Effects of magnetization relaxation in ferrofluid film flows under a uniform magnetic field
We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver b...
Saved in:
Published in | Physics of fluids (1994) Vol. 32; no. 6 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.06.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0011655 |
Cover
Abstract | We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver based on OpenFOAM is programmed to find solutions numerically for the velocity, spin velocity, and magnetization in ferrofluid films under the combined pressure gradient, boundary flow, and magnetic field forcing. The solver is validated by comparison with the classical Couette–Poiseuille flows and the analytic solutions of the magnetization relaxation problem when the product of flow vorticity and relaxation time is much smaller than unit, ΩτB≪1. We compare the effects of magnetization relaxation obtained from the phenomenological magnetization equation with those from the equation derived microscopically. The results obtained from the former equation are not suitable for the description of ferrofluid film flows. Due to the magnetization relaxation effects, a misalignment between the local magnetization and the local magnetic field is observed. The net effects are that the flow is hampered by magnetic fields and it manifests as diminished slopes of vorticity profiles and reduced volumetric flow rates. The magnetization relaxation effects also slow down the spin velocity of particles or change their direction, which leads to an enhanced effective viscosity. The total tangential stress exerted on the moving boundary is higher than that of the classical Couette–Poiseuille flow owing to the addition of a magnetic stress. The magnetization relaxation effect is more significant in cases of ferrofluids with higher relaxation times. |
---|---|
AbstractList | We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver based on OpenFOAM is programmed to find solutions numerically for the velocity, spin velocity, and magnetization in ferrofluid films under the combined pressure gradient, boundary flow, and magnetic field forcing. The solver is validated by comparison with the classical Couette–Poiseuille flows and the analytic solutions of the magnetization relaxation problem when the product of flow vorticity and relaxation time is much smaller than unit, ΩτB≪1. We compare the effects of magnetization relaxation obtained from the phenomenological magnetization equation with those from the equation derived microscopically. The results obtained from the former equation are not suitable for the description of ferrofluid film flows. Due to the magnetization relaxation effects, a misalignment between the local magnetization and the local magnetic field is observed. The net effects are that the flow is hampered by magnetic fields and it manifests as diminished slopes of vorticity profiles and reduced volumetric flow rates. The magnetization relaxation effects also slow down the spin velocity of particles or change their direction, which leads to an enhanced effective viscosity. The total tangential stress exerted on the moving boundary is higher than that of the classical Couette–Poiseuille flow owing to the addition of a magnetic stress. The magnetization relaxation effect is more significant in cases of ferrofluids with higher relaxation times. |
Author | Liu, Beiying Yang, Wenming |
Author_xml | – sequence: 1 givenname: Wenming orcidid: 0000-0002-9527-3583 surname: Yang fullname: Yang, Wenming – sequence: 2 givenname: Beiying surname: Liu fullname: Liu, Beiying |
BookMark | eNp9kEtLw0AUhQepYK0u_AcBVwpp72SSSbKUUh9QcKMrF2EyM1emJJk6k_j69aamVVBxdc_iO9-Fc0hGjW00IScUphQ4myVTAEp5kuyRMYUsD1PO-WiTUwg5Z_SAHHq_AgCWR3xMHhaIWrY-sBjU4rHRrXkXrbFN4HQlXodomgC1cxarzqgATVUHWNkXH3SN0i4Q_TVoXb0zyJ7RlToi-ygqr4-3d0LuLxd38-tweXt1M79YhpJFaRsKCZinOco8g5SWoFHQqEyQCxnJTLNIUpWUIlKQZKVGikowwUBKLgWqXLAJOR28a2efOu3bYmU71_QviyimMYU4hqinzgZKOuu901isnamFeysoFJvtiqTYbtezsx-sNO3nFq0TpvqzcT40_I780j9b9w0Wa4X_wb_NHzn-kEM |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1016_j_icheatmasstransfer_2021_105793 crossref_primary_10_1063_5_0079357 crossref_primary_10_1016_j_jnnfm_2024_105306 crossref_primary_10_1109_TIM_2022_3166782 crossref_primary_10_1016_j_ijheatfluidflow_2021_108901 crossref_primary_10_1016_j_matpr_2021_09_404 crossref_primary_10_1063_5_0245099 crossref_primary_10_1016_j_jnnfm_2021_104730 crossref_primary_10_1063_5_0231232 crossref_primary_10_1016_j_cnsns_2023_107640 crossref_primary_10_1016_j_molliq_2021_115404 crossref_primary_10_1115_1_4053314 crossref_primary_10_1016_j_ijthermalsci_2021_106895 crossref_primary_10_1063_5_0059285 crossref_primary_10_1016_j_matcom_2024_12_013 crossref_primary_10_3390_fluids6030120 crossref_primary_10_2514_1_J060976 crossref_primary_10_1016_j_amc_2022_127704 |
Cites_doi | 10.1016/j.ijengsci.2011.09.011 10.1063/1.1850337 10.1016/j.cmpb.2019.104997 10.1088/1361-665x/aae2f3 10.3390/mi10060373 10.1016/s0021-9797(03)00325-4 10.1063/1.4960085 10.1016/0304-8853(95)00363-0 10.1515/zna-2016-0047 10.1016/j.icheatmasstransfer.2020.104499 10.1088/0964-1726/25/9/095016 10.1063/1.1485762 10.1063/1.1863320 10.1063/1.5111577 10.1103/physreve.64.061405 10.1063/1.868108 10.1103/physrevlett.118.114503 10.1016/j.triboint.2018.10.006 10.1016/j.cmpb.2019.105171 10.1103/physrevlett.71.2729 10.1103/physreve.64.060501 10.1016/j.cocis.2005.07.004 10.1088/0953-8984/16/23/001 10.1016/j.jmmm.2016.11.099 10.1063/1.5110689 10.1016/j.euromechflu.2019.01.009 10.22364/mhd.44.1.8 10.1109/tmag.2019.2892358 10.1016/j.triboint.2003.10.007 10.1103/physrevlett.89.037202 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0011655 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0011655 |
GrantInformation_xml | – fundername: The National Key Research and Development Project grantid: 2018YFC0810500 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 UCJ WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-ac0f979fc98071b0efa12b5f6ac2c8e32c1d5ba2d058bef1fda3a30cc6cafd9a3 |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 16:13:24 EDT 2025 Tue Jul 01 03:20:24 EDT 2025 Thu Apr 24 23:09:00 EDT 2025 Fri Jun 21 00:19:20 EDT 2024 Wed Nov 11 00:05:26 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | Published under license by AIP Publishing. 1070-6631/2020/32(6)/062003/13/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-ac0f979fc98071b0efa12b5f6ac2c8e32c1d5ba2d058bef1fda3a30cc6cafd9a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-9527-3583 |
PQID | 2414104402 |
PQPubID | 2050667 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1063_5_0011655 scitation_primary_10_1063_5_0011655 crossref_citationtrail_10_1063_5_0011655 proquest_journals_2414104402 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200601 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 20200601 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Turkyilmazoglu (c11) 2016; 71 Yang, Sun, Chen, Hao, Li, Thomas (c4) 2019; 55 Krekhov, Shliomis, Kamiyama (c20) 2005; 17 Turkyilmazoglu (c12) 2019; 76 Zahn, Greer (c18) 1995; 149 Yang, Liu (c5) 2018; 27 Rinaldi, Zahn (c19) 2002; 14 Hu, Wang, Huang, Wang (c8) 2018; 130 Krekhov, Shliomis (c21) 2017; 118 He, Elborai, Kim, Lee, Zahn (c31) 2005; 97 Yao, Chen, Li, Zhang, Li (c7) 2016; 25 Siddiqui, Turkyilmazoglu (c23) 2019; 10 Bashtovoi, Pogirnitskaya, Kuzhir, Polunin, Ryapov, Shabanova, Storozhenko (c30) 2013; 5 Shliomis (c16) 1972; 34 Shah, Bhat (c9) 2004; 37 Morozov, Shliomis (c14) 2004; 16 Rindldi, Chaves, Elborai, He, Zahn (c24) 2005; 10 Turkyilmazoglu (c35) 2020; 187 Siddiqui, Turkyilmazoglu (c3) 2020; 113 Li, Niu, Khan, Li, Yamaguchi (c2) 2019; 31 Singh, Das, Das (c22) 2016; 28 Shliomis, Morozov (c17) 1994; 6 Weis, Levesque (c13) 1993; 71 Turkyilmazoglu (c34) 2019; 179 Korlie, Mukherjee, Nita, Stevens, Trubatch, Yecko (c32) 2008; 44 Yang, Wang, Hao, Ma (c6) 2017; 426 Odenbach, Müller (c15) 2002; 89 Ali, Bilal (c29) 2016; 4 Martsenyuk, Raikher, Shliomis (c25) 1974; 38 Patel, Upadhyay, Mehta (c26) 2003; 263 Müller, Liu (c28) 2001; 64 Ghosh, Das (c33) 2019; 31 Shliomis (c27) 2001; 64 Turkyilmazoglu (c10) 2012; 51 (2023080906193931900_c6) 2017; 426 (2023080906193931900_c15) 2002; 89 (2023080906193931900_c13) 1993; 71 (2023080906193931900_c32) 2008; 44 (2023080906193931900_c30) 2013; 5 (2023080906193931900_c3) 2020; 113 (2023080906193931900_c27) 2001; 64 (2023080906193931900_c29) 2016; 4 (2023080906193931900_c5) 2018; 27 (2023080906193931900_c26) 2003; 263 (2023080906193931900_c4) 2019; 55 (2023080906193931900_c25) 1974; 38 (2023080906193931900_c28) 2001; 64 (2023080906193931900_c33) 2019; 31 (2023080906193931900_c16) 1972; 34 (2023080906193931900_c10) 2012; 51 (2023080906193931900_c24) 2005; 10 (2023080906193931900_c22) 2016; 28 (2023080906193931900_c19) 2002; 14 (2023080906193931900_c18) 1995; 149 (2023080906193931900_c11) 2016; 71 (2023080906193931900_c20) 2005; 17 (2023080906193931900_c31) 2005; 97 (2023080906193931900_c9) 2004; 37 (2023080906193931900_c8) 2018; 130 (2023080906193931900_c23) 2019; 10 (2023080906193931900_c12) 2019; 76 (2023080906193931900_c1) 2002 (2023080906193931900_c34) 2019; 179 (2023080906193931900_c21) 2017; 118 (2023080906193931900_c35) 2020; 187 (2023080906193931900_c7) 2016; 25 (2023080906193931900_c14) 2004; 16 (2023080906193931900_c2) 2019; 31 (2023080906193931900_c36) 2002 (2023080906193931900_c17) 1994; 6 |
References_xml | – volume: 426 start-page: 334 year: 2017 ident: c6 article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers publication-title: J. Magn. Magn. Mater. – volume: 28 start-page: 087103 year: 2016 ident: c22 article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow publication-title: Phys. Fluids – volume: 31 start-page: 082107 year: 2019 ident: c2 article-title: A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self correcting procedure-based lattice Boltzmann flux solver publication-title: Phys. Fluids – volume: 14 start-page: 2847 year: 2002 ident: c19 article-title: Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields publication-title: Phys. Fluids – volume: 113 start-page: 104499 year: 2020 ident: c3 article-title: Natural convection in the ferrofluid enclosed in a porous and permeable cavity publication-title: Int. Commun. Heat Mass Transfer – volume: 55 start-page: 4600406 year: 2019 ident: c4 article-title: Numerical and experimental studies of a novel converging stepped ferrofluid seal publication-title: IEEE Trans. Magn. – volume: 25 start-page: 095016 year: 2016 ident: c7 article-title: A novel accelerometer based on the first kind of ferrofluid levitation principle publication-title: Smart Mater. Struct. – volume: 10 start-page: 141 year: 2005 ident: c24 article-title: Magnetic fluid rheology and flows publication-title: Curr. Opin. Colloid Interface Sci. – volume: 76 start-page: 1 year: 2019 ident: c12 article-title: Free and circular jets cooled by single phase nanofluids publication-title: Eur. J. Mech.: B/Fluids – volume: 89 start-page: 037202 year: 2002 ident: c15 article-title: Stationary off-equilibrium magnetization in ferrofluids under rotational and elongational flow publication-title: Phys. Rev. Lett. – volume: 31 start-page: 083609 year: 2019 ident: c33 article-title: Control of flow and suppression of separation for Couette-Poiseuille hydrodynamics of ferrofluids using tunable magnetic fields publication-title: Phys. Fluids – volume: 71 start-page: 2729 year: 1993 ident: c13 article-title: Chain formation in low density dipolar hard spheres: A Monte Carlo study publication-title: Phys. Rev. Lett. – volume: 97 start-page: 10Q302 year: 2005 ident: c31 article-title: Effective magnetoviscosity of planar-Couette magnetic fluid flow publication-title: J. Appl. Phys. – volume: 187 start-page: 105171 year: 2020 ident: c35 article-title: Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis publication-title: Comput. Methods Prog. Biomed. – volume: 44 start-page: 51 year: 2008 ident: c32 article-title: Analysis of flows of ferrofluids under simple shear publication-title: Magnetohydrodynamics – volume: 71 start-page: 549 year: 2016 ident: c11 article-title: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces publication-title: Z. Naturforsch. – volume: 4 start-page: 1329 year: 2016 ident: c29 article-title: Couette flow with transverse magnetic field and its application to journal bearing publication-title: Int. J. Adv. Res. – volume: 5 start-page: 4011 year: 2013 ident: c30 article-title: Influence of mass transfer processes on Couette flow of magnetic fluid publication-title: J. Nano- Electron. Phys. – volume: 16 start-page: 3807 year: 2004 ident: c14 article-title: Ferrofluids: Flexibility of magnetic particle chains publication-title: J. Phys. D: Condens. Matter – volume: 17 start-page: 033105 year: 2005 ident: c20 article-title: Ferrofluid pipe flow in an oscillating magnetic field publication-title: Phys. Fluids – volume: 64 start-page: 060501 year: 2001 ident: c27 article-title: Ferrohydrodynamics: Testing a third magnetization equation publication-title: Phys. Rev. E – volume: 27 start-page: 115009 year: 2018 ident: c5 article-title: Magnetic levitation force of composite magnets in a ferrofluid damper publication-title: Smart Mater. Struct. – volume: 38 start-page: 413 year: 1974 ident: c25 article-title: On the kinetics of magnetization of suspensions of ferromagnetic particles publication-title: Sov. Phys. JETP – volume: 10 start-page: 373 year: 2019 ident: c23 article-title: A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids publication-title: Micromachines – volume: 263 start-page: 661 year: 2003 ident: c26 article-title: Viscosity measurements of a ferrofluid: Comparison with various hydrodynamic equations publication-title: J. Colloid Interface Sci. – volume: 64 start-page: 061405 year: 2001 ident: c28 article-title: Structure of ferrofluid dynamics publication-title: Phys. Rev. E – volume: 179 start-page: 104997 year: 2019 ident: c34 article-title: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models publication-title: Comput. Methods Prog. Biomed. – volume: 37 start-page: 441 year: 2004 ident: c9 article-title: Ferrofluid squeeze film in a long journal bearing publication-title: Tribol. Int. – volume: 130 start-page: 334 year: 2018 ident: c8 article-title: Supporting and friction properties of magnetic fluids bearings publication-title: Tribol. Int. – volume: 149 start-page: 165 year: 1995 ident: c18 article-title: Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields publication-title: J. Magn. Magn. Mater. – volume: 118 start-page: 114502 year: 2017 ident: c21 article-title: Spontaneous core rotation in ferrofluid pipe flow publication-title: Phys. Rev. Lett. – volume: 34 start-page: 1291 year: 1972 ident: c16 article-title: Effective viscosity of magnetic suspensions publication-title: Sov. Phys. JETP – volume: 51 start-page: 233 year: 2012 ident: c10 article-title: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk publication-title: Int. J. Eng. Sci. – volume: 6 start-page: 2855 year: 1994 ident: c17 article-title: Negative viscosity of ferrofluid under alternating magnetic field publication-title: Phys. Fluids – volume: 51 start-page: 233 year: 2012 ident: 2023080906193931900_c10 article-title: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk publication-title: Int. J. Eng. Sci. doi: 10.1016/j.ijengsci.2011.09.011 – volume: 97 start-page: 10Q302 year: 2005 ident: 2023080906193931900_c31 article-title: Effective magnetoviscosity of planar-Couette magnetic fluid flow publication-title: J. Appl. Phys. doi: 10.1063/1.1850337 – volume: 179 start-page: 104997 year: 2019 ident: 2023080906193931900_c34 article-title: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.104997 – volume: 27 start-page: 115009 year: 2018 ident: 2023080906193931900_c5 article-title: Magnetic levitation force of composite magnets in a ferrofluid damper publication-title: Smart Mater. Struct. doi: 10.1088/1361-665x/aae2f3 – volume: 10 start-page: 373 year: 2019 ident: 2023080906193931900_c23 article-title: A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids publication-title: Micromachines doi: 10.3390/mi10060373 – volume: 263 start-page: 661 year: 2003 ident: 2023080906193931900_c26 article-title: Viscosity measurements of a ferrofluid: Comparison with various hydrodynamic equations publication-title: J. Colloid Interface Sci. doi: 10.1016/s0021-9797(03)00325-4 – volume: 28 start-page: 087103 year: 2016 ident: 2023080906193931900_c22 article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow publication-title: Phys. Fluids doi: 10.1063/1.4960085 – volume-title: Ferrohydrodynamics year: 2002 ident: 2023080906193931900_c1 – volume: 149 start-page: 165 year: 1995 ident: 2023080906193931900_c18 article-title: Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields publication-title: J. Magn. Magn. Mater. doi: 10.1016/0304-8853(95)00363-0 – volume: 71 start-page: 549 year: 2016 ident: 2023080906193931900_c11 article-title: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces publication-title: Z. Naturforsch. doi: 10.1515/zna-2016-0047 – volume: 113 start-page: 104499 year: 2020 ident: 2023080906193931900_c3 article-title: Natural convection in the ferrofluid enclosed in a porous and permeable cavity publication-title: Int. Commun. Heat Mass Transfer doi: 10.1016/j.icheatmasstransfer.2020.104499 – volume: 34 start-page: 1291 year: 1972 ident: 2023080906193931900_c16 article-title: Effective viscosity of magnetic suspensions publication-title: Sov. Phys. JETP – volume: 25 start-page: 095016 year: 2016 ident: 2023080906193931900_c7 article-title: A novel accelerometer based on the first kind of ferrofluid levitation principle publication-title: Smart Mater. Struct. doi: 10.1088/0964-1726/25/9/095016 – volume: 14 start-page: 2847 year: 2002 ident: 2023080906193931900_c19 article-title: Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields publication-title: Phys. Fluids doi: 10.1063/1.1485762 – volume: 17 start-page: 033105 year: 2005 ident: 2023080906193931900_c20 article-title: Ferrofluid pipe flow in an oscillating magnetic field publication-title: Phys. Fluids doi: 10.1063/1.1863320 – volume: 31 start-page: 083609 year: 2019 ident: 2023080906193931900_c33 article-title: Control of flow and suppression of separation for Couette-Poiseuille hydrodynamics of ferrofluids using tunable magnetic fields publication-title: Phys. Fluids doi: 10.1063/1.5111577 – volume: 64 start-page: 061405 year: 2001 ident: 2023080906193931900_c28 article-title: Structure of ferrofluid dynamics publication-title: Phys. Rev. E doi: 10.1103/physreve.64.061405 – volume-title: Ferrofluids, Magnetically Controllable Fluids and Their Applications year: 2002 ident: 2023080906193931900_c36 – volume: 38 start-page: 413 year: 1974 ident: 2023080906193931900_c25 article-title: On the kinetics of magnetization of suspensions of ferromagnetic particles publication-title: Sov. Phys. JETP – volume: 6 start-page: 2855 year: 1994 ident: 2023080906193931900_c17 article-title: Negative viscosity of ferrofluid under alternating magnetic field publication-title: Phys. Fluids doi: 10.1063/1.868108 – volume: 118 start-page: 114502 year: 2017 ident: 2023080906193931900_c21 article-title: Spontaneous core rotation in ferrofluid pipe flow publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.118.114503 – volume: 130 start-page: 334 year: 2018 ident: 2023080906193931900_c8 article-title: Supporting and friction properties of magnetic fluids bearings publication-title: Tribol. Int. doi: 10.1016/j.triboint.2018.10.006 – volume: 5 start-page: 4011 year: 2013 ident: 2023080906193931900_c30 article-title: Influence of mass transfer processes on Couette flow of magnetic fluid publication-title: J. Nano- Electron. Phys. – volume: 187 start-page: 105171 year: 2020 ident: 2023080906193931900_c35 article-title: Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis publication-title: Comput. Methods Prog. Biomed. doi: 10.1016/j.cmpb.2019.105171 – volume: 71 start-page: 2729 year: 1993 ident: 2023080906193931900_c13 article-title: Chain formation in low density dipolar hard spheres: A Monte Carlo study publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.71.2729 – volume: 64 start-page: 060501 year: 2001 ident: 2023080906193931900_c27 article-title: Ferrohydrodynamics: Testing a third magnetization equation publication-title: Phys. Rev. E doi: 10.1103/physreve.64.060501 – volume: 10 start-page: 141 year: 2005 ident: 2023080906193931900_c24 article-title: Magnetic fluid rheology and flows publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2005.07.004 – volume: 16 start-page: 3807 year: 2004 ident: 2023080906193931900_c14 article-title: Ferrofluids: Flexibility of magnetic particle chains publication-title: J. Phys. D: Condens. Matter doi: 10.1088/0953-8984/16/23/001 – volume: 426 start-page: 334 year: 2017 ident: 2023080906193931900_c6 article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2016.11.099 – volume: 31 start-page: 082107 year: 2019 ident: 2023080906193931900_c2 article-title: A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self correcting procedure-based lattice Boltzmann flux solver publication-title: Phys. Fluids doi: 10.1063/1.5110689 – volume: 4 start-page: 1329 year: 2016 ident: 2023080906193931900_c29 article-title: Couette flow with transverse magnetic field and its application to journal bearing publication-title: Int. J. Adv. Res. – volume: 76 start-page: 1 year: 2019 ident: 2023080906193931900_c12 article-title: Free and circular jets cooled by single phase nanofluids publication-title: Eur. J. Mech.: B/Fluids doi: 10.1016/j.euromechflu.2019.01.009 – volume: 44 start-page: 51 year: 2008 ident: 2023080906193931900_c32 article-title: Analysis of flows of ferrofluids under simple shear publication-title: Magnetohydrodynamics doi: 10.22364/mhd.44.1.8 – volume: 55 start-page: 4600406 year: 2019 ident: 2023080906193931900_c4 article-title: Numerical and experimental studies of a novel converging stepped ferrofluid seal publication-title: IEEE Trans. Magn. doi: 10.1109/tmag.2019.2892358 – volume: 37 start-page: 441 year: 2004 ident: 2023080906193931900_c9 article-title: Ferrofluid squeeze film in a long journal bearing publication-title: Tribol. Int. doi: 10.1016/j.triboint.2003.10.007 – volume: 89 start-page: 037202 year: 2002 ident: 2023080906193931900_c15 article-title: Stationary off-equilibrium magnetization in ferrofluids under rotational and elongational flow publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.89.037202 |
SSID | ssj0003926 |
Score | 2.4024198 |
Snippet | We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Exact solutions Ferrofluids Ferrohydrodynamics Flow velocity Fluid dynamics Laminar flow Magnetic fields Magnetic induction Magnetism Magnetization Misalignment Particle spin Physics Relaxation time Stress relaxation Vorticity |
Title | Effects of magnetization relaxation in ferrofluid film flows under a uniform magnetic field |
URI | http://dx.doi.org/10.1063/5.0011655 https://www.proquest.com/docview/2414104402 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA-6IfoydSreuUlQH4RLtU3atHkcbjLE-eIGAx9KkiZjcG_vuLdT8a_35KvZ8CLTl7aE01M4v-T0R3I-EHrTdUo3momsZpxlpYAlJXghs5oSWmsjVJPb3OHjL-zotPx0Vp2lGq4uu2SQ79SvtXkl_4MqjAGuNkv2H5AdlcIAPAO-cAWE4XorjA9TMMZcnPd6CEmVLkPlp4hxjEYvwdvOri46W4ZpPjWzxY-Va4C7nAq42-SsedSgpi6o7TppdVGiyn3GafHVnTgv4zZC2DUgeYpuCo4OlnoGbMMP6TDWcMDMd0GJ3jHtPkZX94fTBZYDlqr8oU5V3UWbpK7tmfnm_sHx56_jjxGoGPMhoP7TsdATo-_Hl2_Sg8T57wMh8LEJ137_J4_QVuDteN-D8Bjd0f02ehg4PA4ecrWN7gVjPUHfAjp4YfANdHBCB1_0OKGDLTrYoYMdOljggE7UoLBD5yk6_Xh48uEoC60sMkVJPWRC5YbX3CjeAKeTOayCgsjKMKGIajQlqugqKUiXV43UpjCdoILmSjElTMcFfYY2-kWvnyPMJdWdshuiRJc6r7kkVoA1ohCNYnKC3kYLttFmtt3IrHXxBoy2VRuMPUGvRtFLX9xkndBuhKENc3_VAu8rC9utnEzQ6xGavylZI_V9sUwS7WVndm6l6wV6kGb0LtoYlld6D5jhIF-GGfcbA89ldA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+magnetization+relaxation+in+ferrofluid+film+flows+under+a+uniform+magnetic+field&rft.jtitle=Physics+of+fluids+%281994%29&rft.date=2020-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=6&rft_id=info:doi/10.1063%2F5.0011655 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |