Temperature impacts on utility-scale solar photovoltaic and wind power generation output over Australia under RCP 8.5
Climate change has the potential to impact the generation of renewable energy significantly subject to location and equipment specifications. As the penetration of renewable energy in the energy systems keeps increasing, this impact needs be systematically assessed so that investment and reliability...
Saved in:
Published in | Journal of renewable and sustainable energy Vol. 12; no. 4 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Climate change has the potential to impact the generation of renewable energy significantly subject to location and equipment specifications. As the penetration of renewable energy in the energy systems keeps increasing, this impact needs be systematically assessed so that investment and reliability information is accurate. Australia represents an ideal study case characterized by its frequency of extreme weather events and the recent and planned growth in the renewable energy sector. In this study, we model and quantify the long-term temperature de-rating impact of utility-scale solar photovoltaic and wind power generation over Australia. Using climate projections simulated by six Global Circulation Models and the CSIRO's Cubic Conformal Atmospheric Model, we analyze half-hourly time series of key weather variables such as temperature, surface solar irradiance, and wind speed for 1980–2060 at two sites where variable renewable generators are located, or are likely to be located in the future based on the current Integrated System Plan by the Australian Energy Market Operator. We also built power conversion models for the temperature de-rating of solar and wind power with added focus on high temperature scenarios. We found that the general temporal trends in annual solar and wind power generation due to climate change are small, being at the order of 0.1% of their average production per decade. However, for peak temperature events, which coincide with the peak power demand and, generally, high prices, the temperature de-rating impact can be much more substantial and disruptive. |
---|---|
AbstractList | Climate change has the potential to impact the generation of renewable energy significantly subject to location and equipment specifications. As the penetration of renewable energy in the energy systems keeps increasing, this impact needs be systematically assessed so that investment and reliability information is accurate. Australia represents an ideal study case characterized by its frequency of extreme weather events and the recent and planned growth in the renewable energy sector. In this study, we model and quantify the long-term temperature de-rating impact of utility-scale solar photovoltaic and wind power generation over Australia. Using climate projections simulated by six Global Circulation Models and the CSIRO's Cubic Conformal Atmospheric Model, we analyze half-hourly time series of key weather variables such as temperature, surface solar irradiance, and wind speed for 1980–2060 at two sites where variable renewable generators are located, or are likely to be located in the future based on the current Integrated System Plan by the Australian Energy Market Operator. We also built power conversion models for the temperature de-rating of solar and wind power with added focus on high temperature scenarios. We found that the general temporal trends in annual solar and wind power generation due to climate change are small, being at the order of 0.1% of their average production per decade. However, for peak temperature events, which coincide with the peak power demand and, generally, high prices, the temperature de-rating impact can be much more substantial and disruptive. |
Author | Thatcher, Marcus Landsberg, Judith Huang, Jing Jones, Ben |
Author_xml | – sequence: 1 givenname: Jing surname: Huang fullname: Huang, Jing organization: Oceans and Atmosphere, CSIRO – sequence: 2 givenname: Ben surname: Jones fullname: Jones, Ben organization: Australian Energy Market Operator – sequence: 3 givenname: Marcus surname: Thatcher fullname: Thatcher, Marcus organization: Oceans and Atmosphere, CSIRO – sequence: 4 givenname: Judith surname: Landsberg fullname: Landsberg, Judith organization: Bureau of Meteorology |
BookMark | eNp9kFtLwzAUx4NMcJs--A0CPil05tKu6eMY3mCgyHwuaZpoRtfUXDb27c3cvKDiy7nx-_8P5wxArzWtBOAUoxFGY3qZjRDCJMf4APRxkeIkj23vW30EBs4tEBoTlJE-CHO57KTlPlgJ9bLjwjtoWhi8brTfJE7wRkJnGm5h92K8WZnGcy0gb2u41jF0Zi0tfJbt1kVHqQm-Cx6aVRxPgvOWN5rD0Naxf5w-QDbKjsGh4o2TJ_s8BE_XV_PpbTK7v7mbTmaJoCT3CccYU0k5YxniuB4Twaq6lgVJa8GUwHml0ghKkqeYKSpEUWU4ZZWinBSKKzoEZzvfzprXIJ0vFybYNq4sSUrTYpwXlEXqfEcJa5yzUpWd1UtuNyVG5farZVbuvxrZyx-s0P797ninbv5UXOwU7oP8tF8Z-wWWXa3-g387vwE9aJhS |
CODEN | JRSEBH |
CitedBy_id | crossref_primary_10_1016_j_rser_2023_114011 crossref_primary_10_1038_s41598_023_38566_z crossref_primary_10_1088_1748_9326_ad8c68 crossref_primary_10_1016_j_rser_2021_111693 crossref_primary_10_1016_j_rser_2022_113038 crossref_primary_10_1016_j_apenergy_2024_122977 crossref_primary_10_1088_1748_9326_ac2a64 crossref_primary_10_1016_j_apenergy_2022_120384 crossref_primary_10_1016_j_rser_2022_112348 |
Cites_doi | 10.1016/j.rser.2019.109415 10.1007/s10546-007-9203-8 10.5194/gmd-8-1645-2015 10.1175/2011JCLI4198.1 10.1007/s10546-011-9663-8 10.1029/1999JD900456 10.1007/s10584-016-1840-9 10.1080/07055900.1986.9649242 10.1002/joc.3830 10.21105/joss.00884 10.1029/2019GL085782 10.1016/j.energy.2006.12.005 10.1175/2008MWR2599.1 10.1256/smsqj.54105 10.1029/96JD01218 10.1016/j.renene.2017.03.064 10.22499/2.6301.005 10.1007/s00704-006-0287-8 10.1175/1520-0450(1983)022%3C1065:BPOTSF%3E2.0.CO;2 10.1175/MWR2908.1 10.1029/1999JD900003 10.5194/acp-11-6575-2011 10.1016/0038-092X(82)90302-4 10.1029/2002JD002128 10.1126/science.1103215 |
ContentType | Journal Article |
Copyright | Crown 2020 Crown |
Copyright_xml | – notice: Crown – notice: 2020 Crown |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0012711 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1941-7012 |
ExternalDocumentID | 10_1063_5_0012711 jrse |
GeographicLocations | Australia |
GeographicLocations_xml | – name: Australia |
GrantInformation_xml | – fundername: Department of the Environment and Energy, Australian Government grantid: Electricity Sector Climate Information funderid: https://doi.org/10.13039/501100009196 |
GroupedDBID | 2-P 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ACBRY ACGFS ACZLF ADCTM AEGXH AEJMO AENEX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AJJCW ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN DU5 EBS EJD ESX FDOHQ FFFMQ M71 RIP RQS TR2 AAGWI AAYXX ABJGX ABJNI ADMLS CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-a1113e3a8850a1d62c8bdde924dc8fc17bf4327e27418f3cc9b5148bf3a29faf3 |
ISSN | 1941-7012 |
IngestDate | Mon Jun 30 03:58:11 EDT 2025 Thu Apr 24 23:05:02 EDT 2025 Tue Jul 01 01:26:16 EDT 2025 Wed Nov 11 00:05:25 EST 2020 Fri Jun 21 00:14:25 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 1941-7012/2020/12(4)/046501/11/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-a1113e3a8850a1d62c8bdde924dc8fc17bf4327e27418f3cc9b5148bf3a29faf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-1370-7318 0000-0002-6679-3504 0000-0003-4139-5515 0000-0003-3007-6922 |
PQID | 2434967938 |
PQPubID | 2050669 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1063_5_0012711 scitation_primary_10_1063_5_0012711 crossref_citationtrail_10_1063_5_0012711 proquest_journals_2434967938 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200700 2020-07-01 20200701 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: 20200700 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of renewable and sustainable energy |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Schmidt (c27) 1977 Lahouar, Ben Hadj Slama (c15) 2017 Uhe, Thatcher (c35) 2015 Erbs, Klein, Duffie (c8) 1982 Grose, Risbey, Whetton (c10) 2017 Chouinard, Béland, McFarlane (c5) 1986 Nunez, Li (c21) 2008 Thatcher (c32) 2007 Hurley (c12) 2007 Freidenreich, Ramaswamy (c9) 1999 Troccoli, Muller, Coppin, Davy, Russell, Hirsch (c34) 2012 Kowalczyk, Stevens, Law, Dix, Wang, Harman, Haynes, Srbinovsky, Pak, Ziehn (c14) 2013 Lin, Farley, Orville (c16) 1983 Rotstayn, Collier, Mitchell, Qin, Campbell, Dravitzki (c25) 2011 Jeuken, Siegmund, Heijboer, Feichter, Bengtsson (c13) 1996 Solaun, Cerdá (c30) 2019 Rotstayn, Lohmann (c26) 2002 Bennett, Grose, Corney, White, Holz, Katzfey, Post, Bindoff (c4) 2014 Schwarzkopf, Ramaswamy (c28) 1999 Thatcher, McGregor (c33) 2009 Holmgren, Hansen, Mikofski (c11) 2018 Zelinka, Myers, McCoy, Po-Chedley, Caldwell, Ceppi, Klein, Taylor (c37) 2020 Thatcher, Hurley (c31) 2012 Wild, Gilgen, Roesch, Ohmura, Long, Dutton, Forgan, Kallis, Russak, Tsvetkov (c36) 2005 Rotstayn (c24) 1997 McGregor (c19) 2005 (2023063022491781700_c34) 2012; 25 (2023063022491781700_c30) 2019; 116 (2023063022491781700_c33) 2009; 137 (2023063022491781700_c13) 1996; 101 (2023063022491781700_c19) 2005; 133 (2023063022491781700_c28) 1999; 104 (2023063022491781700_c36) 2005; 308 (2023063022491781700_c9) 1999; 104 (2023063022491781700_c15) 2017; 109 (2023063022491781700_c32) 2007; 32 CSIRO and Bureau of Meteorology (2023063022491781700_c6) 2015 (2023063022491781700_c7) 2014 (2023063022491781700_c18) 2005 (2023063022491781700_c26) 2002; 107 (2023063022491781700_c31) 2012; 142 (2023063022491781700_c8) 1982; 28 2023063022491781700_c22 2023063022491781700_c23 (2023063022491781700_c4) 2014; 34 Meighen (2023063022491781700_c17) 2003 (2023063022491781700_c21) 2008; 91 2023063022491781700_c3 (2023063022491781700_c20) 2008 2023063022491781700_c29 (2023063022491781700_c11) 2018; 3 2023063022491781700_c1 2023063022491781700_c2 (2023063022491781700_c14) 2013; 63 (2023063022491781700_c12) 2007; 125 (2023063022491781700_c27) 1977; 50 (2023063022491781700_c10) 2017; 140 (2023063022491781700_c25) 2011; 11 (2023063022491781700_c37) 2020; 47 (2023063022491781700_c5) 1986; 24 (2023063022491781700_c16) 1983; 22 (2023063022491781700_c24) 1997; 123 (2023063022491781700_c35) 2015; 8 |
References_xml | – start-page: 1227 year: 1997 ident: c24 article-title: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes publication-title: Q. J. R. Meteorol. Soc. – start-page: 307 year: 2017 ident: c10 article-title: Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes publication-title: Clim. Change – start-page: 170 year: 2012 ident: c34 article-title: Long-term wind speed trends over Australia publication-title: J. Clim. – start-page: 1645 year: 2015 ident: c35 article-title: A spectral nudging method for the ACCESS1.3 atmospheric model publication-title: Geosci. Model Dev. – start-page: 525 year: 2007 ident: c12 article-title: Modelling mean and turbulence fields in the dry convective boundary layer with the eddy-diffusivity/mass-flux approach publication-title: Boundary-Layer Meteorol. – start-page: e2019GL085782 year: 2020 ident: c37 article-title: Causes of higher climate sensitivity in CMIP6 models publication-title: Geophys. Res. Lett. – start-page: 1742 year: 2009 ident: c33 article-title: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model publication-title: Mon. Weather Rev. – start-page: 65 year: 2013 ident: c14 article-title: The land surface model component of ACCESS: Description and impact on the simulated surface climatology publication-title: Aust. Meteorol. Oceanogr. J. – start-page: 884 year: 2018 ident: c11 article-title: Pvlib Python: A Python package for modeling solar energy systems publication-title: J. Open Source Software – start-page: 149 year: 2012 ident: c31 article-title: Simulating Australian urban climate in a mesoscale atmospheric numerical model publication-title: Boundary-Layer Meteorol. – start-page: 847 year: 2005 ident: c36 article-title: From dimming to brightening: Decadal changes in solar radiation at earth's surface publication-title: Science – start-page: 1119 year: 2005 ident: c19 article-title: Geostrophic adjustment for reversibly staggered grids publication-title: Mon. Weather Rev. – start-page: 211 year: 1977 ident: c27 article-title: Variable fine mesh in spectral global models publication-title: Beitr. Phys. Atmos. – start-page: AAC-20 year: 2002 ident: c26 article-title: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme publication-title: J. Geophys. Res. Atmos. – start-page: 109415 year: 2019 ident: c30 article-title: Climate change impacts on renewable energy generation: A review of quantitative projections publication-title: Renewable Sustainable Energy Rev. – start-page: 1647 year: 2007 ident: c32 article-title: Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia publication-title: Energy – start-page: 1065 year: 1983 ident: c16 article-title: Bulk parameterization of the snow field in a cloud model publication-title: J. Clim. Appl. Meteorol. – start-page: 293 year: 1982 ident: c8 article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation publication-title: Sol. Energy – start-page: 2189 year: 2014 ident: c4 article-title: Performance of an empirical bias-correction of a high-resolution climate dataset publication-title: Int. J. Climatol. – start-page: 59 year: 2008 ident: c21 article-title: A cloud-based reconstruction of surface solar radiation trends for Australia publication-title: Theor. Appl. Climatol. – start-page: 9467 year: 1999 ident: c28 article-title: Radiative effects of CH , N O, halocarbons and the foreign-broadened H O continuum: A GCM experiment publication-title: J. Geophys. Res. Atmos. – start-page: 16939 year: 1996 ident: c13 article-title: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation publication-title: J. Geophys. Res. – start-page: 31389 year: 1999 ident: c9 article-title: A new multiple-band solar radiative parameterization for general circulation models publication-title: J. Geophys. Res. Atmos. – start-page: 529 year: 2017 ident: c15 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renewable Energy – start-page: 91 year: 1986 ident: c5 article-title: A simple gravity wave drag parametrization for use in medium‐range weather forecast models publication-title: Atmosphere–Ocean – start-page: 6575 year: 2011 ident: c25 article-title: Simulated enhancement of ENSO-related rainfall variability due to Australian dust publication-title: Atmos. Chem. Phys. – volume: 116 start-page: 109415 year: 2019 ident: 2023063022491781700_c30 article-title: Climate change impacts on renewable energy generation: A review of quantitative projections publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2019.109415 – ident: 2023063022491781700_c2 – volume: 125 start-page: 525 year: 2007 ident: 2023063022491781700_c12 article-title: Modelling mean and turbulence fields in the dry convective boundary layer with the eddy-diffusivity/mass-flux approach publication-title: Boundary-Layer Meteorol. doi: 10.1007/s10546-007-9203-8 – volume: 8 start-page: 1645 year: 2015 ident: 2023063022491781700_c35 article-title: A spectral nudging method for the ACCESS1.3 atmospheric model publication-title: Geosci. Model Dev. doi: 10.5194/gmd-8-1645-2015 – volume: 25 start-page: 170 year: 2012 ident: 2023063022491781700_c34 article-title: Long-term wind speed trends over Australia publication-title: J. Clim. doi: 10.1175/2011JCLI4198.1 – volume: 142 start-page: 149 year: 2012 ident: 2023063022491781700_c31 article-title: Simulating Australian urban climate in a mesoscale atmospheric numerical model publication-title: Boundary-Layer Meteorol. doi: 10.1007/s10546-011-9663-8 – volume: 104 start-page: 31389 year: 1999 ident: 2023063022491781700_c9 article-title: A new multiple-band solar radiative parameterization for general circulation models publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900456 – volume: 140 start-page: 307 year: 2017 ident: 2023063022491781700_c10 article-title: Tracking regional temperature projections from the early 1990s in light of variations in regional warming, including ‘warming holes publication-title: Clim. Change doi: 10.1007/s10584-016-1840-9 – volume: 24 start-page: 91 year: 1986 ident: 2023063022491781700_c5 article-title: A simple gravity wave drag parametrization for use in medium-range weather forecast models publication-title: Atmosphere–Ocean doi: 10.1080/07055900.1986.9649242 – volume-title: Current Issues in the Parameterization of Convection: Extended Abstracts of Presentations at the Fifteenth Annual BMRC Modelling Workshop year: 2003 ident: 2023063022491781700_c17 article-title: A new convection scheme using simple closure – volume-title: High Resolution Numerical Modelling of the Atmosphere and Ocean year: 2008 ident: 2023063022491781700_c20 article-title: An updated description of the conformal-cubic atmospheric model – volume: 34 start-page: 2189 year: 2014 ident: 2023063022491781700_c4 article-title: Performance of an empirical bias-correction of a high-resolution climate dataset publication-title: Int. J. Climatol. doi: 10.1002/joc.3830 – volume: 3 start-page: 884 issue: 29 year: 2018 ident: 2023063022491781700_c11 article-title: Pvlib Python: A Python package for modeling solar energy systems publication-title: J. Open Source Software doi: 10.21105/joss.00884 – volume: 47 start-page: e2019GL085782 year: 2020 ident: 2023063022491781700_c37 article-title: Causes of higher climate sensitivity in CMIP6 models publication-title: Geophys. Res. Lett. doi: 10.1029/2019GL085782 – volume: 32 start-page: 1647 year: 2007 ident: 2023063022491781700_c32 article-title: Modelling changes to electricity demand load duration curves as a consequence of predicted climate change for Australia publication-title: Energy doi: 10.1016/j.energy.2006.12.005 – ident: 2023063022491781700_c1 – volume: 137 start-page: 1742 year: 2009 ident: 2023063022491781700_c33 article-title: Using a scale-selective filter for dynamical downscaling with the conformal cubic atmospheric model publication-title: Mon. Weather Rev. doi: 10.1175/2008MWR2599.1 – ident: 2023063022491781700_c29 – volume: 123 start-page: 1227 year: 1997 ident: 2023063022491781700_c24 article-title: A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of the microphysical processes publication-title: Q. J. R. Meteorol. Soc. doi: 10.1256/smsqj.54105 – volume-title: PVWatts Version 5 Manual year: 2014 ident: 2023063022491781700_c7 – ident: 2023063022491781700_c23 – volume: 101 start-page: 16939 year: 1996 ident: 2023063022491781700_c13 article-title: On the potential of assimilating meteorological analyses in a global climate model for the purpose of model validation publication-title: J. Geophys. Res. doi: 10.1029/96JD01218 – volume: 109 start-page: 529 year: 2017 ident: 2023063022491781700_c15 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renewable Energy doi: 10.1016/j.renene.2017.03.064 – volume: 63 start-page: 65 year: 2013 ident: 2023063022491781700_c14 article-title: The land surface model component of ACCESS: Description and impact on the simulated surface climatology publication-title: Aust. Meteorol. Oceanogr. J. doi: 10.22499/2.6301.005 – volume: 91 start-page: 59 year: 2008 ident: 2023063022491781700_c21 article-title: A cloud-based reconstruction of surface solar radiation trends for Australia publication-title: Theor. Appl. Climatol. doi: 10.1007/s00704-006-0287-8 – volume: 22 start-page: 1065 year: 1983 ident: 2023063022491781700_c16 article-title: Bulk parameterization of the snow field in a cloud model publication-title: J. Clim. Appl. Meteorol. doi: 10.1175/1520-0450(1983)022%3C1065:BPOTSF%3E2.0.CO;2 – volume: 133 start-page: 1119 year: 2005 ident: 2023063022491781700_c19 article-title: Geostrophic adjustment for reversibly staggered grids publication-title: Mon. Weather Rev. doi: 10.1175/MWR2908.1 – volume: 104 start-page: 9467 year: 1999 ident: 2023063022491781700_c28 article-title: Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment publication-title: J. Geophys. Res. Atmos. doi: 10.1029/1999JD900003 – volume: 11 start-page: 6575 year: 2011 ident: 2023063022491781700_c25 article-title: Simulated enhancement of ENSO-related rainfall variability due to Australian dust publication-title: Atmos. Chem. Phys. doi: 10.5194/acp-11-6575-2011 – ident: 2023063022491781700_c22 – volume: 50 start-page: 211 year: 1977 ident: 2023063022491781700_c27 article-title: Variable fine mesh in spectral global models publication-title: Beitr. Phys. Atmos. – volume: 28 start-page: 293 year: 1982 ident: 2023063022491781700_c8 article-title: Estimation of the diffuse radiation fraction for hourly, daily and monthly-average global radiation publication-title: Sol. Energy doi: 10.1016/0038-092X(82)90302-4 – volume: 107 start-page: AAC-20 year: 2002 ident: 2023063022491781700_c26 article-title: Simulation of the tropospheric sulfur cycle in a global model with a physically based cloud scheme publication-title: J. Geophys. Res. Atmos. doi: 10.1029/2002JD002128 – volume: 308 start-page: 847 year: 2005 ident: 2023063022491781700_c36 article-title: From dimming to brightening: Decadal changes in solar radiation at earth's surface publication-title: Science doi: 10.1126/science.1103215 – volume-title: Climate Change in Australia Information for Australia's Natural Resource Management Regions: Technical Report year: 2015 ident: 2023063022491781700_c6 article-title: Climate change in Australia – ident: 2023063022491781700_c3 – volume-title: C-CAM Geometric Aspects and Dynamical Formulation year: 2005 ident: 2023063022491781700_c18 |
SSID | ssj0062052 |
Score | 2.2334874 |
Snippet | Climate change has the potential to impact the generation of renewable energy significantly subject to location and equipment specifications. As the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Alternative energy sources Atmospheric circulation Atmospheric models Climate change Climate models Computer simulation Electric power demand Energy conversion Energy industry Equipment specifications High temperature Irradiance Peak load Reliability analysis Renewable energy Renewable resources Weather Wind power Wind power generation Wind speed |
Title | Temperature impacts on utility-scale solar photovoltaic and wind power generation output over Australia under RCP 8.5 |
URI | http://dx.doi.org/10.1063/5.0012711 https://www.proquest.com/docview/2434967938 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fa9RAEF70-qB9EH_i1SqL-iCE1GQ3PzaPbVVK6YnoFfoWks0uVeRy3CUt9K_vzGaT7MEp1ZdwhGUPZr7sfDPsN0PIe6GEzqJK-bKQzI_SIINvjqNDhNJBCRFaYb1j9jU5OY9OL-ILR3GN6pKmPJA3W3Ul_-NVeAd-RZXsP3h22BRewG_wLzzBw_C8m48VkN6uKbKVO5riP_wjkmt_DfZX3hqTV295WTc1HEVNYRu0Xv_EDgE4Iw2nKCsLhLptlm3j4b3OsQxiZuWuvO_H3zxxEP-BzmJrzGujwzKleEeXpYy8cMSPrVCf9kHTnRhwNCrT5pfFgKgZfI7twP7PUJ7c30vrZCVu8QIy1f6iK8Se7sDNotBPg3DzRGYO8qKtBz0wK_AO1sNCltrjerNv9q_VWt0nOwzSBzYhO4efZmc_-hidsCBmfZ-phH8c9tlkJ2PK8QD4SHc1wmEf88fkkbUzPeww8ITcU4unZNdpJvmMtA4aqEUDrRd0Aw3UoIG6aKBgTYpooAYNdEQD7dBAEQ10QAM1aKCABgpoeE7Ov3yeH5_4dqiGLzlLG7-A4MYVL4SIgyKsEiZFCSEO0vBKCi3DtNQRLFSmrZHmUmYlcGpRal6wTBeavyCTBYDiJaFCcKBYLK40JKU6FqLiXMsKUtQw1mWWTsmH3ph5bz4cfPI7NzcfEp7HubX7lLwdli67NivbFu33HsntV7jOWYQjDyDKiCl5N3jpb5tsWXVVr8YV-bLSe3fa6xV5OIJ6n0yaVateA0dtyjcWcLf9UJpw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Temperature+impacts+on+utility-scale+solar+photovoltaic+and+wind+power+generation+output+over+Australia+under+RCP+8.5&rft.jtitle=Journal+of+renewable+and+sustainable+energy&rft.au=Huang%2C+Jing&rft.au=Jones%2C+Ben&rft.au=Thatcher%2C+Marcus&rft.au=Landsberg%2C+Judith&rft.date=2020-07-01&rft.eissn=1941-7012&rft.volume=12&rft.issue=4&rft_id=info:doi/10.1063%2F5.0012711&rft.externalDocID=jrse |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1941-7012&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1941-7012&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1941-7012&client=summon |