Deep learning-based structural health monitoring through the infusion of optical photos and vibration data

This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical ph...

Full description

Saved in:
Bibliographic Details
Published inAdvances in structural engineering Vol. 28; no. 3; pp. 532 - 552
Main Authors Al-Qudah, Saleh, Bai, Xin, Yang, Mijia, Gao, Zhili
Format Journal Article
LanguageEnglish
Published London, England SAGE Publications 01.02.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical photo-based model is established and used to classify different defects. Based on the satisfactory outcomes of these two models, a new structural health monitoring technique is proposed through the infusion of optical photos and vibration data. Vibration signals and true structural images for a truss are used to demonstrate the capability of the proposed method. It was found that the infusion of vibration data and optical photos can enhance damage identification significantly and overcome the drawbacks in the existing deep learning models due to incomplete vibration signals or blurred optical photo inputs.
AbstractList This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical photo-based model is established and used to classify different defects. Based on the satisfactory outcomes of these two models, a new structural health monitoring technique is proposed through the infusion of optical photos and vibration data. Vibration signals and true structural images for a truss are used to demonstrate the capability of the proposed method. It was found that the infusion of vibration data and optical photos can enhance damage identification significantly and overcome the drawbacks in the existing deep learning models due to incomplete vibration signals or blurred optical photo inputs.
Author Yang, Mijia
Bai, Xin
Gao, Zhili
Al-Qudah, Saleh
Author_xml – sequence: 1
  givenname: Saleh
  surname: Al-Qudah
  fullname: Al-Qudah, Saleh
  organization: Construction Management
– sequence: 2
  givenname: Xin
  surname: Bai
  fullname: Bai, Xin
  organization: Construction Management
– sequence: 3
  givenname: Mijia
  orcidid: 0000-0002-5781-8765
  surname: Yang
  fullname: Yang, Mijia
  email: mijia.yang@ndsu.edu
  organization: Construction Management
– sequence: 4
  givenname: Zhili
  surname: Gao
  fullname: Gao, Zhili
  organization: Construction Management
BookMark eNp9kM1OwzAQhC1UJNrCA3DzC6R47TROjqj8SpW4wDnaOpvGVWpXtoPE25NSTiD1NIeZb7Q7MzZx3hFjtyAWAFrfgSqqXCkpc5BlBVpdsKkUeZnlAmDCpkc_Owau2CzGnRAgtYYp2z0QHXhPGJx122yDkRoeUxhMGgL2vCPsU8f33tnkwxjhqQt-2HajEreuHaL1jvuW-0OyZiQOnU8-cnQN_7SbgOnoN5jwml222Ee6-dU5-3h6fF-9ZOu359fV_TozSuqUYdlgmwtNSpam2ZRFQ0VbGViqQlLRGNJ5ASovlrQsG9gQIGK7rEBU0hgSuZozfeo1wccYqK2NTT9npIC2r0HUx8nqf5ONJPwhD8HuMXydZRYnJuKW6p0fghufOwN8A4tJfxs
CitedBy_id crossref_primary_10_1177_13694332251321196
Cites_doi 10.1016/j.ymssp.2004.12.002
10.3390/e24010119
10.1016/j.compind.2018.12.013
10.3390/s20030717
10.1109/TIE.2017.2764844
10.12989/sss.2014.14.4.719
10.1016/j.engstruct.2016.04.057
10.1177/1475921715624502
10.3390/ai5030075
10.1080/14680629.2017.1308265
10.1111/mice.12412
10.1080/10298436.2018.1485917
10.1111/mice.12313
10.1243/03093247V142049
10.3390/coatings10020152
10.3390/s23063152
10.1007/978-3-030-19894-7_46
10.1201/9781482281767
10.1016/j.ymssp.2013.02.001
10.1016/j.jsv.2018.03.008
10.1162/neco_a_00990
ContentType Journal Article
Copyright The Author(s) 2024
Copyright_xml – notice: The Author(s) 2024
DBID AFRWT
AAYXX
CITATION
DOI 10.1177/13694332241289173
DatabaseName Sage Open Access Journals (Free internet resource, activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
Database_xml – sequence: 1
  dbid: AFRWT
  name: Sage Journals GOLD Open Access 2024
  url: http://journals.sagepub.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2048-4011
EndPage 552
ExternalDocumentID 10_1177_13694332241289173
10.1177_13694332241289173
GrantInformation_xml – fundername: Aeronautics Research Mission Directorate
  grantid: 80NSSC19M0047
  funderid: https://doi.org/10.13039/100016821
GroupedDBID -TM
-TN
0R~
23M
4.4
54M
5GY
6KP
AABPG
AADUE
AAGGD
AAGLT
AAJPV
AANSI
AAOTM
AAOVH
AAPEO
AAQXI
AARIX
AATAA
AATZT
ABAWP
ABCCA
ABCJG
ABDBF
ABDWY
ABEIX
ABFNE
ABFWQ
ABGWC
ABHKI
ABIDT
ABJNI
ABKRH
ABLUO
ABPNF
ABQKF
ABQXT
ABRHV
ABUBZ
ABUJY
ABYTW
ACDXX
ACGBL
ACGFS
ACOFE
ACOXC
ACROE
ACSIQ
ACUAV
ACUHS
ACUIR
ACXKE
ADEBD
ADEIA
ADGDL
ADMLS
ADRRZ
ADTBJ
ADUKL
ADVBO
AEDFJ
AENEX
AEPTA
AEQLS
AESZF
AEWDL
AEWHI
AEXNY
AFEET
AFGYO
AFKRG
AFMOU
AFQAA
AFRWT
AFUIA
AGKLV
AGNHF
AGWFA
AHDMH
AIZZC
AJEFB
AJUZI
ALMA_UNASSIGNED_HOLDINGS
ARTOV
AUTPY
AYAKG
BBRGL
BDDNI
BPACV
CBRKF
CFDXU
CKLRP
CORYS
CS3
DH.
DOPDO
DV7
EBS
EJD
ESX
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
I-F
IL9
J8X
K.F
MET
MV1
O9-
Q1R
ROL
SASJQ
SAUOL
SCNPE
SFC
SPV
TUS
ZPPRI
ZRKOI
AAYXX
AJGYC
CITATION
ID FETCH-LOGICAL-c327t-a8daf407e328cdb86de6f9c15362e6dce74613465e58d1be1aaaf591092cce043
IEDL.DBID AFRWT
ISSN 1369-4332
IngestDate Tue Jul 01 05:24:14 EDT 2025
Thu Apr 24 23:01:56 EDT 2025
Tue Jun 17 22:31:18 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords structural health monitoring
deep-learning
vibration
damage identification
infusion of vibration data and optical photos
Language English
License This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-a8daf407e328cdb86de6f9c15362e6dce74613465e58d1be1aaaf591092cce043
ORCID 0000-0002-5781-8765
OpenAccessLink https://journals.sagepub.com/doi/full/10.1177/13694332241289173?utm_source=summon&utm_medium=discovery-provider
PageCount 21
ParticipantIDs crossref_citationtrail_10_1177_13694332241289173
crossref_primary_10_1177_13694332241289173
sage_journals_10_1177_13694332241289173
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250200
2025-02-00
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 2
  year: 2025
  text: 20250200
PublicationDecade 2020
PublicationPlace London, England
PublicationPlace_xml – name: London, England
PublicationTitle Advances in structural engineering
PublicationYear 2025
Publisher SAGE Publications
Publisher_xml – name: SAGE Publications
References Mao, Zhang, Qiao 2022; 24
Soloviev, Sobol, Vasiliev 2019; 4
Avci, Abdeljaber, Kiranyaz 2018; 424
Li, Wang, Zhang 2020; 21
Li, Ma, He 2020; 20
Chen, Jahanshahi 2018; 65
Rawat, Wang 2017; 29
Al-Qudah, Yang 2023; 23
Tran, Yang, Gu 2013; 38
Al-Qudah, Yang 2024; 5
Wang, Li, Song 2019; 105
Tong, Gao, Han 2018; 19
Chang, Kim 2016; 122
Cawley, Adams 1979; 14
Fan, Li, Chen 2020; 10
Lin, Nie, Ma 2017; 32
Liu, Cho, Spencer 2014; 14
Yang, Li, Yu 2018; 33
Dorafshan, Maguire, Hoffer 2017; 2
Yan, Kerschen, De Boe 2005; 19
Ebrahimkhanlou, Farhidzadeh, Salamone 2016; 15
bibr18-13694332241289173
bibr2-13694332241289173
bibr5-13694332241289173
bibr9-13694332241289173
bibr6-13694332241289173
bibr12-13694332241289173
bibr20-13694332241289173
bibr10-13694332241289173
bibr22-13694332241289173
bibr15-13694332241289173
bibr7-13694332241289173
bibr13-13694332241289173
bibr23-13694332241289173
bibr3-13694332241289173
bibr16-13694332241289173
bibr1-13694332241289173
Dorafshan S (bibr8-13694332241289173) 2017; 2
bibr19-13694332241289173
bibr17-13694332241289173
bibr4-13694332241289173
bibr14-13694332241289173
bibr11-13694332241289173
bibr21-13694332241289173
References_xml – volume: 20
  start-page: 717
  year: 2020
  article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique
  publication-title: Sensors
– volume: 19
  start-page: 847
  issue: 4
  year: 2005
  end-page: 864
  article-title: Structural damage diagnosis under varying environmental conditions. Part I: a linear analysis
  publication-title: Mechanical Systems and Signal Processing
– volume: 14
  start-page: 719
  year: 2014
  end-page: 741
  article-title: Automated assessment of cracks on concrete surfaces using adaptive digital image processing
  publication-title: Smart Structures and Systems
– volume: 33
  start-page: 1090
  year: 2018
  end-page: 1109
  article-title: Automatic pixel-level crack detection and measurement using fully convolutional network
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 24
  start-page: 119
  issue: 1
  year: 2022
  article-title: Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions
  publication-title: Entropy
– volume: 5
  start-page: 1558
  issue: 3
  year: 2024
  end-page: 1574
  article-title: Effective hybrid structure health monitoring through parametric study of GoogLeNet
  publication-title: AI
– volume: 65
  start-page: 4392
  year: 2018
  end-page: 4400
  article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 10
  start-page: 152
  year: 2020
  article-title: Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement
  publication-title: Coatings
– volume: 4
  start-page: 615
  year: 2019
  end-page: 626
  article-title: Identification of defects in pavement images using deep convolutional neural networks
  publication-title: Advanced Materials
– volume: 15
  start-page: 81
  year: 2016
  end-page: 92
  article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls
  publication-title: Structural Health Monitoring
– volume: 105
  start-page: 182
  year: 2019
  end-page: 190
  article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals
  publication-title: Computers in Industry
– volume: 38
  start-page: 601
  year: 2013
  end-page: 614
  article-title: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– volume: 32
  start-page: 1025
  issue: 12
  year: 2017
  end-page: 1046
  article-title: Structural damage detection with automatic feature extraction through deep learning
  publication-title: Computer-Aided Civil and Infrastructure Engineering
– volume: 14
  start-page: 49
  issue: 2
  year: 1979
  end-page: 57
  article-title: The location of defects in structures from measurements of natural frequencies
  publication-title: The Journal of Strain Analysis for Engineering Design
– volume: 23
  start-page: 3152
  issue: 6
  year: 2023
  article-title: Large displacement detection using improved lucas–kanade optical flow
  publication-title: Sensors
– volume: 2
  start-page: 1
  year: 2017
  end-page: 120
  article-title: Fatigue crack detection using unmanned aerial systems in under-bridge inspection
  publication-title: Idaho Department of Transportation
– volume: 19
  start-page: 1334
  year: 2018
  end-page: 1349
  article-title: Recognition of asphalt pavement crack length using deep convolutional neural networks
  publication-title: Road Materials and Pavement Design
– volume: 21
  start-page: 457
  year: 2020
  end-page: 463
  article-title: Automatic classification of pavement crack using deep convolutional neural network
  publication-title: International Journal of Pavement Engineering
– volume: 424
  start-page: 158
  year: 2018
  end-page: 172
  article-title: Wireless and real-time structural damage detection: a novel decentralized method for wireless sensor networks
  publication-title: Journal of Sound and Vibration
– volume: 122
  start-page: 156
  year: 2016
  end-page: 173
  article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge
  publication-title: Engineering Structures
– volume: 29
  start-page: 2352
  year: 2017
  end-page: 2449
  article-title: Deep convolutional neural networks for image classification: a comprehensive review
  publication-title: Neural Computation
– ident: bibr22-13694332241289173
  doi: 10.1016/j.ymssp.2004.12.002
– volume: 2
  start-page: 1
  year: 2017
  ident: bibr8-13694332241289173
  publication-title: Idaho Department of Transportation
– ident: bibr15-13694332241289173
  doi: 10.3390/e24010119
– ident: bibr21-13694332241289173
  doi: 10.1016/j.compind.2018.12.013
– ident: bibr12-13694332241289173
  doi: 10.3390/s20030717
– ident: bibr7-13694332241289173
  doi: 10.1109/TIE.2017.2764844
– ident: bibr14-13694332241289173
  doi: 10.12989/sss.2014.14.4.719
– ident: bibr6-13694332241289173
  doi: 10.1016/j.engstruct.2016.04.057
– ident: bibr9-13694332241289173
  doi: 10.1177/1475921715624502
– ident: bibr3-13694332241289173
  doi: 10.3390/ai5030075
– ident: bibr19-13694332241289173
  doi: 10.1080/14680629.2017.1308265
– ident: bibr23-13694332241289173
  doi: 10.1111/mice.12412
– ident: bibr11-13694332241289173
  doi: 10.1080/10298436.2018.1485917
– ident: bibr13-13694332241289173
  doi: 10.1111/mice.12313
– ident: bibr5-13694332241289173
  doi: 10.1243/03093247V142049
– ident: bibr10-13694332241289173
  doi: 10.3390/coatings10020152
– ident: bibr17-13694332241289173
– ident: bibr2-13694332241289173
  doi: 10.3390/s23063152
– ident: bibr18-13694332241289173
  doi: 10.1007/978-3-030-19894-7_46
– ident: bibr1-13694332241289173
  doi: 10.1201/9781482281767
– ident: bibr20-13694332241289173
  doi: 10.1016/j.ymssp.2013.02.001
– ident: bibr4-13694332241289173
  doi: 10.1016/j.jsv.2018.03.008
– ident: bibr16-13694332241289173
  doi: 10.1162/neco_a_00990
SSID ssj0012771
Score 2.360195
Snippet This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual...
SourceID crossref
sage
SourceType Enrichment Source
Index Database
Publisher
StartPage 532
Title Deep learning-based structural health monitoring through the infusion of optical photos and vibration data
URI https://journals.sagepub.com/doi/full/10.1177/13694332241289173
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eXvRBvOK8kQdBEOrWpEm7J3HOMQR9kA19G2lyqohbC9sE_73ntKkoXvCpUBJakpN85_odxo6VkYRDMtAylgEilAhM5CjFCrJWjJiQaipwvrnV_WF0_aAeFlhe18L4FZyeUVoV_lF5WdPpJm900wcZm6HUbSLeQvhBgyGM5fl8Nh5V7u66qwa9ofj0fEyhbUsJkW9BXd62yJZFrBWe5OWL3t394CPwIGJvo-k2FRMJHwj98aNfoOxTHlgJTb11tuZ1Sn5RCcEGW4DJJlv9xDS4xZ67AAX3LSIeA8IuxyvuWOLd4FU5JB-XJ5ymcN_AB5_AUQrn5FXjecbzovR-8-Ipn-VTbiaOv5LJTRvMKd90mw17V4PLfuDbLARWingWmMSZDO06kCKxLk20A521LV6FWoB2FuIIMT_SClTiwhRCY0ymUM1oC2uhFckdtjTJJ7DLOMgsMTKyVhOTm1JGOdQ_wYVgshRtsQZr1Ss2sp6DnFphvIxCTzv-bZEb7PRjSlERcPw1-IS2YVRL0e8j9_49cp-tCOr5W2ZqH7Al3Bo4REVklh6h8HS6nd6RF6J35VjXcQ
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gOwAHxFOMZw5ISEhFa9Kk7XECpgHbDmgTu1Vp4oIQtJU2-P3EbZiGeIhTL05UxU4-O7E_E3IqFEcc4p7kIfcsQjFPBQZTrCBrhxYTUokFzoOh7I2D24mYuKxKrIVxKzi9wLQq-0fVYT3f3VgnzmWMnFsWeWys4Id8mTQDRK0GaXa69w-j-RsCC124JWOsC2LuTfPHSb6g0kJKV4Uy3Q2y7txD2qn1uUmWIN8iawukgdvk-QqgpK7bw6OHMGRoTQOLFBq0rmykr9VmxSHU9eKxX6DWoN7wgowWGS3K6iKblk_FrJhSlRv6jtEz6opi6ugOGXevR5c9z3VM8DRn4cxTkVGZDdGAs0ibNJIGZBZre6pJBtJoCAML34EUICLjp-ArpTJhPYaYaQ3tgO-SRl7ksEco8CxSPNBaIimbEEoY60qC8UFlqQ2rWqT9uWKJdnTi2NXiJfEdg_i3RW6R8_mQsubS-Ev4DNWQfBrE75L7_5Y8ISu90aCf9G-GdwdklWEr3yoB-5A0rJrgyPoXs_TYGdIHbm3DaA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6geiD-InzMw-CIFTXJk3bx-Es82uIbLi3kiZXRbQtbPr3m2uzMfEDn_qShHKX5Hd3ufsdIce-ZIhDzBEsYI5BKM-RXGOKFWTtwGBCKrDA-a4vekN-PfJHNuCGtTBWguMzTKsyf1Rd1ni6S52d2zfGc5eJCHm3DPoYf8EN2CJpcm6wsUGanfjhcTB7R_AC63KJCGuDPPuu-eMiX5BpLq2rQpp4jaxaE5F2ap2ukwXIN8jKHHHgJnnpApTUdnx4chCKNK2pYJFGg9bVjfStOrA4hdp-POYL1GyqdwyS0SKjRVkFs2n5XEyKMZW5ph_oQaO-KKaPbpFhfDm46Dm2a4KjmBdMHBlqmRk3DZgXKp2GQoPIImVuNuGB0AoCbiCcCx_8ULspuFLKzDdWQ-QpBW3OtkkjL3LYIRRYFkrGlRJIzOb70tfGnATtgsxS41q1SHsqsURZSnHsbPGauJZF_JuQW-R0NqWs-TT-GnyCakimm-L3kbv_HnlElu67cXJ71b_ZI8sedvOtcrD3ScNoCQ6MiTFJD-0--gSDM8R4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+structural+health+monitoring+through+the+infusion+of+optical+photos+and+vibration+data&rft.jtitle=Advances+in+structural+engineering&rft.au=Al-Qudah%2C+Saleh&rft.au=Bai%2C+Xin&rft.au=Yang%2C+Mijia&rft.au=Gao%2C+Zhili&rft.date=2025-02-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=28&rft.issue=3&rft.spage=532&rft.epage=552&rft_id=info:doi/10.1177%2F13694332241289173&rft.externalDocID=10.1177_13694332241289173
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon