737 – volume: 45 start-page: 758 year: 1997 ident: 10.1016/j.dam.2006.08.007_bib38 article-title: A minimal algorithm for the 0–1 knapsack problem publication-title: Oper. Res. doi: 10.1287/opre.45.5.758 – volume: 18 start-page: 30 year: 1989 ident: 10.1016/j.dam.2006.08.007_bib17 article-title: A fast parametric maximum flow algorithm and applications publication-title: SIAM J. Comput. doi: 10.1137/0218003 – volume: vol. 14 year: 2002 ident: 10.1016/j.dam.2006.08.007_bib21 article-title: Solving quadratic knapsack problems by reformulation and tabu search, single constraint case – volume: 11 start-page: 125 year: 1999 ident: 10.1016/j.dam.2006.08.007_bib9 article-title: Exact solution of the quadratic knapsack problem publication-title: INFORMS J. Comput. doi: 10.1287/ijoc.11.2.125 – start-page: 147 year: 1994 ident: 10.1016/j.dam.2006.08.007_bib10 article-title: A reformulation scheme and new lower bounds for the qap – ident: 10.1016/j.dam.2006.08.007_bib44 – volume: 95 start-page: 671 year: 1996 ident: 10.1016/j.dam.2006.08.007_bib35 article-title: An extended formulation approach to the edge-weighted maximal clique problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(95)00299-5 – volume: 79 start-page: 71 year: 1989 ident: 10.1016/j.dam.2006.08.007_bib43 article-title: The cut polytope and the Boolean quadric polytope publication-title: Discrete Math. doi: 10.1016/0012-365X(90)90056-N – volume: 12 start-page: 132 year: 1980 ident: 10.1016/j.dam.2006.08.007_bib18 article-title: Quadratic knapsack problems publication-title: Math. Programming Study doi: 10.1007/BFb0120892 – volume: vol. 1403 start-page: 225 year: 1989 ident: 10.1016/j.dam.2006.08.007_bib12 article-title: Best network flow bound for the quadratic knapsack problem – ident: 10.1016/j.dam.2006.08.007_bib13 – volume: vol. 1084 start-page: 175 year: 1996 ident: 10.1016/j.dam.2006.08.007_bib27 article-title: Quadratic knapsack relaxations using cutting planes and semidefinite programming – year: 1979 ident: 10.1016/j.dam.2006.08.007_bib19 – volume: 58 start-page: 295 year: 1993 ident: 10.1016/j.dam.2006.08.007_bib3 article-title: A lift-and-project cutting plane algorithm for mixed 0–1 programs publication-title: Math. Programming doi: 10.1007/BF01581273 – year: 1998 ident: 10.1016/j.dam.2006.08.007_bib11 – volume: 17 start-page: 200 year: 1970 ident: 10.1016/j.dam.2006.08.007_bib42 article-title: A selection problem of shared fixed costs and network flows publication-title: Management Sci. doi: 10.1287/mnsc.17.3.200 – volume: 1 start-page: 6 year: 1971 ident: 10.1016/j.dam.2006.08.007_bib25 article-title: The traveling salesman problem and minimum spanning trees: part ii publication-title: Math. Programming doi: 10.1007/BF01584070 – volume: 5 start-page: 357 year: 1974 ident: 10.1016/j.dam.2006.08.007_bib36 article-title: Minimum cuts and related problems publication-title: Networks doi: 10.1002/net.3230050405 – volume: 36 start-page: 3 year: 1992 ident: 10.1016/j.dam.2006.08.007_bib23 article-title: Approximations of pseudo-Boolean functions; application to game theory publication-title: ZOR—Methods Models Oper. Res. doi: 10.1007/BF01541028 – volume: 6 start-page: 143 year: 1974 ident: 10.1016/j.dam.2006.08.007_bib37 article-title: A capital budgeting heuristic algorithm using exchange operations publication-title: AIIE Trans. doi: 10.1080/05695557408974946 – volume: 30 start-page: 159 year: 2002 ident: 10.1016/j.dam.2006.08.007_bib40 article-title: The quadratic 0–1 knapsack problem with series–parallel support publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(02)00122-0 – volume: 92 start-page: 326 year: 1996 ident: 10.1016/j.dam.2006.08.007_bib32 article-title: Lagrangean methods for the 0–1 quadratic knapsack problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(94)00286-X – volume: 1 start-page: 166 year: 1991 ident: 10.1016/j.dam.2006.08.007_bib30 article-title: Cones of matrices and set-functions and 0–1 optimization publication-title: SIAM J. Optim. doi: 10.1137/0801013 – volume: 3 start-page: 163 year: 1984 ident: 10.1016/j.dam.2006.08.007_bib8 article-title: An O(n) algorithm for quadratic knapsack problems publication-title: Oper. Res. Lett. doi: 10.1016/0167-6377(84)90010-5 – ident: 10.1016/j.dam.2006.08.007_bib26 – year: 1990 ident: 10.1016/j.dam.2006.08.007_bib31 – ident: 10.1016/j.dam.2006.08.007_bib48 doi: 10.1007/978-3-540-24777-7 – volume: 4 start-page: 197 year: 2000 ident: 10.1016/j.dam.2006.08.007_bib28 article-title: A semidefinite programming approach to the quadratic knapsack problem publication-title: J. Combin. Optim. doi: 10.1023/A:1009898604624 – volume: 62 start-page: 133 year: 1993 ident: 10.1016/j.dam.2006.08.007_bib29 article-title: Min-cut clustering publication-title: Math. Programming doi: 10.1007/BF01585164 – volume: 27 start-page: 1 year: 1981 ident: 10.1016/j.dam.2006.08.007_bib15 article-title: The Lagrangian relaxation method for solving integer programming problems publication-title: Management Sci. doi: 10.1287/mnsc.27.1.1 – volume: 35 start-page: 170 year: 1997 ident: 10.1016/j.dam.2006.08.007_bib24 article-title: Efficient methods for solving quadratic 0–1 knapsack problems publication-title: INFOR – ident: 10.1016/j.dam.2006.08.007_bib47 doi: 10.1007/978-1-4615-4381-7 – ident: 10.1016/j.dam.2006.08.007_bib41 – volume: 7 start-page: 109 year: 1995 ident: 10.1016/j.dam.2006.08.007_bib7 article-title: A branch-and-bound algorithm for integer quadratic knapsack problems publication-title: ORSA J. Comput. doi: 10.1287/ijoc.7.1.109 – volume: 8 start-page: 146 year: 1975 ident: 10.1016/j.dam.2006.08.007_bib2 article-title: Facets of the knapsack polytope publication-title: Math. Programming doi: 10.1007/BF01580440 – volume: 92 start-page: 310 year: 1996 ident: 10.1016/j.dam.2006.08.007_bib5 article-title: Linear programming for the 0–1 quadratic knapsack problem publication-title: European J. Oper. Res. doi: 10.1016/0377-2217(94)00229-0 – volume: 23 start-page: 833 year: 1975 ident: 10.1016/j.dam.2006.08.007_bib33 article-title: A note on zero–one programming publication-title: Oper. Res. doi: 10.1287/opre.23.4.833 – volume: 69 start-page: 121 year: 1993 ident: 10.1016/j.dam.2006.08.007_bib14 article-title: A cutting-plane approach to the edge-weighted maximal clique problem publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(93)90097-7 – volume: 2 start-page: 82 year: 1974 ident: 10.1016/j.dam.2006.08.007_bib20 article-title: Lagrangian relaxation for integer programming publication-title: Math. Programming Study doi: 10.1007/BFb0120690 – volume: 74 start-page: 247 year: 1996 ident: 10.1016/j.dam.2006.08.007_bib16 article-title: Formulations and valid inequalities for node capacitated graph partitioning publication-title: Math. Programming doi: 10.1007/BF02592198 – ident: 10.1016/j.dam.2006.08.007_bib22 doi: 10.1007/978-3-642-97881-4 – ident: 10.1016/j.dam.2006.08.007_bib4 – volume: 45 start-page: 139 year: 1989 ident: 10.1016/j.dam.2006.08.007_bib34 article-title: The Boolean quadratic polytope: some characteristics, facets and relatives publication-title: Math. Programming doi: 10.1007/BF01589101 – volume: 77 start-page: 49 year: 1997 ident: 10.1016/j.dam.2006.08.007_bib45 article-title: On the 0/1 knapsack polytope publication-title: Math. Programming doi: 10.1007/BF02614517 – start-page: 1 year: 1998 ident: 10.1016/j.dam.2006.08.007_bib39 article-title: Knapsack problems – volume: 32 start-page: 1274 year: 1986 ident: 10.1016/j.dam.2006.08.007_bib1 article-title: A tight linearization and an algorithm for zero–one quadratic programming problems publication-title: Management Sci. doi: 10.1287/mnsc.32.10.1274 – volume: 112 start-page: 664 year: 1999 ident: 10.1016/j.dam.2006.08.007_bib6 article-title: A new upper-bound and an exact algorithm for the 0–1 quadratic knapsack problem publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(97)00414-1 |
SSID | ssj0001218 ssj0000186 ssj0006644 |
Score | 2.247189 |
Snippet | The binary
quadratic knapsack problem maximizes a quadratic objective function subject to a linear capacity constraint. Due to its simple structure and... |
SourceID | pascalfrancis crossref elsevier |
SourceType | Index Database Enrichment Source Publisher |
StartPage | 623 |
SubjectTerms | Algorithmics. Computability. Computer arithmetics Applied sciences Approximation algorithms Computer science; control theory; systems Exact sciences and technology Mathematical programming Operational research and scientific management Operational research. Management science Quadratic knapsack problem Semidefinite programming Theoretical computing Upper bounds Valid inequalities |
Title | The quadratic knapsack problem—a survey |
URI | https://dx.doi.org/10.1016/j.dam.2006.08.007 |
Volume | 155 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKewEhxCrWKgcuIIU6dmInx1JRtWxCLFJvkeNFKkspXZC4ID6CL-RLGDdOgQMcuI5iJxpP5o08M28Q2jVYAG7DD8gBTfyQZLEvwBH6guKM2HicTJrCzs5Z6yY87kSdEmoUvTC2rNL5_tynT7y1k9ScNmv9brd2BcEKA4DqYGbTWzyeQRVCEwamXam3T1rn31ikLEXabHHv8pVmALgNHfk38-1WRdpzUgCmxINLVthyS_4bcM33xRDUafI5GN_AqbmIFlxU6dXzD19CJd1bRnNnU0rW4QraA4PwnsZC2SOX3l1P9IdC3nluoszH27vwhuPBs35ZRTfNo-tGy3dzEnxJCR_5WWCiWAM0ZxwrohUNZEwyFhmCVSRUYkKlZEIyybQyJEt0EgaxsV2mhBsaM7qGyr3Hnl5HHge50AEWIuShhPBPaawlo5oaYe-KNhAulJBKRyJuZ1ncp0W12G0KerPDLVlq51tivoH2p0v6OYPGXw-HhWbTH2aQgof_a1n1xyl8vShmk9Tp5v_23UKz-V0u9YNoG5VHg7HegSBklFXRzMFrUAVTa1yeXlSdyYG03Tn8BLVW2Vs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKOVCEEKsoS8mBC0ihjuPY6RFVVAXaXmil3iLHi1QKpXRB4oL4CL6QL8FOnC4HeuBqxXY0npk3mhWACwWZxm0tgFSjiYtRHLpMK0KX-TBGxh5HSVFYs0XqHXzfDbo5UM1qYUxapdX9qU5PtLVdKVtqloe9XvlRGytEA1QXEhPeouEaWMdafI10Xn96Cz2kTIO0QuZ1mQcZNNhi2_qbuOagLOiZpH8J9mJDFSbZkv4FW1tDNtbEVOkUjAVoqu2AbWtTOjfpb--CnBzsgc3mrCHreB9canZw3qZMmAfnTn_AhmPG-46dJ_Pz9c2c8XT0Lj8OQKd2267WXTslweU-ohM39lQQSg3MMYUCSeF7PEQxCRSCImCiorAQvIJiTqRQKK7ICvZCZWpMEVV-SPxDkB-8DuQRcKheZ9KDjGGKuTb-hISSE1_6ihlPURHAjAgRty3EzSSL5yjLFXuKNN3MaEsSmemWkBbB1WzLMO2fsepjnFE2WmKCSOv3VdtKS68wvygkSeD0-H_nnoONervZiBp3rYcTUEi9ur7rBacgPxlN5Zk2RyZxKWG3X5nh14Y |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+quadratic+knapsack+problem%E2%80%94a+survey&rft.jtitle=Discrete+Applied+Mathematics&rft.au=Pisinger%2C+David&rft.date=2007-03-15&rft.pub=Elsevier+B.V&rft.issn=0166-218X&rft.eissn=1872-6771&rft.volume=155&rft.issue=5&rft.spage=623&rft.epage=648&rft_id=info:doi/10.1016%2Fj.dam.2006.08.007&rft.externalDocID=S0166218X06003878 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0166-218X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0166-218X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0166-218X&client=summon |