Deep learning-based structural health monitoring through the infusion of optical photos and vibration data
This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical ph...
Saved in:
Published in | Advances in structural engineering Vol. 28; no. 3; pp. 532 - 552 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London, England
SAGE Publications
01.02.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical photo-based model is established and used to classify different defects. Based on the satisfactory outcomes of these two models, a new structural health monitoring technique is proposed through the infusion of optical photos and vibration data. Vibration signals and true structural images for a truss are used to demonstrate the capability of the proposed method. It was found that the infusion of vibration data and optical photos can enhance damage identification significantly and overcome the drawbacks in the existing deep learning models due to incomplete vibration signals or blurred optical photo inputs. |
---|---|
AbstractList | This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual inspection. First, a vibration-based deep learning model is established to locate the damage in a beam and a truss structure. Then an optical photo-based model is established and used to classify different defects. Based on the satisfactory outcomes of these two models, a new structural health monitoring technique is proposed through the infusion of optical photos and vibration data. Vibration signals and true structural images for a truss are used to demonstrate the capability of the proposed method. It was found that the infusion of vibration data and optical photos can enhance damage identification significantly and overcome the drawbacks in the existing deep learning models due to incomplete vibration signals or blurred optical photo inputs. |
Author | Yang, Mijia Bai, Xin Gao, Zhili Al-Qudah, Saleh |
Author_xml | – sequence: 1 givenname: Saleh surname: Al-Qudah fullname: Al-Qudah, Saleh organization: Construction Management – sequence: 2 givenname: Xin surname: Bai fullname: Bai, Xin organization: Construction Management – sequence: 3 givenname: Mijia orcidid: 0000-0002-5781-8765 surname: Yang fullname: Yang, Mijia email: mijia.yang@ndsu.edu organization: Construction Management – sequence: 4 givenname: Zhili surname: Gao fullname: Gao, Zhili organization: Construction Management |
BookMark | eNp9kM1OwzAQhC1UJNrCA3DzC6R47TROjqj8SpW4wDnaOpvGVWpXtoPE25NSTiD1NIeZb7Q7MzZx3hFjtyAWAFrfgSqqXCkpc5BlBVpdsKkUeZnlAmDCpkc_Owau2CzGnRAgtYYp2z0QHXhPGJx122yDkRoeUxhMGgL2vCPsU8f33tnkwxjhqQt-2HajEreuHaL1jvuW-0OyZiQOnU8-cnQN_7SbgOnoN5jwml222Ee6-dU5-3h6fF-9ZOu359fV_TozSuqUYdlgmwtNSpam2ZRFQ0VbGViqQlLRGNJ5ASovlrQsG9gQIGK7rEBU0hgSuZozfeo1wccYqK2NTT9npIC2r0HUx8nqf5ONJPwhD8HuMXydZRYnJuKW6p0fghufOwN8A4tJfxs |
CitedBy_id | crossref_primary_10_1177_13694332251321196 |
Cites_doi | 10.1016/j.ymssp.2004.12.002 10.3390/e24010119 10.1016/j.compind.2018.12.013 10.3390/s20030717 10.1109/TIE.2017.2764844 10.12989/sss.2014.14.4.719 10.1016/j.engstruct.2016.04.057 10.1177/1475921715624502 10.3390/ai5030075 10.1080/14680629.2017.1308265 10.1111/mice.12412 10.1080/10298436.2018.1485917 10.1111/mice.12313 10.1243/03093247V142049 10.3390/coatings10020152 10.3390/s23063152 10.1007/978-3-030-19894-7_46 10.1201/9781482281767 10.1016/j.ymssp.2013.02.001 10.1016/j.jsv.2018.03.008 10.1162/neco_a_00990 |
ContentType | Journal Article |
Copyright | The Author(s) 2024 |
Copyright_xml | – notice: The Author(s) 2024 |
DBID | AFRWT AAYXX CITATION |
DOI | 10.1177/13694332241289173 |
DatabaseName | Sage Open Access Journals (Free internet resource, activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: AFRWT name: Sage Journals GOLD Open Access 2024 url: http://journals.sagepub.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2048-4011 |
EndPage | 552 |
ExternalDocumentID | 10_1177_13694332241289173 10.1177_13694332241289173 |
GrantInformation_xml | – fundername: Aeronautics Research Mission Directorate grantid: 80NSSC19M0047 funderid: https://doi.org/10.13039/100016821 |
GroupedDBID | -TM -TN 0R~ 23M 4.4 54M 5GY 6KP AABPG AADUE AAGGD AAGLT AAJPV AANSI AAOTM AAOVH AAPEO AAQXI AARIX AATAA AATZT ABAWP ABCCA ABCJG ABDBF ABDWY ABEIX ABFNE ABFWQ ABGWC ABHKI ABIDT ABJNI ABKRH ABLUO ABPNF ABQKF ABQXT ABRHV ABUBZ ABUJY ABYTW ACDXX ACGBL ACGFS ACOFE ACOXC ACROE ACSIQ ACUAV ACUHS ACUIR ACXKE ADEBD ADEIA ADGDL ADMLS ADRRZ ADTBJ ADUKL ADVBO AEDFJ AENEX AEPTA AEQLS AESZF AEWDL AEWHI AEXNY AFEET AFGYO AFKRG AFMOU AFQAA AFRWT AFUIA AGKLV AGNHF AGWFA AHDMH AIZZC AJEFB AJUZI ALMA_UNASSIGNED_HOLDINGS ARTOV AUTPY AYAKG BBRGL BDDNI BPACV CBRKF CFDXU CKLRP CORYS CS3 DH. DOPDO DV7 EBS EJD ESX FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 I-F IL9 J8X K.F MET MV1 O9- Q1R ROL SASJQ SAUOL SCNPE SFC SPV TUS ZPPRI ZRKOI AAYXX AJGYC CITATION |
ID | FETCH-LOGICAL-c327t-a8daf407e328cdb86de6f9c15362e6dce74613465e58d1be1aaaf591092cce043 |
IEDL.DBID | AFRWT |
ISSN | 1369-4332 |
IngestDate | Tue Jul 01 05:24:14 EDT 2025 Thu Apr 24 23:01:56 EDT 2025 Tue Jun 17 22:31:18 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | structural health monitoring deep-learning vibration damage identification infusion of vibration data and optical photos |
Language | English |
License | This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-a8daf407e328cdb86de6f9c15362e6dce74613465e58d1be1aaaf591092cce043 |
ORCID | 0000-0002-5781-8765 |
OpenAccessLink | https://journals.sagepub.com/doi/full/10.1177/13694332241289173?utm_source=summon&utm_medium=discovery-provider |
PageCount | 21 |
ParticipantIDs | crossref_citationtrail_10_1177_13694332241289173 crossref_primary_10_1177_13694332241289173 sage_journals_10_1177_13694332241289173 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250200 2025-02-00 |
PublicationDateYYYYMMDD | 2025-02-01 |
PublicationDate_xml | – month: 2 year: 2025 text: 20250200 |
PublicationDecade | 2020 |
PublicationPlace | London, England |
PublicationPlace_xml | – name: London, England |
PublicationTitle | Advances in structural engineering |
PublicationYear | 2025 |
Publisher | SAGE Publications |
Publisher_xml | – name: SAGE Publications |
References | Mao, Zhang, Qiao 2022; 24 Soloviev, Sobol, Vasiliev 2019; 4 Avci, Abdeljaber, Kiranyaz 2018; 424 Li, Wang, Zhang 2020; 21 Li, Ma, He 2020; 20 Chen, Jahanshahi 2018; 65 Rawat, Wang 2017; 29 Al-Qudah, Yang 2023; 23 Tran, Yang, Gu 2013; 38 Al-Qudah, Yang 2024; 5 Wang, Li, Song 2019; 105 Tong, Gao, Han 2018; 19 Chang, Kim 2016; 122 Cawley, Adams 1979; 14 Fan, Li, Chen 2020; 10 Lin, Nie, Ma 2017; 32 Liu, Cho, Spencer 2014; 14 Yang, Li, Yu 2018; 33 Dorafshan, Maguire, Hoffer 2017; 2 Yan, Kerschen, De Boe 2005; 19 Ebrahimkhanlou, Farhidzadeh, Salamone 2016; 15 bibr18-13694332241289173 bibr2-13694332241289173 bibr5-13694332241289173 bibr9-13694332241289173 bibr6-13694332241289173 bibr12-13694332241289173 bibr20-13694332241289173 bibr10-13694332241289173 bibr22-13694332241289173 bibr15-13694332241289173 bibr7-13694332241289173 bibr13-13694332241289173 bibr23-13694332241289173 bibr3-13694332241289173 bibr16-13694332241289173 bibr1-13694332241289173 Dorafshan S (bibr8-13694332241289173) 2017; 2 bibr19-13694332241289173 bibr17-13694332241289173 bibr4-13694332241289173 bibr14-13694332241289173 bibr11-13694332241289173 bibr21-13694332241289173 |
References_xml | – volume: 20 start-page: 717 year: 2020 article-title: Automatic tunnel crack detection based on U-net and a convolutional neural network with alternately updated clique publication-title: Sensors – volume: 19 start-page: 847 issue: 4 year: 2005 end-page: 864 article-title: Structural damage diagnosis under varying environmental conditions. Part I: a linear analysis publication-title: Mechanical Systems and Signal Processing – volume: 14 start-page: 719 year: 2014 end-page: 741 article-title: Automated assessment of cracks on concrete surfaces using adaptive digital image processing publication-title: Smart Structures and Systems – volume: 33 start-page: 1090 year: 2018 end-page: 1109 article-title: Automatic pixel-level crack detection and measurement using fully convolutional network publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 24 start-page: 119 issue: 1 year: 2022 article-title: Fusion domain-adaptation CNN driven by images and vibration signals for fault diagnosis of gearbox cross-working conditions publication-title: Entropy – volume: 5 start-page: 1558 issue: 3 year: 2024 end-page: 1574 article-title: Effective hybrid structure health monitoring through parametric study of GoogLeNet publication-title: AI – volume: 65 start-page: 4392 year: 2018 end-page: 4400 article-title: NB-CNN: deep learning-based crack detection using convolutional neural network and Naïve Bayes data fusion publication-title: IEEE Transactions on Industrial Electronics – volume: 10 start-page: 152 year: 2020 article-title: Ensemble of deep convolutional neural networks for automatic pavement crack detection and measurement publication-title: Coatings – volume: 4 start-page: 615 year: 2019 end-page: 626 article-title: Identification of defects in pavement images using deep convolutional neural networks publication-title: Advanced Materials – volume: 15 start-page: 81 year: 2016 end-page: 92 article-title: Multifractal analysis of crack patterns in reinforced concrete shear walls publication-title: Structural Health Monitoring – volume: 105 start-page: 182 year: 2019 end-page: 190 article-title: A novel convolutional neural network based fault recognition method via image fusion of multi-vibration-signals publication-title: Computers in Industry – volume: 38 start-page: 601 year: 2013 end-page: 614 article-title: Thermal image enhancement using bi-dimensional empirical mode decomposition in combination with relevance vector machine for rotating machinery fault diagnosis publication-title: Mechanical Systems and Signal Processing – volume: 32 start-page: 1025 issue: 12 year: 2017 end-page: 1046 article-title: Structural damage detection with automatic feature extraction through deep learning publication-title: Computer-Aided Civil and Infrastructure Engineering – volume: 14 start-page: 49 issue: 2 year: 1979 end-page: 57 article-title: The location of defects in structures from measurements of natural frequencies publication-title: The Journal of Strain Analysis for Engineering Design – volume: 23 start-page: 3152 issue: 6 year: 2023 article-title: Large displacement detection using improved lucas–kanade optical flow publication-title: Sensors – volume: 2 start-page: 1 year: 2017 end-page: 120 article-title: Fatigue crack detection using unmanned aerial systems in under-bridge inspection publication-title: Idaho Department of Transportation – volume: 19 start-page: 1334 year: 2018 end-page: 1349 article-title: Recognition of asphalt pavement crack length using deep convolutional neural networks publication-title: Road Materials and Pavement Design – volume: 21 start-page: 457 year: 2020 end-page: 463 article-title: Automatic classification of pavement crack using deep convolutional neural network publication-title: International Journal of Pavement Engineering – volume: 424 start-page: 158 year: 2018 end-page: 172 article-title: Wireless and real-time structural damage detection: a novel decentralized method for wireless sensor networks publication-title: Journal of Sound and Vibration – volume: 122 start-page: 156 year: 2016 end-page: 173 article-title: Modal-parameter identification and vibration-based damage detection of a damaged steel truss bridge publication-title: Engineering Structures – volume: 29 start-page: 2352 year: 2017 end-page: 2449 article-title: Deep convolutional neural networks for image classification: a comprehensive review publication-title: Neural Computation – ident: bibr22-13694332241289173 doi: 10.1016/j.ymssp.2004.12.002 – volume: 2 start-page: 1 year: 2017 ident: bibr8-13694332241289173 publication-title: Idaho Department of Transportation – ident: bibr15-13694332241289173 doi: 10.3390/e24010119 – ident: bibr21-13694332241289173 doi: 10.1016/j.compind.2018.12.013 – ident: bibr12-13694332241289173 doi: 10.3390/s20030717 – ident: bibr7-13694332241289173 doi: 10.1109/TIE.2017.2764844 – ident: bibr14-13694332241289173 doi: 10.12989/sss.2014.14.4.719 – ident: bibr6-13694332241289173 doi: 10.1016/j.engstruct.2016.04.057 – ident: bibr9-13694332241289173 doi: 10.1177/1475921715624502 – ident: bibr3-13694332241289173 doi: 10.3390/ai5030075 – ident: bibr19-13694332241289173 doi: 10.1080/14680629.2017.1308265 – ident: bibr23-13694332241289173 doi: 10.1111/mice.12412 – ident: bibr11-13694332241289173 doi: 10.1080/10298436.2018.1485917 – ident: bibr13-13694332241289173 doi: 10.1111/mice.12313 – ident: bibr5-13694332241289173 doi: 10.1243/03093247V142049 – ident: bibr10-13694332241289173 doi: 10.3390/coatings10020152 – ident: bibr17-13694332241289173 – ident: bibr2-13694332241289173 doi: 10.3390/s23063152 – ident: bibr18-13694332241289173 doi: 10.1007/978-3-030-19894-7_46 – ident: bibr1-13694332241289173 doi: 10.1201/9781482281767 – ident: bibr20-13694332241289173 doi: 10.1016/j.ymssp.2013.02.001 – ident: bibr4-13694332241289173 doi: 10.1016/j.jsv.2018.03.008 – ident: bibr16-13694332241289173 doi: 10.1162/neco_a_00990 |
SSID | ssj0012771 |
Score | 2.360195 |
Snippet | This paper reports an investigation of deep learning techniques in structural damage identification that can overcome the limitations of traditional visual... |
SourceID | crossref sage |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 532 |
Title | Deep learning-based structural health monitoring through the infusion of optical photos and vibration data |
URI | https://journals.sagepub.com/doi/full/10.1177/13694332241289173 |
Volume | 28 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwFA5eXvRBvOK8kQdBEOrWpEm7J3HOMQR9kA19G2lyqohbC9sE_73ntKkoXvCpUBJakpN85_odxo6VkYRDMtAylgEilAhM5CjFCrJWjJiQaipwvrnV_WF0_aAeFlhe18L4FZyeUVoV_lF5WdPpJm900wcZm6HUbSLeQvhBgyGM5fl8Nh5V7u66qwa9ofj0fEyhbUsJkW9BXd62yJZFrBWe5OWL3t394CPwIGJvo-k2FRMJHwj98aNfoOxTHlgJTb11tuZ1Sn5RCcEGW4DJJlv9xDS4xZ67AAX3LSIeA8IuxyvuWOLd4FU5JB-XJ5ymcN_AB5_AUQrn5FXjecbzovR-8-Ipn-VTbiaOv5LJTRvMKd90mw17V4PLfuDbLARWingWmMSZDO06kCKxLk20A521LV6FWoB2FuIIMT_SClTiwhRCY0ymUM1oC2uhFckdtjTJJ7DLOMgsMTKyVhOTm1JGOdQ_wYVgshRtsQZr1Ss2sp6DnFphvIxCTzv-bZEb7PRjSlERcPw1-IS2YVRL0e8j9_49cp-tCOr5W2ZqH7Al3Bo4REVklh6h8HS6nd6RF6J35VjXcQ |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDI5gOwAHxFOMZw5ISEhFa9Kk7XECpgHbDmgTu1Vp4oIQtJU2-P3EbZiGeIhTL05UxU4-O7E_E3IqFEcc4p7kIfcsQjFPBQZTrCBrhxYTUokFzoOh7I2D24mYuKxKrIVxKzi9wLQq-0fVYT3f3VgnzmWMnFsWeWys4Id8mTQDRK0GaXa69w-j-RsCC124JWOsC2LuTfPHSb6g0kJKV4Uy3Q2y7txD2qn1uUmWIN8iawukgdvk-QqgpK7bw6OHMGRoTQOLFBq0rmykr9VmxSHU9eKxX6DWoN7wgowWGS3K6iKblk_FrJhSlRv6jtEz6opi6ugOGXevR5c9z3VM8DRn4cxTkVGZDdGAs0ibNJIGZBZre6pJBtJoCAML34EUICLjp-ArpTJhPYaYaQ3tgO-SRl7ksEco8CxSPNBaIimbEEoY60qC8UFlqQ2rWqT9uWKJdnTi2NXiJfEdg_i3RW6R8_mQsubS-Ev4DNWQfBrE75L7_5Y8ISu90aCf9G-GdwdklWEr3yoB-5A0rJrgyPoXs_TYGdIHbm3DaA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dS8MwEA-6geiD-InzMw-CIFTXJk3bx-Es82uIbLi3kiZXRbQtbPr3m2uzMfEDn_qShHKX5Hd3ufsdIce-ZIhDzBEsYI5BKM-RXGOKFWTtwGBCKrDA-a4vekN-PfJHNuCGtTBWguMzTKsyf1Rd1ni6S52d2zfGc5eJCHm3DPoYf8EN2CJpcm6wsUGanfjhcTB7R_AC63KJCGuDPPuu-eMiX5BpLq2rQpp4jaxaE5F2ap2ukwXIN8jKHHHgJnnpApTUdnx4chCKNK2pYJFGg9bVjfStOrA4hdp-POYL1GyqdwyS0SKjRVkFs2n5XEyKMZW5ph_oQaO-KKaPbpFhfDm46Dm2a4KjmBdMHBlqmRk3DZgXKp2GQoPIImVuNuGB0AoCbiCcCx_8ULspuFLKzDdWQ-QpBW3OtkkjL3LYIRRYFkrGlRJIzOb70tfGnATtgsxS41q1SHsqsURZSnHsbPGauJZF_JuQW-R0NqWs-TT-GnyCakimm-L3kbv_HnlElu67cXJ71b_ZI8sedvOtcrD3ScNoCQ6MiTFJD-0--gSDM8R4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning-based+structural+health+monitoring+through+the+infusion+of+optical+photos+and+vibration+data&rft.jtitle=Advances+in+structural+engineering&rft.au=Al-Qudah%2C+Saleh&rft.au=Bai%2C+Xin&rft.au=Yang%2C+Mijia&rft.au=Gao%2C+Zhili&rft.date=2025-02-01&rft.pub=SAGE+Publications&rft.issn=1369-4332&rft.eissn=2048-4011&rft.volume=28&rft.issue=3&rft.spage=532&rft.epage=552&rft_id=info:doi/10.1177%2F13694332241289173&rft.externalDocID=10.1177_13694332241289173 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1369-4332&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1369-4332&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1369-4332&client=summon |