A numerical study for thermocapillary induced patterning of thin liquid films
The underlying mechanism of thermal induced patterning is investigated using a numerical phase-field model. Research on the subject has been mostly restricted to lubrication approximation, which is only valid for the cases that the initial film thickness is smaller than the characteristic wavelength...
Saved in:
Published in | Physics of fluids (1994) Vol. 32; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.02.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/1.5134460 |
Cover
Loading…
Abstract | The underlying mechanism of thermal induced patterning is investigated using a numerical phase-field model. Research on the subject has been mostly restricted to lubrication approximation, which is only valid for the cases that the initial film thickness is smaller than the characteristic wavelength of induced instabilities. Since the long-wave approximation is no longer valid in the later stages of pattern evolution, we employed the full governing equations of fluid flow and the thermally induced Marangoni effect to track the interface between the polymer film and the air bounding layer. Conducting a systematic study on the impact of influential parameters, we found that an increase in the temperature gradient, thermal conductivity ratio, and initial thickness of the thin film resulted in shorter processing time and faster pattern formation. Additionally, the contact angle between the polymer film and the bounding plates showed a significant effect on the shape of created features. Compared to the reported experimental observation by Dietzel and Troian [“Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient,” J. Appl. Phys. 108, 074308 (2010)], our numerical modeling provided a more accurate prediction of the characteristic wavelength against the linearized model currently used in the literature. The numerical findings in this study provide valuable insight into thermal-induced patterning, which can be a useful guide for future experimental works. |
---|---|
AbstractList | The underlying mechanism of thermal induced patterning is investigated using a numerical phase-field model. Research on the subject has been mostly restricted to lubrication approximation, which is only valid for the cases that the initial film thickness is smaller than the characteristic wavelength of induced instabilities. Since the long-wave approximation is no longer valid in the later stages of pattern evolution, we employed the full governing equations of fluid flow and the thermally induced Marangoni effect to track the interface between the polymer film and the air bounding layer. Conducting a systematic study on the impact of influential parameters, we found that an increase in the temperature gradient, thermal conductivity ratio, and initial thickness of the thin film resulted in shorter processing time and faster pattern formation. Additionally, the contact angle between the polymer film and the bounding plates showed a significant effect on the shape of created features. Compared to the reported experimental observation by Dietzel and Troian [“Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient,” J. Appl. Phys. 108, 074308 (2010)], our numerical modeling provided a more accurate prediction of the characteristic wavelength against the linearized model currently used in the literature. The numerical findings in this study provide valuable insight into thermal-induced patterning, which can be a useful guide for future experimental works. |
Author | Sadrzadeh, Mohtada Hemmati, Arman Nazaripoor, Hadi Mohammadtabar, Ali Riad, Adham |
Author_xml | – sequence: 1 givenname: Ali surname: Mohammadtabar fullname: Mohammadtabar, Ali organization: Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta – sequence: 2 givenname: Hadi surname: Nazaripoor fullname: Nazaripoor, Hadi organization: Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta – sequence: 3 givenname: Adham surname: Riad fullname: Riad, Adham organization: Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta – sequence: 4 givenname: Arman surname: Hemmati fullname: Hemmati, Arman organization: Department of Mechanical Engineering, Computational Fluid Engineering Laboratory, University of Alberta – sequence: 5 givenname: Mohtada surname: Sadrzadeh fullname: Sadrzadeh, Mohtada organization: Department of Mechanical Engineering, Advanced Water Research Lab (AWRL), University of Alberta |
BookMark | eNp90M9LwzAUB_AgCm7Tg_9BwJNCt5e0TZvjGP6CiRc9lyxNNKNNuiQV9t_bsamg4inv8Hnfl_fG6Ng6qxC6IDAlwNIZmeYkzTIGR2hEoORJwRg73tUFJIyl5BSNQ1gDQMopG6HHObZ9q7yRosEh9vUWa-dxfFO-dVJ0pmmE32Jj616qGnciRuWtsa_Y6UEZixuz6U2NtWnacIZOtGiCOj-8E_Rye_O8uE-WT3cPi_kykSktYsIJp5wMv5GaQkGFrpUUmuYlQMG1Ai1kXgDL2CoVpVrlZSmzAnLF-KqQgpN0gi73uZ13m16FWK1d7-0wsqJpTigApTCoq72S3oXgla46b9phnYpAtbtWRarDtQY7-2GliSIaZ6MXpvmz43rfET7lV_y789-w6mr9H_6d_AFexIk1 |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1108_HFF_05_2022_0269 crossref_primary_10_1039_D4SM00951G crossref_primary_10_1063_5_0042505 crossref_primary_10_1063_5_0047279 crossref_primary_10_1063_5_0087018 crossref_primary_10_1103_PhysRevE_105_015314 crossref_primary_10_1016_j_ijheatfluidflow_2024_109602 crossref_primary_10_1016_j_ymssp_2022_109349 crossref_primary_10_1063_5_0096610 crossref_primary_10_1063_5_0034650 crossref_primary_10_1063_5_0026080 crossref_primary_10_1016_j_csite_2024_105704 crossref_primary_10_3390_s21196671 |
Cites_doi | 10.1021/acs.langmuir.8b00007 10.1016/j.ijmultiphaseflow.2012.04.002 10.1016/j.jcis.2018.06.080 10.1039/c4ra00553h 10.1209/epl/i2001-00183-2 10.1016/j.ijmultiphaseflow.2013.06.006 10.1063/1.1338125 10.1002/adma.200390119 10.1146/annurev.fl.19.010187.002155 10.1103/revmodphys.69.931 10.1103/physrevb.73.035206 10.1098/rspl.1800.0095 10.1088/0960-1317/24/1/013001 10.1021/acs.langmuir.6b01810 10.1016/j.cis.2015.02.003 10.1016/j.nantod.2009.02.002 10.1126/science.290.5499.2123 10.1063/1.124579 10.1103/physrevlett.106.175501 10.1116/1.590979 10.1051/jphyscol:1977709 10.1038/35002540 10.1021/ma402456u 10.1002/polb.24298 10.1021/acs.langmuir.7b02762 10.1017/s002211200700554x 10.1017/s0022112086002720 10.1117/12.275783 10.1063/1.4968575 10.1017/jfm.2011.235 10.1016/j.jaerosci.2008.05.001 10.1017/jfm.2016.54 10.1038/nnano.2016.25 10.1557/proc-1179-bb08-02 10.1007/bf01011513 10.1103/physreve.98.043106 10.1063/1.4940366 10.1017/s0022112094001977 10.1017/s0022112006003533 10.1063/1.1744102 10.1039/c5sm01724f 10.1051/jphystap:019000090051300 10.1063/1.120807 10.1017/s0022112099006874 10.1063/1.3475516 10.1017/s0022112058000616 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5134460 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_1_5134460 |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada grantid: CRD 501857 funderid: https://doi.org/10.13039/501100000038 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 UCJ WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-919291663cf2072afdecaf2580079fe0fac570646b3a8eb588c4705e69b7ca913 |
ISSN | 1070-6631 |
IngestDate | Mon Jun 30 06:29:56 EDT 2025 Tue Jul 01 03:20:23 EDT 2025 Thu Apr 24 22:56:47 EDT 2025 Fri Jun 21 00:19:27 EDT 2024 Wed Nov 11 00:05:28 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | Published under license by AIP Publishing. 1070-6631/2020/32(2)/024106/13/$30.00 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-919291663cf2072afdecaf2580079fe0fac570646b3a8eb588c4705e69b7ca913 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-8897-4525 0000-0002-0403-8351 |
PQID | 2351200220 |
PQPubID | 2050667 |
PageCount | 13 |
ParticipantIDs | crossref_primary_10_1063_1_5134460 proquest_journals_2351200220 crossref_citationtrail_10_1063_1_5134460 scitation_primary_10_1063_1_5134460 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200201 2020-02-01 |
PublicationDateYYYYMMDD | 2020-02-01 |
PublicationDate_xml | – month: 02 year: 2020 text: 20200201 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Kim, Lu (c30) 2006; 73 Nazaripoor, Koch, Sadrzadeh, Bhattacharjee (c16) 2016; 32 Karapetsas, Chamakos, Papathanasiou (c41) 2017; 33 Young (c47) 1800; 1 Schäffer, Thurn-Albrecht, Russell, Steiner (c27) 2000; 403 Singer (c14) 2017; 55 Yang, Li, Zhao, Shao, Xu (c42) 2016; 792 Dietzel, Troian (c1) 2010; 108 Khatavkar, Anderson, Duineveld, Meijer (c38) 2007; 581 McLeod, Liu, Troian (c10) 2011; 106 Jacqmin (c36) 2000; 402 Albisetti, Petti, Pancaldi, Madami, Tacchi, Curtis, King, Papp, Csaba, Porod, Vavassori, Riedo, Bertacco (c15) 2016; 11 Lin, Skjetne, Carlson (c35) 2012; 45 Tian, Shao, Ding, Li, Liu (c31) 2014; 4 Chou, Zhuang, Guo (c8) 1999; 75 Lin, Kerle, Baker, Hoagland, Schärfer, Steiner, Russell (c45) 2001; 114 Kim, Oh, Kim (c7) 2008; 39 Cahn, Allen, Cahn, Allen (c34) 1977; 38 Davis (c21) 1987; 19 Khatavkar, Anderson, Meijer (c37) 2007; 572 Gambaryan-Roisman (c23) 2015; 222 Schäffer, Thurn-Albrecht, Russell, Steiner (c44) 2001; 53 Willson, Dammel, Reiser (c2) 1997; 3049 Koschmieder, Biggerstaff (c20) 1986; 167 Wu, Russel (c11) 2009; 4 Dietzel, Troian (c17) 2009; 1179 Rowlinson (c32) 1979; 20 Yang, Li, Ding (c40) 2013; 57 Bénard, Étude (c18) 1900; 9 Peng, Deng, Yi, Lai (c4) 2014; 24 Oron, Davis, Bankoff (c24) 1997; 69 Chou, Zhuang (c26) 1999; 17 Fiedler, Troian (c46) 2016; 120 Mukherjee, Sharma (c13) 2015; 11 Pearson (c19) 1958; 4 Hebner, Wu, Marcy, Lu, Sturm (c6) 1998; 72 Schäffer, Harkema, Roerdink, Blossey, Steiner (c9) 2003; 15 Nazaripoor, Koch, Sadrzadeh (c12) 2018; 530 Sirringhaus, Kawase, Friend, Shimoda, Inbasekaran, Wu, Woo (c5) 2000; 290 Song, Ju, Gu, Liu, Ji, Ren, He, Sha, Li, Yang (c29) 2018; 34 Cahn, Hilliard (c33) 1958; 28 Tian, Shao, Ding, Li, Hu (c43) 2014; 47 Gao, Feng (c39) 2011; 682 Nejati, Dietzel, Hardt (c3) 2016; 108 Oron, Rosenau (c25) 1994; 273 Nazaripoor, Flynn, Koch, Sadrzadeh (c28) 2018; 98 (2023080721035516600_c40) 2013; 57 (2023080721035516600_c9) 2003; 15 (2023080721035516600_c20) 1986; 167 (2023080721035516600_c1) 2010; 108 (2023080721035516600_c25) 1994; 273 (2023080721035516600_c34) 1977; 38 (2023080721035516600_c27) 2000; 403 (2023080721035516600_c16) 2016; 32 (2023080721035516600_c26) 1999; 17 (2023080721035516600_c30) 2006; 73 (2023080721035516600_c14) 2017; 55 (2023080721035516600_c11) 2009; 4 (2023080721035516600_c38) 2007; 581 (2023080721035516600_c31) 2014; 4 (2023080721035516600_c36) 2000; 402 (2023080721035516600_c47) 1800; 1 (2023080721035516600_c35) 2012; 45 (2023080721035516600_c42) 2016; 792 (2023080721035516600_c37) 2007; 572 (2023080721035516600_c6) 1998; 72 (2023080721035516600_c21) 1987; 19 (2023080721035516600_c17) 2009; 1179 (2023080721035516600_c29) 2018; 34 (2023080721035516600_c15) 2016; 11 (2023080721035516600_c46) 2016; 120 (2023080721035516600_c5) 2000; 290 (2023080721035516600_c19) 1958; 4 (2023080721035516600_c39) 2011; 682 (2023080721035516600_c33) 1958; 28 (2023080721035516600_c41) 2017; 33 (2023080721035516600_c44) 2001; 53 (2023080721035516600_c45) 2001; 114 (2023080721035516600_c43) 2014; 47 (2023080721035516600_c13) 2015; 11 (2023080721035516600_c23) 2015; 222 (2023080721035516600_c3) 2016; 108 (2023080721035516600_c22) 2001 (2023080721035516600_c32) 1979; 20 (2023080721035516600_c24) 1997; 69 (2023080721035516600_c2) 1997; 3049 (2023080721035516600_c10) 2011; 106 (2023080721035516600_c12) 2018; 530 (2023080721035516600_c18) 1900; 9 (2023080721035516600_c28) 2018; 98 (2023080721035516600_c4) 2014; 24 (2023080721035516600_c7) 2008; 39 (2023080721035516600_c8) 1999; 75 |
References_xml | – volume: 33 start-page: 10838 year: 2017 ident: c41 article-title: Thermocapillary droplet actuation: Effect of solid structure and wettability publication-title: Langmuir – volume: 530 start-page: 312 year: 2018 ident: c12 article-title: Ordered high aspect ratio nanopillar formation based on electrical and thermal reflowing of prepatterned thin films publication-title: J. Colloid Interface Sci. – volume: 53 start-page: 518 year: 2001 ident: c44 article-title: Electrohydrodynamic instabilities in polymer films publication-title: Europhys. Lett. – volume: 15 start-page: 514 year: 2003 ident: c9 article-title: Thermomechanical lithography: Pattern replication using a temperature gradient driven instability publication-title: Adv. Mater. – volume: 17 start-page: 3197 year: 1999 ident: c26 article-title: Lithographically induced self-assembly of periodic polymer micropillar arrays publication-title: J. Vac. Sci. Technol., B – volume: 108 start-page: 074308 year: 2010 ident: c1 article-title: Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient publication-title: J. Appl. Phys. – volume: 98 start-page: 043106 year: 2018 ident: c28 article-title: Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms publication-title: Phys. Rev. E – volume: 106 start-page: 175501 year: 2011 ident: c10 article-title: Experimental verification of the formation mechanism for pillar arrays in nanofilms subject to large thermal gradients publication-title: Phys. Rev. Lett. – volume: 1179 start-page: 1179 year: 2009 ident: c17 article-title: Thermocapillary patterning of nanoscale polymer films publication-title: MRS Proc. – volume: 24 start-page: 013001 year: 2014 ident: c4 article-title: Micro hot embossing of thermoplastic polymers: A review publication-title: J. Micromech. Microeng. – volume: 28 start-page: 258 year: 1958 ident: c33 article-title: Free energy of a nonuniform system. I. Interfacial free energy publication-title: J. Chem. Phys. – volume: 11 start-page: 545 year: 2016 ident: c15 article-title: Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography publication-title: Nat. Nanotechnol. – volume: 9 start-page: 513 year: 1900 ident: c18 article-title: Étude expérimentale des courants de convection dans une nappe liquide.—Régime permanent: tourbillons cellulaires publication-title: J. Phys. Theor. Appl. – volume: 222 start-page: 319 year: 2015 ident: c23 article-title: Modulation of Marangoni convection in liquid films publication-title: Adv. Colloid Interface Sci. – volume: 114 start-page: 2377 year: 2001 ident: c45 article-title: Electric field induced instabilities at liquid/liquid interfaces publication-title: J. Chem. Phys. – volume: 55 start-page: 1649 year: 2017 ident: c14 article-title: Thermocapillary approaches to the deliberate patterning of polymers publication-title: J. Polym. Sci., Part B: Polym. Phys. – volume: 73 start-page: 035206 year: 2006 ident: c30 article-title: Three-dimensional model of electrostatically induced pattern formation in thin polymer films publication-title: Phys. Rev. B – volume: 39 start-page: 819 year: 2008 ident: c7 article-title: Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies publication-title: Aerosol Sci. – volume: 4 start-page: 489 year: 1958 ident: c19 article-title: On convection cells induced by surface tension publication-title: J. Fluid Mech. – volume: 581 start-page: 97 year: 2007 ident: c38 article-title: Diffuse-interface modelling of droplet impact publication-title: J. Fluid Mech. – volume: 1 start-page: 171 year: 1800 ident: c47 article-title: An essay on the cohesion of fluids publication-title: Proc. R. Soc. London – volume: 403 start-page: 874 year: 2000 ident: c27 article-title: Electrically induced structure formation and pattern transfer publication-title: Nature – volume: 57 start-page: 1 year: 2013 ident: c40 article-title: 3D phase field modeling of electrohydrodynamic multiphase flows publication-title: Int. J. Multiphase Flow – volume: 682 start-page: 415 year: 2011 ident: c39 article-title: Spreading and breakup of a compound drop on a partially wetting substrate publication-title: J. Fluid Mech. – volume: 32 start-page: 5776 year: 2016 ident: c16 article-title: Thermo-electrohydrodynamic patterning in nanofilms publication-title: Langmuir – volume: 4 start-page: 180 year: 2009 ident: c11 article-title: Micro- and nano-patterns created via electrohydrodynamic instabilities publication-title: Nano Today – volume: 72 start-page: 519 year: 1998 ident: c6 article-title: Ink-jet printing of doped polymers for organic light emitting devices publication-title: Appl. Phys. Lett. – volume: 273 start-page: 361 year: 1994 ident: c25 article-title: On a nonlinear thermocapillary effect in thin liquid layers publication-title: J. Fluid Mech. – volume: 792 start-page: 397 year: 2016 ident: c42 article-title: Numerical analysis of the Rayleigh–Taylor instability in an electric field publication-title: J. Fluid Mech. – volume: 34 start-page: 4188 year: 2018 ident: c29 article-title: Parametric study on electric field-induced micro-/nanopatterns in thin polymer films publication-title: Langmuir – volume: 4 start-page: 21672 year: 2014 ident: c31 article-title: Simulation of polymer rheology in an electrically induced micro- or nano-structuring process based on electrohydrodynamics and conservative level set method publication-title: RSC Adv. – volume: 20 start-page: 197 year: 1979 ident: c32 article-title: Translation of J. D. van der Waals’ ‘The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density’ publication-title: J. Stat. Phys. – volume: 69 start-page: 931 year: 1997 ident: c24 article-title: Long-scale evolution of thin liquid films publication-title: Rev. Mod. Phys. – volume: 290 start-page: 2123 year: 2000 ident: c5 article-title: High-resolution inkjet printing of all-polymer transistor circuits publication-title: Science – volume: 38 start-page: C7-51 year: 1977 ident: c34 article-title: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics publication-title: J. Phys. Colloq. – volume: 120 start-page: 205303 year: 2016 ident: c46 article-title: Early time instability in nanofilms exposed to a large transverse thermal gradient: Improved image and thermal analysis publication-title: J. Appl. Phys. – volume: 402 start-page: 57 year: 2000 ident: c36 article-title: Contact-line dynamics of a diffuse fluid interface publication-title: J. Fluid Mech. – volume: 47 start-page: 1433 year: 2014 ident: c43 article-title: Electrohydrodynamic micro-/nanostructuring processes based on prepatterned polymer and prepatterned template publication-title: Macromol. – volume: 572 start-page: 367 year: 2007 ident: c37 article-title: Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model publication-title: J. Fluid Mech. – volume: 75 start-page: 1004 year: 1999 ident: c8 article-title: Lithographically induced self-construction of polymer microstructures for resistless patterning publication-title: Appl. Phys. Lett. – volume: 108 start-page: 051604 year: 2016 ident: c3 article-title: Exploiting cellular convection in a thick liquid layer to pattern a thin polymer film publication-title: Appl. Phys. Lett. – volume: 19 start-page: 403 year: 1987 ident: c21 article-title: Thermocapillary instabilities publication-title: Annu. Rev. Fluid Mech. – volume: 167 start-page: 49 year: 1986 ident: c20 article-title: Onset of surface-tension-driven Bénard convection publication-title: J. Fluid Mech. – volume: 3049 start-page: 28 year: 1997 ident: c2 article-title: Photoresist materials: A historical perspective publication-title: Proc. SPIE – volume: 11 start-page: 8717 year: 2015 ident: c13 article-title: Instability, self-organization and pattern formation in thin soft films publication-title: Soft Matter – volume: 45 start-page: 1 year: 2012 ident: c35 article-title: A phase field model for multiphase electro-hydrodynamic flow publication-title: Int. J. Multiphase Flow – volume: 34 start-page: 4188 year: 2018 ident: 2023080721035516600_c29 article-title: Parametric study on electric field-induced micro-/nanopatterns in thin polymer films publication-title: Langmuir doi: 10.1021/acs.langmuir.8b00007 – volume: 45 start-page: 1 year: 2012 ident: 2023080721035516600_c35 article-title: A phase field model for multiphase electro-hydrodynamic flow publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2012.04.002 – volume: 530 start-page: 312 year: 2018 ident: 2023080721035516600_c12 article-title: Ordered high aspect ratio nanopillar formation based on electrical and thermal reflowing of prepatterned thin films publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.06.080 – volume: 4 start-page: 21672 year: 2014 ident: 2023080721035516600_c31 article-title: Simulation of polymer rheology in an electrically induced micro- or nano-structuring process based on electrohydrodynamics and conservative level set method publication-title: RSC Adv. doi: 10.1039/c4ra00553h – volume: 53 start-page: 518 year: 2001 ident: 2023080721035516600_c44 article-title: Electrohydrodynamic instabilities in polymer films publication-title: Europhys. Lett. doi: 10.1209/epl/i2001-00183-2 – volume: 57 start-page: 1 year: 2013 ident: 2023080721035516600_c40 article-title: 3D phase field modeling of electrohydrodynamic multiphase flows publication-title: Int. J. Multiphase Flow doi: 10.1016/j.ijmultiphaseflow.2013.06.006 – volume: 114 start-page: 2377 year: 2001 ident: 2023080721035516600_c45 article-title: Electric field induced instabilities at liquid/liquid interfaces publication-title: J. Chem. Phys. doi: 10.1063/1.1338125 – volume: 15 start-page: 514 year: 2003 ident: 2023080721035516600_c9 article-title: Thermomechanical lithography: Pattern replication using a temperature gradient driven instability publication-title: Adv. Mater. doi: 10.1002/adma.200390119 – volume: 19 start-page: 403 year: 1987 ident: 2023080721035516600_c21 article-title: Thermocapillary instabilities publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.19.010187.002155 – volume: 69 start-page: 931 year: 1997 ident: 2023080721035516600_c24 article-title: Long-scale evolution of thin liquid films publication-title: Rev. Mod. Phys. doi: 10.1103/revmodphys.69.931 – volume: 73 start-page: 035206 year: 2006 ident: 2023080721035516600_c30 article-title: Three-dimensional model of electrostatically induced pattern formation in thin polymer films publication-title: Phys. Rev. B doi: 10.1103/physrevb.73.035206 – volume: 1 start-page: 171 year: 1800 ident: 2023080721035516600_c47 article-title: An essay on the cohesion of fluids publication-title: Proc. R. Soc. London doi: 10.1098/rspl.1800.0095 – volume: 24 start-page: 013001 year: 2014 ident: 2023080721035516600_c4 article-title: Micro hot embossing of thermoplastic polymers: A review publication-title: J. Micromech. Microeng. doi: 10.1088/0960-1317/24/1/013001 – volume: 32 start-page: 5776 year: 2016 ident: 2023080721035516600_c16 article-title: Thermo-electrohydrodynamic patterning in nanofilms publication-title: Langmuir doi: 10.1021/acs.langmuir.6b01810 – volume: 222 start-page: 319 year: 2015 ident: 2023080721035516600_c23 article-title: Modulation of Marangoni convection in liquid films publication-title: Adv. Colloid Interface Sci. doi: 10.1016/j.cis.2015.02.003 – volume: 4 start-page: 180 year: 2009 ident: 2023080721035516600_c11 article-title: Micro- and nano-patterns created via electrohydrodynamic instabilities publication-title: Nano Today doi: 10.1016/j.nantod.2009.02.002 – volume: 290 start-page: 2123 year: 2000 ident: 2023080721035516600_c5 article-title: High-resolution inkjet printing of all-polymer transistor circuits publication-title: Science doi: 10.1126/science.290.5499.2123 – volume: 75 start-page: 1004 year: 1999 ident: 2023080721035516600_c8 article-title: Lithographically induced self-construction of polymer microstructures for resistless patterning publication-title: Appl. Phys. Lett. doi: 10.1063/1.124579 – volume: 106 start-page: 175501 year: 2011 ident: 2023080721035516600_c10 article-title: Experimental verification of the formation mechanism for pillar arrays in nanofilms subject to large thermal gradients publication-title: Phys. Rev. Lett. doi: 10.1103/physrevlett.106.175501 – volume: 17 start-page: 3197 year: 1999 ident: 2023080721035516600_c26 article-title: Lithographically induced self-assembly of periodic polymer micropillar arrays publication-title: J. Vac. Sci. Technol., B doi: 10.1116/1.590979 – volume: 38 start-page: C7-51 year: 1977 ident: 2023080721035516600_c34 article-title: A microscopic theory for domain wall motion and its experimental verification in Fe-Al alloy domain growth kinetics publication-title: J. Phys. Colloq. doi: 10.1051/jphyscol:1977709 – volume: 403 start-page: 874 year: 2000 ident: 2023080721035516600_c27 article-title: Electrically induced structure formation and pattern transfer publication-title: Nature doi: 10.1038/35002540 – volume: 47 start-page: 1433 year: 2014 ident: 2023080721035516600_c43 article-title: Electrohydrodynamic micro-/nanostructuring processes based on prepatterned polymer and prepatterned template publication-title: Macromol. doi: 10.1021/ma402456u – volume: 55 start-page: 1649 year: 2017 ident: 2023080721035516600_c14 article-title: Thermocapillary approaches to the deliberate patterning of polymers publication-title: J. Polym. Sci., Part B: Polym. Phys. doi: 10.1002/polb.24298 – volume: 33 start-page: 10838 year: 2017 ident: 2023080721035516600_c41 article-title: Thermocapillary droplet actuation: Effect of solid structure and wettability publication-title: Langmuir doi: 10.1021/acs.langmuir.7b02762 – volume: 581 start-page: 97 year: 2007 ident: 2023080721035516600_c38 article-title: Diffuse-interface modelling of droplet impact publication-title: J. Fluid Mech. doi: 10.1017/s002211200700554x – volume: 167 start-page: 49 year: 1986 ident: 2023080721035516600_c20 article-title: Onset of surface-tension-driven Bénard convection publication-title: J. Fluid Mech. doi: 10.1017/s0022112086002720 – volume: 3049 start-page: 28 year: 1997 ident: 2023080721035516600_c2 article-title: Photoresist materials: A historical perspective publication-title: Proc. SPIE doi: 10.1117/12.275783 – volume: 120 start-page: 205303 year: 2016 ident: 2023080721035516600_c46 article-title: Early time instability in nanofilms exposed to a large transverse thermal gradient: Improved image and thermal analysis publication-title: J. Appl. Phys. doi: 10.1063/1.4968575 – volume: 682 start-page: 415 year: 2011 ident: 2023080721035516600_c39 article-title: Spreading and breakup of a compound drop on a partially wetting substrate publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.235 – volume: 39 start-page: 819 year: 2008 ident: 2023080721035516600_c7 article-title: Electrohydrodynamic drop-on-demand patterning in pulsed cone-jet mode at various frequencies publication-title: Aerosol Sci. doi: 10.1016/j.jaerosci.2008.05.001 – volume: 792 start-page: 397 year: 2016 ident: 2023080721035516600_c42 article-title: Numerical analysis of the Rayleigh–Taylor instability in an electric field publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.54 – volume: 11 start-page: 545 year: 2016 ident: 2023080721035516600_c15 article-title: Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.25 – volume: 1179 start-page: 1179 year: 2009 ident: 2023080721035516600_c17 article-title: Thermocapillary patterning of nanoscale polymer films publication-title: MRS Proc. doi: 10.1557/proc-1179-bb08-02 – volume: 20 start-page: 197 year: 1979 ident: 2023080721035516600_c32 article-title: Translation of J. D. van der Waals’ ‘The thermodynamik theory of capillarity under the hypothesis of a continuous variation of density’ publication-title: J. Stat. Phys. doi: 10.1007/bf01011513 – volume: 98 start-page: 043106 year: 2018 ident: 2023080721035516600_c28 article-title: Thermally induced interfacial instabilities and pattern formation in confined liquid nanofilms publication-title: Phys. Rev. E doi: 10.1103/physreve.98.043106 – volume: 108 start-page: 051604 year: 2016 ident: 2023080721035516600_c3 article-title: Exploiting cellular convection in a thick liquid layer to pattern a thin polymer film publication-title: Appl. Phys. Lett. doi: 10.1063/1.4940366 – volume: 273 start-page: 361 year: 1994 ident: 2023080721035516600_c25 article-title: On a nonlinear thermocapillary effect in thin liquid layers publication-title: J. Fluid Mech. doi: 10.1017/s0022112094001977 – volume: 572 start-page: 367 year: 2007 ident: 2023080721035516600_c37 article-title: Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model publication-title: J. Fluid Mech. doi: 10.1017/s0022112006003533 – volume: 28 start-page: 258 year: 1958 ident: 2023080721035516600_c33 article-title: Free energy of a nonuniform system. I. Interfacial free energy publication-title: J. Chem. Phys. doi: 10.1063/1.1744102 – volume: 11 start-page: 8717 year: 2015 ident: 2023080721035516600_c13 article-title: Instability, self-organization and pattern formation in thin soft films publication-title: Soft Matter doi: 10.1039/c5sm01724f – volume: 9 start-page: 513 year: 1900 ident: 2023080721035516600_c18 article-title: Étude expérimentale des courants de convection dans une nappe liquide.—Régime permanent: tourbillons cellulaires publication-title: J. Phys. Theor. Appl. doi: 10.1051/jphystap:019000090051300 – volume: 72 start-page: 519 year: 1998 ident: 2023080721035516600_c6 article-title: Ink-jet printing of doped polymers for organic light emitting devices publication-title: Appl. Phys. Lett. doi: 10.1063/1.120807 – volume: 402 start-page: 57 year: 2000 ident: 2023080721035516600_c36 article-title: Contact-line dynamics of a diffuse fluid interface publication-title: J. Fluid Mech. doi: 10.1017/s0022112099006874 – volume: 108 start-page: 074308 year: 2010 ident: 2023080721035516600_c1 article-title: Mechanism for spontaneous growth of nanopillar arrays in ultrathin films subject to a thermal gradient publication-title: J. Appl. Phys. doi: 10.1063/1.3475516 – volume: 4 start-page: 489 year: 1958 ident: 2023080721035516600_c19 article-title: On convection cells induced by surface tension publication-title: J. Fluid Mech. doi: 10.1017/s0022112058000616 – volume-title: Nonlinear Dynamics of Surface-Tension-Driven Instabilities year: 2001 ident: 2023080721035516600_c22 |
SSID | ssj0003926 |
Score | 2.372989 |
Snippet | The underlying mechanism of thermal induced patterning is investigated using a numerical phase-field model. Research on the subject has been mostly restricted... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Approximation Computational fluid dynamics Contact angle Film thickness Fluid dynamics Fluid flow Lubrication Marangoni convection Mathematical models Patterning Physics Polymer films Polymers Shape effects Temperature gradients Thermal conductivity Thin films |
Title | A numerical study for thermocapillary induced patterning of thin liquid films |
URI | http://dx.doi.org/10.1063/1.5134460 https://www.proquest.com/docview/2351200220 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZgKwQXHgVEoSALOCBVKUkcx8kx4qEKsRyglXqL_NSutHl0m-2hv55x7CQLrFDhEq2cWUfrzzv-ZjIPhN4qxQxhLAy0pjRIwAAIhBBJkEqjUg2EQQqbOzz_lp6cJV_O6fnUsq7PLunEsbzemVfyP6jCGOBqs2T_AdlxUhiAz4AvXAFhuN4I4-Ko3rg3LitXJ3YIGlxXcES1tqHQ2ub1qY19y9_2pTRrH-bcLZb10Wp5sVkqW5zJFy33NLWPC5V9lIdZgYSr55TnyZbjYN4seFVx1dmgAJcrsxxdy_wabPC2cb4A0G7jne9Lt6cKteDV5IitLHHux20Sw7YrAuzOcAzrcNoT9EcAFMYNaT-W5QFLXWuVQeVOLs3B8v1DkwN1sk6FYxoRsFjD22gvBkMgnKG94uP864_xtAV-l7q4UvfooXpUSt6PX_6Vc0yGxF1gGS7gYYtTnD5E970xgAuH7CN0S9f76IE3DLBXu5f76I7H4zGaF3iEHPeQY4Ac_wY59pDjCXLcGGwhxw5y3EP-BJ19_nT64STwHTECSWLWwckEbDaCnylNHLKYG6UlNzEF1s9yo0PDJWVAMlNBeKYFzTKZsJDqNBdM8jwiT9Gsbmr9DGFtCFA9KYCOiCTTCZdEUh0ZqWSUS0oP0LthzcphlWzXklXZhy2kpIxKv7wH6PUo2roaKbuEDoeFL_1f6LKMCfBNSyPh9psRjL9NskPqqllPEmWrzPMbzfUC3Zv28CGadeuNfgkEsxOv_B77CaoBetc |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+numerical+study+for+thermocapillary+induced+patterning+of+thin+liquid+films&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Mohammadtabar%2C+Ali&rft.au=Nazaripoor%2C+Hadi&rft.au=Riad%2C+Adham&rft.au=Hemmati%2C+Arman&rft.date=2020-02-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=2&rft_id=info:doi/10.1063%2F1.5134460 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |