Effects of magnetization relaxation in ferrofluid film flows under a uniform magnetic field

We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver b...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 32; no. 6
Main Authors Yang, Wenming, Liu, Beiying
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.06.2020
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0011655

Cover

Abstract We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver based on OpenFOAM is programmed to find solutions numerically for the velocity, spin velocity, and magnetization in ferrofluid films under the combined pressure gradient, boundary flow, and magnetic field forcing. The solver is validated by comparison with the classical Couette–Poiseuille flows and the analytic solutions of the magnetization relaxation problem when the product of flow vorticity and relaxation time is much smaller than unit, ΩτB≪1. We compare the effects of magnetization relaxation obtained from the phenomenological magnetization equation with those from the equation derived microscopically. The results obtained from the former equation are not suitable for the description of ferrofluid film flows. Due to the magnetization relaxation effects, a misalignment between the local magnetization and the local magnetic field is observed. The net effects are that the flow is hampered by magnetic fields and it manifests as diminished slopes of vorticity profiles and reduced volumetric flow rates. The magnetization relaxation effects also slow down the spin velocity of particles or change their direction, which leads to an enhanced effective viscosity. The total tangential stress exerted on the moving boundary is higher than that of the classical Couette–Poiseuille flow owing to the addition of a magnetic stress. The magnetization relaxation effect is more significant in cases of ferrofluids with higher relaxation times.
AbstractList We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization equation in a Couette–Poiseuille configuration subject to an applied uniform stationary magnetic field perpendicular to the boundaries. A solver based on OpenFOAM is programmed to find solutions numerically for the velocity, spin velocity, and magnetization in ferrofluid films under the combined pressure gradient, boundary flow, and magnetic field forcing. The solver is validated by comparison with the classical Couette–Poiseuille flows and the analytic solutions of the magnetization relaxation problem when the product of flow vorticity and relaxation time is much smaller than unit, ΩτB≪1. We compare the effects of magnetization relaxation obtained from the phenomenological magnetization equation with those from the equation derived microscopically. The results obtained from the former equation are not suitable for the description of ferrofluid film flows. Due to the magnetization relaxation effects, a misalignment between the local magnetization and the local magnetic field is observed. The net effects are that the flow is hampered by magnetic fields and it manifests as diminished slopes of vorticity profiles and reduced volumetric flow rates. The magnetization relaxation effects also slow down the spin velocity of particles or change their direction, which leads to an enhanced effective viscosity. The total tangential stress exerted on the moving boundary is higher than that of the classical Couette–Poiseuille flow owing to the addition of a magnetic stress. The magnetization relaxation effect is more significant in cases of ferrofluids with higher relaxation times.
Author Liu, Beiying
Yang, Wenming
Author_xml – sequence: 1
  givenname: Wenming
  orcidid: 0000-0002-9527-3583
  surname: Yang
  fullname: Yang, Wenming
– sequence: 2
  givenname: Beiying
  surname: Liu
  fullname: Liu, Beiying
BookMark eNp9kEtLw0AUhQepYK0u_AcBVwpp72SSSbKUUh9QcKMrF2EyM1emJJk6k_j69aamVVBxdc_iO9-Fc0hGjW00IScUphQ4myVTAEp5kuyRMYUsD1PO-WiTUwg5Z_SAHHq_AgCWR3xMHhaIWrY-sBjU4rHRrXkXrbFN4HQlXodomgC1cxarzqgATVUHWNkXH3SN0i4Q_TVoXb0zyJ7RlToi-ygqr4-3d0LuLxd38-tweXt1M79YhpJFaRsKCZinOco8g5SWoFHQqEyQCxnJTLNIUpWUIlKQZKVGikowwUBKLgWqXLAJOR28a2efOu3bYmU71_QviyimMYU4hqinzgZKOuu901isnamFeysoFJvtiqTYbtezsx-sNO3nFq0TpvqzcT40_I780j9b9w0Wa4X_wb_NHzn-kEM
CODEN PHFLE6
CitedBy_id crossref_primary_10_1016_j_icheatmasstransfer_2021_105793
crossref_primary_10_1063_5_0079357
crossref_primary_10_1016_j_jnnfm_2024_105306
crossref_primary_10_1109_TIM_2022_3166782
crossref_primary_10_1016_j_ijheatfluidflow_2021_108901
crossref_primary_10_1016_j_matpr_2021_09_404
crossref_primary_10_1063_5_0245099
crossref_primary_10_1016_j_jnnfm_2021_104730
crossref_primary_10_1063_5_0231232
crossref_primary_10_1016_j_cnsns_2023_107640
crossref_primary_10_1016_j_molliq_2021_115404
crossref_primary_10_1115_1_4053314
crossref_primary_10_1016_j_ijthermalsci_2021_106895
crossref_primary_10_1063_5_0059285
crossref_primary_10_1016_j_matcom_2024_12_013
crossref_primary_10_3390_fluids6030120
crossref_primary_10_2514_1_J060976
crossref_primary_10_1016_j_amc_2022_127704
Cites_doi 10.1016/j.ijengsci.2011.09.011
10.1063/1.1850337
10.1016/j.cmpb.2019.104997
10.1088/1361-665x/aae2f3
10.3390/mi10060373
10.1016/s0021-9797(03)00325-4
10.1063/1.4960085
10.1016/0304-8853(95)00363-0
10.1515/zna-2016-0047
10.1016/j.icheatmasstransfer.2020.104499
10.1088/0964-1726/25/9/095016
10.1063/1.1485762
10.1063/1.1863320
10.1063/1.5111577
10.1103/physreve.64.061405
10.1063/1.868108
10.1103/physrevlett.118.114503
10.1016/j.triboint.2018.10.006
10.1016/j.cmpb.2019.105171
10.1103/physrevlett.71.2729
10.1103/physreve.64.060501
10.1016/j.cocis.2005.07.004
10.1088/0953-8984/16/23/001
10.1016/j.jmmm.2016.11.099
10.1063/1.5110689
10.1016/j.euromechflu.2019.01.009
10.22364/mhd.44.1.8
10.1109/tmag.2019.2892358
10.1016/j.triboint.2003.10.007
10.1103/physrevlett.89.037202
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0011655
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0011655
GrantInformation_xml – fundername: The National Key Research and Development Project
  grantid: 2018YFC0810500
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
UCJ
WH7
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-ac0f979fc98071b0efa12b5f6ac2c8e32c1d5ba2d058bef1fda3a30cc6cafd9a3
ISSN 1070-6631
IngestDate Sun Jun 29 16:13:24 EDT 2025
Tue Jul 01 03:20:24 EDT 2025
Thu Apr 24 23:09:00 EDT 2025
Fri Jun 21 00:19:20 EDT 2024
Wed Nov 11 00:05:26 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License Published under license by AIP Publishing.
1070-6631/2020/32(6)/062003/13/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-ac0f979fc98071b0efa12b5f6ac2c8e32c1d5ba2d058bef1fda3a30cc6cafd9a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9527-3583
PQID 2414104402
PQPubID 2050667
PageCount 13
ParticipantIDs crossref_primary_10_1063_5_0011655
scitation_primary_10_1063_5_0011655
crossref_citationtrail_10_1063_5_0011655
proquest_journals_2414104402
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200601
2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 20200601
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Turkyilmazoglu (c11) 2016; 71
Yang, Sun, Chen, Hao, Li, Thomas (c4) 2019; 55
Krekhov, Shliomis, Kamiyama (c20) 2005; 17
Turkyilmazoglu (c12) 2019; 76
Zahn, Greer (c18) 1995; 149
Yang, Liu (c5) 2018; 27
Rinaldi, Zahn (c19) 2002; 14
Hu, Wang, Huang, Wang (c8) 2018; 130
Krekhov, Shliomis (c21) 2017; 118
He, Elborai, Kim, Lee, Zahn (c31) 2005; 97
Yao, Chen, Li, Zhang, Li (c7) 2016; 25
Siddiqui, Turkyilmazoglu (c23) 2019; 10
Bashtovoi, Pogirnitskaya, Kuzhir, Polunin, Ryapov, Shabanova, Storozhenko (c30) 2013; 5
Shliomis (c16) 1972; 34
Shah, Bhat (c9) 2004; 37
Morozov, Shliomis (c14) 2004; 16
Rindldi, Chaves, Elborai, He, Zahn (c24) 2005; 10
Turkyilmazoglu (c35) 2020; 187
Siddiqui, Turkyilmazoglu (c3) 2020; 113
Li, Niu, Khan, Li, Yamaguchi (c2) 2019; 31
Singh, Das, Das (c22) 2016; 28
Shliomis, Morozov (c17) 1994; 6
Weis, Levesque (c13) 1993; 71
Turkyilmazoglu (c34) 2019; 179
Korlie, Mukherjee, Nita, Stevens, Trubatch, Yecko (c32) 2008; 44
Yang, Wang, Hao, Ma (c6) 2017; 426
Odenbach, Müller (c15) 2002; 89
Ali, Bilal (c29) 2016; 4
Martsenyuk, Raikher, Shliomis (c25) 1974; 38
Patel, Upadhyay, Mehta (c26) 2003; 263
Müller, Liu (c28) 2001; 64
Ghosh, Das (c33) 2019; 31
Shliomis (c27) 2001; 64
Turkyilmazoglu (c10) 2012; 51
(2023080906193931900_c6) 2017; 426
(2023080906193931900_c15) 2002; 89
(2023080906193931900_c13) 1993; 71
(2023080906193931900_c32) 2008; 44
(2023080906193931900_c30) 2013; 5
(2023080906193931900_c3) 2020; 113
(2023080906193931900_c27) 2001; 64
(2023080906193931900_c29) 2016; 4
(2023080906193931900_c5) 2018; 27
(2023080906193931900_c26) 2003; 263
(2023080906193931900_c4) 2019; 55
(2023080906193931900_c25) 1974; 38
(2023080906193931900_c28) 2001; 64
(2023080906193931900_c33) 2019; 31
(2023080906193931900_c16) 1972; 34
(2023080906193931900_c10) 2012; 51
(2023080906193931900_c24) 2005; 10
(2023080906193931900_c22) 2016; 28
(2023080906193931900_c19) 2002; 14
(2023080906193931900_c18) 1995; 149
(2023080906193931900_c11) 2016; 71
(2023080906193931900_c20) 2005; 17
(2023080906193931900_c31) 2005; 97
(2023080906193931900_c9) 2004; 37
(2023080906193931900_c8) 2018; 130
(2023080906193931900_c23) 2019; 10
(2023080906193931900_c12) 2019; 76
(2023080906193931900_c1) 2002
(2023080906193931900_c34) 2019; 179
(2023080906193931900_c21) 2017; 118
(2023080906193931900_c35) 2020; 187
(2023080906193931900_c7) 2016; 25
(2023080906193931900_c14) 2004; 16
(2023080906193931900_c2) 2019; 31
(2023080906193931900_c36) 2002
(2023080906193931900_c17) 1994; 6
References_xml – volume: 426
  start-page: 334
  year: 2017
  ident: c6
  article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers
  publication-title: J. Magn. Magn. Mater.
– volume: 28
  start-page: 087103
  year: 2016
  ident: c22
  article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow
  publication-title: Phys. Fluids
– volume: 31
  start-page: 082107
  year: 2019
  ident: c2
  article-title: A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self correcting procedure-based lattice Boltzmann flux solver
  publication-title: Phys. Fluids
– volume: 14
  start-page: 2847
  year: 2002
  ident: c19
  article-title: Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields
  publication-title: Phys. Fluids
– volume: 113
  start-page: 104499
  year: 2020
  ident: c3
  article-title: Natural convection in the ferrofluid enclosed in a porous and permeable cavity
  publication-title: Int. Commun. Heat Mass Transfer
– volume: 55
  start-page: 4600406
  year: 2019
  ident: c4
  article-title: Numerical and experimental studies of a novel converging stepped ferrofluid seal
  publication-title: IEEE Trans. Magn.
– volume: 25
  start-page: 095016
  year: 2016
  ident: c7
  article-title: A novel accelerometer based on the first kind of ferrofluid levitation principle
  publication-title: Smart Mater. Struct.
– volume: 10
  start-page: 141
  year: 2005
  ident: c24
  article-title: Magnetic fluid rheology and flows
  publication-title: Curr. Opin. Colloid Interface Sci.
– volume: 76
  start-page: 1
  year: 2019
  ident: c12
  article-title: Free and circular jets cooled by single phase nanofluids
  publication-title: Eur. J. Mech.: B/Fluids
– volume: 89
  start-page: 037202
  year: 2002
  ident: c15
  article-title: Stationary off-equilibrium magnetization in ferrofluids under rotational and elongational flow
  publication-title: Phys. Rev. Lett.
– volume: 31
  start-page: 083609
  year: 2019
  ident: c33
  article-title: Control of flow and suppression of separation for Couette-Poiseuille hydrodynamics of ferrofluids using tunable magnetic fields
  publication-title: Phys. Fluids
– volume: 71
  start-page: 2729
  year: 1993
  ident: c13
  article-title: Chain formation in low density dipolar hard spheres: A Monte Carlo study
  publication-title: Phys. Rev. Lett.
– volume: 97
  start-page: 10Q302
  year: 2005
  ident: c31
  article-title: Effective magnetoviscosity of planar-Couette magnetic fluid flow
  publication-title: J. Appl. Phys.
– volume: 187
  start-page: 105171
  year: 2020
  ident: c35
  article-title: Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis
  publication-title: Comput. Methods Prog. Biomed.
– volume: 44
  start-page: 51
  year: 2008
  ident: c32
  article-title: Analysis of flows of ferrofluids under simple shear
  publication-title: Magnetohydrodynamics
– volume: 71
  start-page: 549
  year: 2016
  ident: c11
  article-title: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces
  publication-title: Z. Naturforsch.
– volume: 4
  start-page: 1329
  year: 2016
  ident: c29
  article-title: Couette flow with transverse magnetic field and its application to journal bearing
  publication-title: Int. J. Adv. Res.
– volume: 5
  start-page: 4011
  year: 2013
  ident: c30
  article-title: Influence of mass transfer processes on Couette flow of magnetic fluid
  publication-title: J. Nano- Electron. Phys.
– volume: 16
  start-page: 3807
  year: 2004
  ident: c14
  article-title: Ferrofluids: Flexibility of magnetic particle chains
  publication-title: J. Phys. D: Condens. Matter
– volume: 17
  start-page: 033105
  year: 2005
  ident: c20
  article-title: Ferrofluid pipe flow in an oscillating magnetic field
  publication-title: Phys. Fluids
– volume: 64
  start-page: 060501
  year: 2001
  ident: c27
  article-title: Ferrohydrodynamics: Testing a third magnetization equation
  publication-title: Phys. Rev. E
– volume: 27
  start-page: 115009
  year: 2018
  ident: c5
  article-title: Magnetic levitation force of composite magnets in a ferrofluid damper
  publication-title: Smart Mater. Struct.
– volume: 38
  start-page: 413
  year: 1974
  ident: c25
  article-title: On the kinetics of magnetization of suspensions of ferromagnetic particles
  publication-title: Sov. Phys. JETP
– volume: 10
  start-page: 373
  year: 2019
  ident: c23
  article-title: A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids
  publication-title: Micromachines
– volume: 263
  start-page: 661
  year: 2003
  ident: c26
  article-title: Viscosity measurements of a ferrofluid: Comparison with various hydrodynamic equations
  publication-title: J. Colloid Interface Sci.
– volume: 64
  start-page: 061405
  year: 2001
  ident: c28
  article-title: Structure of ferrofluid dynamics
  publication-title: Phys. Rev. E
– volume: 179
  start-page: 104997
  year: 2019
  ident: c34
  article-title: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models
  publication-title: Comput. Methods Prog. Biomed.
– volume: 37
  start-page: 441
  year: 2004
  ident: c9
  article-title: Ferrofluid squeeze film in a long journal bearing
  publication-title: Tribol. Int.
– volume: 130
  start-page: 334
  year: 2018
  ident: c8
  article-title: Supporting and friction properties of magnetic fluids bearings
  publication-title: Tribol. Int.
– volume: 149
  start-page: 165
  year: 1995
  ident: c18
  article-title: Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields
  publication-title: J. Magn. Magn. Mater.
– volume: 118
  start-page: 114502
  year: 2017
  ident: c21
  article-title: Spontaneous core rotation in ferrofluid pipe flow
  publication-title: Phys. Rev. Lett.
– volume: 34
  start-page: 1291
  year: 1972
  ident: c16
  article-title: Effective viscosity of magnetic suspensions
  publication-title: Sov. Phys. JETP
– volume: 51
  start-page: 233
  year: 2012
  ident: c10
  article-title: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk
  publication-title: Int. J. Eng. Sci.
– volume: 6
  start-page: 2855
  year: 1994
  ident: c17
  article-title: Negative viscosity of ferrofluid under alternating magnetic field
  publication-title: Phys. Fluids
– volume: 51
  start-page: 233
  year: 2012
  ident: 2023080906193931900_c10
  article-title: Effects of uniform radial electric field on the MHD heat and fluid flow due to a rotating disk
  publication-title: Int. J. Eng. Sci.
  doi: 10.1016/j.ijengsci.2011.09.011
– volume: 97
  start-page: 10Q302
  year: 2005
  ident: 2023080906193931900_c31
  article-title: Effective magnetoviscosity of planar-Couette magnetic fluid flow
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1850337
– volume: 179
  start-page: 104997
  year: 2019
  ident: 2023080906193931900_c34
  article-title: Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.104997
– volume: 27
  start-page: 115009
  year: 2018
  ident: 2023080906193931900_c5
  article-title: Magnetic levitation force of composite magnets in a ferrofluid damper
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665x/aae2f3
– volume: 10
  start-page: 373
  year: 2019
  ident: 2023080906193931900_c23
  article-title: A new theoretical approach of wall transpiration in the cavity flow of the ferrofluids
  publication-title: Micromachines
  doi: 10.3390/mi10060373
– volume: 263
  start-page: 661
  year: 2003
  ident: 2023080906193931900_c26
  article-title: Viscosity measurements of a ferrofluid: Comparison with various hydrodynamic equations
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/s0021-9797(03)00325-4
– volume: 28
  start-page: 087103
  year: 2016
  ident: 2023080906193931900_c22
  article-title: Flow restrictive and shear reducing effect of magnetization relaxation in ferrofluid cavity flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.4960085
– volume-title: Ferrohydrodynamics
  year: 2002
  ident: 2023080906193931900_c1
– volume: 149
  start-page: 165
  year: 1995
  ident: 2023080906193931900_c18
  article-title: Ferrohydrodynamic pumping in spatially uniform sinusoidally time-varying magnetic fields
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/0304-8853(95)00363-0
– volume: 71
  start-page: 549
  year: 2016
  ident: 2023080906193931900_c11
  article-title: Magnetic field and slip effects on the flow and heat transfer of stagnation point Jeffrey fluid over deformable surfaces
  publication-title: Z. Naturforsch.
  doi: 10.1515/zna-2016-0047
– volume: 113
  start-page: 104499
  year: 2020
  ident: 2023080906193931900_c3
  article-title: Natural convection in the ferrofluid enclosed in a porous and permeable cavity
  publication-title: Int. Commun. Heat Mass Transfer
  doi: 10.1016/j.icheatmasstransfer.2020.104499
– volume: 34
  start-page: 1291
  year: 1972
  ident: 2023080906193931900_c16
  article-title: Effective viscosity of magnetic suspensions
  publication-title: Sov. Phys. JETP
– volume: 25
  start-page: 095016
  year: 2016
  ident: 2023080906193931900_c7
  article-title: A novel accelerometer based on the first kind of ferrofluid levitation principle
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/25/9/095016
– volume: 14
  start-page: 2847
  year: 2002
  ident: 2023080906193931900_c19
  article-title: Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields
  publication-title: Phys. Fluids
  doi: 10.1063/1.1485762
– volume: 17
  start-page: 033105
  year: 2005
  ident: 2023080906193931900_c20
  article-title: Ferrofluid pipe flow in an oscillating magnetic field
  publication-title: Phys. Fluids
  doi: 10.1063/1.1863320
– volume: 31
  start-page: 083609
  year: 2019
  ident: 2023080906193931900_c33
  article-title: Control of flow and suppression of separation for Couette-Poiseuille hydrodynamics of ferrofluids using tunable magnetic fields
  publication-title: Phys. Fluids
  doi: 10.1063/1.5111577
– volume: 64
  start-page: 061405
  year: 2001
  ident: 2023080906193931900_c28
  article-title: Structure of ferrofluid dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.64.061405
– volume-title: Ferrofluids, Magnetically Controllable Fluids and Their Applications
  year: 2002
  ident: 2023080906193931900_c36
– volume: 38
  start-page: 413
  year: 1974
  ident: 2023080906193931900_c25
  article-title: On the kinetics of magnetization of suspensions of ferromagnetic particles
  publication-title: Sov. Phys. JETP
– volume: 6
  start-page: 2855
  year: 1994
  ident: 2023080906193931900_c17
  article-title: Negative viscosity of ferrofluid under alternating magnetic field
  publication-title: Phys. Fluids
  doi: 10.1063/1.868108
– volume: 118
  start-page: 114502
  year: 2017
  ident: 2023080906193931900_c21
  article-title: Spontaneous core rotation in ferrofluid pipe flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.118.114503
– volume: 130
  start-page: 334
  year: 2018
  ident: 2023080906193931900_c8
  article-title: Supporting and friction properties of magnetic fluids bearings
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2018.10.006
– volume: 5
  start-page: 4011
  year: 2013
  ident: 2023080906193931900_c30
  article-title: Influence of mass transfer processes on Couette flow of magnetic fluid
  publication-title: J. Nano- Electron. Phys.
– volume: 187
  start-page: 105171
  year: 2020
  ident: 2023080906193931900_c35
  article-title: Single phase nanofluids in fluid mechanics and their hydrodynamic linear stability analysis
  publication-title: Comput. Methods Prog. Biomed.
  doi: 10.1016/j.cmpb.2019.105171
– volume: 71
  start-page: 2729
  year: 1993
  ident: 2023080906193931900_c13
  article-title: Chain formation in low density dipolar hard spheres: A Monte Carlo study
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.71.2729
– volume: 64
  start-page: 060501
  year: 2001
  ident: 2023080906193931900_c27
  article-title: Ferrohydrodynamics: Testing a third magnetization equation
  publication-title: Phys. Rev. E
  doi: 10.1103/physreve.64.060501
– volume: 10
  start-page: 141
  year: 2005
  ident: 2023080906193931900_c24
  article-title: Magnetic fluid rheology and flows
  publication-title: Curr. Opin. Colloid Interface Sci.
  doi: 10.1016/j.cocis.2005.07.004
– volume: 16
  start-page: 3807
  year: 2004
  ident: 2023080906193931900_c14
  article-title: Ferrofluids: Flexibility of magnetic particle chains
  publication-title: J. Phys. D: Condens. Matter
  doi: 10.1088/0953-8984/16/23/001
– volume: 426
  start-page: 334
  year: 2017
  ident: 2023080906193931900_c6
  article-title: Experimental verification of radial magnetic levitation force on the cylindrical magnets in ferrofluid dampers
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.11.099
– volume: 31
  start-page: 082107
  year: 2019
  ident: 2023080906193931900_c2
  article-title: A numerical investigation of dynamics of bubbly flow in a ferrofluid by a self correcting procedure-based lattice Boltzmann flux solver
  publication-title: Phys. Fluids
  doi: 10.1063/1.5110689
– volume: 4
  start-page: 1329
  year: 2016
  ident: 2023080906193931900_c29
  article-title: Couette flow with transverse magnetic field and its application to journal bearing
  publication-title: Int. J. Adv. Res.
– volume: 76
  start-page: 1
  year: 2019
  ident: 2023080906193931900_c12
  article-title: Free and circular jets cooled by single phase nanofluids
  publication-title: Eur. J. Mech.: B/Fluids
  doi: 10.1016/j.euromechflu.2019.01.009
– volume: 44
  start-page: 51
  year: 2008
  ident: 2023080906193931900_c32
  article-title: Analysis of flows of ferrofluids under simple shear
  publication-title: Magnetohydrodynamics
  doi: 10.22364/mhd.44.1.8
– volume: 55
  start-page: 4600406
  year: 2019
  ident: 2023080906193931900_c4
  article-title: Numerical and experimental studies of a novel converging stepped ferrofluid seal
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/tmag.2019.2892358
– volume: 37
  start-page: 441
  year: 2004
  ident: 2023080906193931900_c9
  article-title: Ferrofluid squeeze film in a long journal bearing
  publication-title: Tribol. Int.
  doi: 10.1016/j.triboint.2003.10.007
– volume: 89
  start-page: 037202
  year: 2002
  ident: 2023080906193931900_c15
  article-title: Stationary off-equilibrium magnetization in ferrofluids under rotational and elongational flow
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/physrevlett.89.037202
SSID ssj0003926
Score 2.4024198
Snippet We analyze the magnetization relaxation effects of a ferrofluid film flow governed by the ferrohydrodynamics encompassing the Fokker–Planck magnetization...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Exact solutions
Ferrofluids
Ferrohydrodynamics
Flow velocity
Fluid dynamics
Laminar flow
Magnetic fields
Magnetic induction
Magnetism
Magnetization
Misalignment
Particle spin
Physics
Relaxation time
Stress relaxation
Vorticity
Title Effects of magnetization relaxation in ferrofluid film flows under a uniform magnetic field
URI http://dx.doi.org/10.1063/5.0011655
https://www.proquest.com/docview/2414104402
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9UwFA-6IfoydSreuUlQH4RLtU3atHkcbjLE-eIGAx9KkiZjcG_vuLdT8a_35KvZ8CLTl7aE01M4v-T0R3I-EHrTdUo3momsZpxlpYAlJXghs5oSWmsjVJPb3OHjL-zotPx0Vp2lGq4uu2SQ79SvtXkl_4MqjAGuNkv2H5AdlcIAPAO-cAWE4XorjA9TMMZcnPd6CEmVLkPlp4hxjEYvwdvOri46W4ZpPjWzxY-Va4C7nAq42-SsedSgpi6o7TppdVGiyn3GafHVnTgv4zZC2DUgeYpuCo4OlnoGbMMP6TDWcMDMd0GJ3jHtPkZX94fTBZYDlqr8oU5V3UWbpK7tmfnm_sHx56_jjxGoGPMhoP7TsdATo-_Hl2_Sg8T57wMh8LEJ137_J4_QVuDteN-D8Bjd0f02ehg4PA4ecrWN7gVjPUHfAjp4YfANdHBCB1_0OKGDLTrYoYMdOljggE7UoLBD5yk6_Xh48uEoC60sMkVJPWRC5YbX3CjeAKeTOayCgsjKMKGIajQlqugqKUiXV43UpjCdoILmSjElTMcFfYY2-kWvnyPMJdWdshuiRJc6r7kkVoA1ohCNYnKC3kYLttFmtt3IrHXxBoy2VRuMPUGvRtFLX9xkndBuhKENc3_VAu8rC9utnEzQ6xGavylZI_V9sUwS7WVndm6l6wV6kGb0LtoYlld6D5jhIF-GGfcbA89ldA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Effects+of+magnetization+relaxation+in+ferrofluid+film+flows+under+a+uniform+magnetic+field&rft.jtitle=Physics+of+fluids+%281994%29&rft.date=2020-06-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=6&rft_id=info:doi/10.1063%2F5.0011655
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon