Stability and Metastability of Li3YCl6 and Li3HoCl6
Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and meta...
Saved in:
Published in | Bulletin of the Chemical Society of Japan Vol. 96; no. 11; pp. 1262 - 1268 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
The Chemical Society of Japan
15.11.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0009-2673 1348-0634 |
DOI | 10.1246/bcsj.20230132 |
Cover
Abstract | Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and metastability. In this study, we organized remnant and intermediate metastability based on temperature. The intermediate metastable phase, which is less stable than the temperature-independent stable phase, typically transforms into the stable phase(s) at high temperatures. In contrast, the remnant metastable phase is formed by first obtaining most stable phase at specific temperatures and then “trapping” it by rapidly changing the temperature. By investigating Li+ conducting chlorides, Li3MCl6 (M = Y and Ho), we demonstrated that heating starting materials to approximately 600 K produced low-temperature Li3MCl6 phase with one formula unit while further heating resulted in high-temperature Li3MCl6 phase with three formula units. Annealing quenched Li3MCl6 at 573 K resulted in a phase transition from the high-temperature to low-temperature phase, indicating that the high-temperature phase was remnant metastable at low temperatures. |
---|---|
AbstractList | Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and metastability. In this study, we organized remnant and intermediate metastability based on temperature. The intermediate metastable phase, which is less stable than the temperature-independent stable phase, typically transforms into the stable phase(s) at high temperatures. In contrast, the remnant metastable phase is formed by first obtaining most stable phase at specific temperatures and then “trapping” it by rapidly changing the temperature. By investigating Li+ conducting chlorides, Li3MCl6 (M = Y and Ho), we demonstrated that heating starting materials to approximately 600 K produced low-temperature Li3MCl6 phase with one formula unit while further heating resulted in high-temperature Li3MCl6 phase with three formula units. Annealing quenched Li3MCl6 at 573 K resulted in a phase transition from the high-temperature to low-temperature phase, indicating that the high-temperature phase was remnant metastable at low temperatures. |
Author | Oike, Hiroshi Goto, Yosuke Mizuguchi, Yoshikazu Toyao, Takashi Nakahira, Yuki Yamashita, Aichi Enoki, Masanori Ishimatsu, Naoki Moriyoshi, Chikako Rosero-Navarro, Nataly Carolina Ito, Hiroaki Miura, Akira Shimizu, Ken-ichi Tadanaga, Kiyoharu |
Author_xml | – sequence: 1 givenname: Hiroaki surname: Ito fullname: Ito, Hiroaki – sequence: 2 givenname: Yuki surname: Nakahira fullname: Nakahira, Yuki – sequence: 3 givenname: Naoki surname: Ishimatsu fullname: Ishimatsu, Naoki – sequence: 4 givenname: Yosuke surname: Goto fullname: Goto, Yosuke – sequence: 5 givenname: Aichi surname: Yamashita fullname: Yamashita, Aichi – sequence: 6 givenname: Yoshikazu surname: Mizuguchi fullname: Mizuguchi, Yoshikazu – sequence: 7 givenname: Chikako surname: Moriyoshi fullname: Moriyoshi, Chikako – sequence: 8 givenname: Takashi surname: Toyao fullname: Toyao, Takashi – sequence: 9 givenname: Ken-ichi surname: Shimizu fullname: Shimizu, Ken-ichi – sequence: 10 givenname: Hiroshi surname: Oike fullname: Oike, Hiroshi – sequence: 11 givenname: Masanori surname: Enoki fullname: Enoki, Masanori – sequence: 12 givenname: Nataly Carolina surname: Rosero-Navarro fullname: Rosero-Navarro, Nataly Carolina – sequence: 13 givenname: Akira surname: Miura fullname: Miura, Akira – sequence: 14 givenname: Kiyoharu surname: Tadanaga fullname: Tadanaga, Kiyoharu |
BookMark | eNp1jz9PwzAQxS1UJNLCyJ4vkGL7nD9mQxFQpCAGYGCKbMcWjtK4is2Qb49LCwNSp7t7997pfku0GN2oEbomeE0oK26k8v2aYgqYAD1DCQFWZbgAtkAJxphntCjhAi297-NY5YwnCF6DkHawYU7F2KXPOgj_pziTNhY-6qH4WcZ-4-Jwic6NGLy-OtYVen-4f6s3WfPy-FTfNZkCWoas6nKugWLCiGLS6DL-CKaURcVJp_JcEco7onUnKLBOcgHYSILzUlaE0oLDCmWHu2py3k_atLvJbsU0twS3e-J2T9z-Ekc__PMrG0SwbgyTsMPJ1O0x9am3VkUgp6wOcy92Ymx79zWNUTsR_gZlnG4l |
CitedBy_id | crossref_primary_10_1039_D3CE01185B crossref_primary_10_1021_acsmaterialslett_4c00315 crossref_primary_10_1021_jacs_4c10294 crossref_primary_10_1039_D4SC05575F crossref_primary_10_1021_jacs_4c09476 crossref_primary_10_1021_acsami_4c12938 |
Cites_doi | 10.1002/adma.202100312 10.1038/187869b0 10.1021/acsenergylett.2c00438 10.1021/acs.accounts.8b00382 10.1002/advs.202101413 10.1002/adma.201601979 10.1002/adma.202002857 10.1021/jacs.1c04888 10.1021/jacs.7b05423 10.1021/acs.chemmater.6b04861 10.1039/D0TA02805C 10.1038/s41563-020-0688-6 10.1002/ejic.201900733 10.1021/jacs.2c05043 10.1063/1.881303 10.1021/acs.inorgchem.8b01049 10.1002/aenm.202103921 10.1126/science.aan5412 10.1021/jacs.0c00134 10.1107/S0021889811038970 10.1038/s41467-021-23339-x 10.1021/jacs.1c11335 10.1016/j.isci.2019.05.036 10.1126/science.1254051 10.1038/nmat4752 10.1126/science.247.4943.649 10.1002/adma.201803075 10.1021/jacs.0c11047 10.4028/www.scientific.net/SSP.130.15 10.1002/zaac.19976230710 10.1107/S0909049505012719 10.1038/354217a0 10.1038/nature04421 10.1038/s41524-021-00626-1 10.1002/anie.201409714 10.1073/pnas.1800284115 10.1021/jacs.6b06367 10.1126/science.264.5160.794 10.1126/sciadv.1600225 10.1002/anie.201909805 10.1002/zaac.19926130104 10.1039/C6TC04931A 10.1021/acs.chemmater.0c04352 10.1126/sciadv.aau3489 10.1107/S0567739476001551 10.1002/cphc.202000199 |
ContentType | Journal Article |
Copyright | The Chemical Society of Japan |
Copyright_xml | – notice: The Chemical Society of Japan |
DBID | AAYXX CITATION |
DOI | 10.1246/bcsj.20230132 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
DocumentTitleAlternate | Stability and Metastability of Li3YCl6 and Li3HoCl6 |
EISSN | 1348-0634 |
EndPage | 1268 |
ExternalDocumentID | 10_1246_bcsj_20230132 |
FullText_t_NoSnippeting | true |
GroupedDBID | -~X 23N 5GY 6J9 ABEFU ABZEH ACCUC ACGFO ACIWK ACNCT AENEX AFFNX AIDUJ ALMA_UNASSIGNED_HOLDINGS BCRHZ CS3 DU5 EBS EJD F5P GX1 JSI JSP OK1 P0W P2P RAD RJT RZJ SC5 TN5 TWZ UPT WH7 ~02 0R~ AAUAY AAYXX ABDFA ABEJV ABGNP ABJNI ABVGC ABXVV ADIPN ADNBA ADVOB AGMDO AGORE AJNCP CITATION KOP NU- OJZSN OWPYF ROX |
ID | FETCH-LOGICAL-c327t-8d59e320141c4bfe72463f7b6891dc55c129d1eeda234db9a30fb1057b8122693 |
ISSN | 0009-2673 |
IngestDate | Tue Jul 01 00:34:51 EDT 2025 Thu Apr 24 23:08:25 EDT 2025 Sat Nov 25 04:00:09 EST 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | Solid electrolytes Synthesis design Metastability |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-8d59e320141c4bfe72463f7b6891dc55c129d1eeda234db9a30fb1057b8122693 |
OpenAccessLink | http://dx.doi.org/10.1246/bcsj.20230132 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1246_bcsj_20230132 crossref_citationtrail_10_1246_bcsj_20230132 chemicalsocietyjapan_journals_10_1246_bcsj_20230132 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-11-15 |
PublicationDateYYYYMMDD | 2023-11-15 |
PublicationDate_xml | – month: 11 year: 2023 text: 2023-11-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Bulletin of the Chemical Society of Japan |
PublicationYear | 2023 |
Publisher | The Chemical Society of Japan |
Publisher_xml | – name: The Chemical Society of Japan |
References | 2H. Oike, M. Kamitani, Y. Tokura, F. Kagawa, Sci. Adv. 2018, 4, eaau3489. 10.1126/sciadv.aau348930310870 36T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075. 10.1002/adma.201803075 28H. Mizoguchi, S. W. Park, T. Katase, G. V. Vazhenin, J. Kim, H. Hosono, J. Am. Chem. Soc. 2021, 143, 69. 10.1021/jacs.0c1104733356202 22G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, G. M. Veith, K. S. Thornton, K. W. Chapman, J. Am. Chem. Soc. 2022, 144, 11975. 10.1021/jacs.2c0504335763716 16M. Bianchini, J. Wang, R. J. Clément, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. Ceder, Nat. Mater. 2020, 19, 1088. 10.1038/s41563-020-0688-632424371 35J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012. 10.1021/jacs.0c0013432212650 4A. K. Cheetham, Science 1994, 264, 794. 10.1126/science.264.5160.79417794719 24J. R. Chamorro, T. M. McQueen, Acc. Chem. Res. 2018, 51, 2918. 10.1021/acs.accounts.8b0038230299082 26D. L. M. Cordova, D. C. Johnson, ChemPhysChem 2020, 21, 1345. 10.1002/cphc.20200019932346904 43S. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao-Horn, iScience 2019, 16, 270. 10.1016/j.isci.2019.05.03631203184 3X. Tan, S. Geng, Y. Ji, Q. Shao, T. Zhu, P. Wang, Y. Li, X. Huang, Adv. Mater. 2020, 32, 2002857. 10.1002/adma.202002857 25A. J. Martinolich, J. R. Neilson, Chem. Mater. 2017, 29, 479. 10.1021/acs.chemmater.6b04861 34H. Kwak, S. Wang, J. Park, Y. Liu, K. T. Kim, Y. Choi, Y. Mo, Y. S. Jung, ACS Energy Lett. 2022, 7, 1776. 10.1021/acsenergylett.2c00438 11M. J. McDermott, S. S. Dwaraknath, K. A. Persson, Nat. Commun. 2021, 12, 3097. 10.1038/s41467-021-23339-x34035255 12M. Aykol, J. H. Montoya, J. Hummelshøj, J. Am. Chem. Soc. 2021, 143, 9244. 10.1021/jacs.1c0488834114812 42J. Liang, E. Maas, J. Luo, X. Li, N. Chen, K. R. Adair, W. Li, J. Li, Y. Hu, J. Liu, L. Zhang, S. Zhao, S. Lu, J. Wang, H. Huang, W. Zhao, S. Parnell, R. I. Smith, S. Ganapathy, M. Wagemaker, X. Sun, Adv. Energy Mater. 2022, 12, 2103921. 10.1002/aenm.202103921 39E. Sebti, H. A. Evans, H. Chen, P. M. Richardson, K. M. White, R. Giovine, K. P. Koirala, Y. Xu, E. Gonzalez-Correa, C. Wang, C. M. Brown, A. K. Cheetham, P. Canepa, R. J. Clément, J. Am. Chem. Soc. 2022, 144, 5795. 10.1021/jacs.1c1133535325534 13A. Miura, C. J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T. Yaguchi, M. Shirai, M. Nagao, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, Adv. Mater. 2021, 33, 2100312. 10.1002/adma.202100312 29W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225. 10.1126/sciadv.160022528138514 45K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272. 10.1107/S0021889811038970 15A. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 10814. 10.1021/jacs.7b0542328665593 37R. Schlem, A. Banik, S. Ohno, E. Suard, W. G. Zeier, Chem. Mater. 2021, 33, 327. 10.1021/acs.chemmater.0c04352 6M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 1991, 354, 217. 10.1038/354217a0 20Z. Jiang, A. Ramanathan, D. P. Shoemaker, J. Mater. Chem. C 2017, 5, 5709. 10.1039/C6TC04931A 30J. E. Shelby, M. Lopes, Introduction to Glass Science and Technology, The Royal Society of Chemistry, 2005. 41A. Bohnsack, F. Stenzel, A. Zajonc, G. Balzer, M. S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 1067. 10.1002/zaac.19976230710 44F. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15. 10.4028/www.scientific.net/SSP.130.15 33D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier, W. Sun, npj Comput. Mater. 2021, 7, 151. 10.1038/s41524-021-00626-1 5Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489. 10.1126/science.aan541229599236 17H. He, C.-H. H. Yee, D. E. McNally, J. W. Simonson, S. Zellman, M. Klemm, P. Kamenov, G. Geschwind, A. Zebro, S. Ghose, J. Bai, E. Dooryhee, G. Kotliar, M. C. Aronson, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7890. 10.1073/pnas.180028411530018065 27M. Esters, M. B. Alemayehu, Z. Jones, N. T. Nguyen, M. D. Anderson, C. Grosse, S. F. Fischer, D. C. Johnson, Angew. Chem., Int. Ed. 2015, 54, 1130. 10.1002/anie.201409714 48L. Peng, R. J. Clément, M. Lin, Y. Yang, 2021, NMR and MRI of Electrochemical Energy Storage Materials and Devices, Chapter1 https://doi.org/10.1039/9781839160097-00001 Royal Chemical Sciety pp. 1–70. 8K. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, M. Tatsumisago, Inorg. Chem. 2018, 57, 9925. 10.1021/acs.inorgchem.8b0104930091598 46B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537. 10.1107/S090904950501271915968136 10F. Kagawa, H. Oike, Adv. Mater. 2017, 29, 1601979. 10.1002/adma.201601979 47R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751. 10.1107/S0567739476001551 32H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Nature 2006, 439, 419. 10.1038/nature0442116437105 40X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427. 10.1002/anie.201909805 7K. Kaup, L. Zhou, A. Huq, L. F. Nazar, J. Mater. Chem. A 2020, 8, 12446. 10.1039/D0TA02805C 14H. Ito, K. Shitara, Y. Wang, K. Fujii, M. Yashima, Y. Goto, C. Moriyoshi, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, Adv. Sci. 2021, 8, 2101413. 10.1002/advs.202101413 18H. Kohlmann, Eur. J. Inorg. Chem. 2019, 4174. 10.1002/ejic.201900733 1A. W. Sleight, Phys. Today 1991, 44, 24. 10.1063/1.881303 23F. J. DiSalvo, Science 1990, 247, 649. 10.1126/science.247.4943.64917771880 9K. Karube, J. S. White, N. Reynolds, J. L. Gavilano, H. Oike, A. Kikkawa, F. Kagawa, Y. Tokunaga, H. M. Rønnow, Y. Tokura, Y. Taguchi, Nat. Mater. 2016, 15, 1237. 10.1038/nmat475227643728 19M. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158. 10.1126/science.125405125190792 21A. J. Martinolich, J. A. Kurzman, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 11031. 10.1021/jacs.6b0636727490369 31W. Klement, R. H. Willens, P. O. L. Duwez, Nature 1960, 187, 869. 10.1038/187869b0 38H.-J. Steiner, H. D. Lutz, Z. Anorg. Allg. Chem. 1992, 613, 26. 10.1002/zaac.19926130104 DiSalvo (2024011619342704900_r23) 1990; 247 Karube (2024011619342704900_r9) 2016; 15 Kagawa (2024011619342704900_r10) 2017; 29 Haynes (2024011619342704900_r15) 2017; 139 Izumi (2024011619342704900_r44) 2007; 130 Oike (2024011619342704900_r2) 2018; 4 McDermott (2024011619342704900_r11) 2021; 12 Liang (2024011619342704900_r35) 2020; 142 Bohnsack (2024011619342704900_r41) 1997; 623 He (2024011619342704900_r17) 2018; 115 Momma (2024011619342704900_r45) 2011; 44 Kanazawa (2024011619342704900_r8) 2018; 57 Sebti (2024011619342704900_r39) 2022; 144 Sleight (2024011619342704900_r1) 1991; 44 Martinolich (2024011619342704900_r25) 2017; 29 Sun (2024011619342704900_r29) 2016; 2 Liang (2024011619342704900_r42) 2022; 12 Peng (2024011619342704900_r48) 2021 Ito (2024011619342704900_r14) 2021; 8 Klement (2024011619342704900_r31) 1960; 187 Ravel (2024011619342704900_r46) 2005; 12 Cordova (2024011619342704900_r26) 2020; 21 Muy (2024011619342704900_r43) 2019; 16 Sheng (2024011619342704900_r32) 2006; 439 Evans (2024011619342704900_r33) 2021; 7 Mizoguchi (2024011619342704900_r28) 2021; 143 Schlem (2024011619342704900_r37) 2021; 33 Aykol (2024011619342704900_r12) 2021; 143 Kohlmann (2024011619342704900_r18) 2019 Yao (2024011619342704900_r5) 2018; 359 Martinolich (2024011619342704900_r21) 2016; 138 Nielsen (2024011619342704900_r19) 2014; 345 Steiner (2024011619342704900_r38) 1992; 613 Esters (2024011619342704900_r27) 2015; 54 Cheetham (2024011619342704900_r4) 1994; 264 Tatsumisago (2024011619342704900_r6) 1991; 354 2024011619342704900_r30 Asano (2024011619342704900_r36) 2018; 30 Miura (2024011619342704900_r13) 2021; 33 Li (2024011619342704900_r40) 2019; 58 Bianchini (2024011619342704900_r16) 2020; 19 Kwak (2024011619342704900_r34) 2022; 7 Kaup (2024011619342704900_r7) 2020; 8 Chamorro (2024011619342704900_r24) 2018; 51 Shannon (2024011619342704900_r47) 1976; 32 Tan (2024011619342704900_r3) 2020; 32 Kamm (2024011619342704900_r22) 2022; 144 Jiang (2024011619342704900_r20) 2017; 5 |
References_xml | – reference: 29W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225. 10.1126/sciadv.160022528138514 – reference: 38H.-J. Steiner, H. D. Lutz, Z. Anorg. Allg. Chem. 1992, 613, 26. 10.1002/zaac.19926130104 – reference: 6M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 1991, 354, 217. 10.1038/354217a0 – reference: 26D. L. M. Cordova, D. C. Johnson, ChemPhysChem 2020, 21, 1345. 10.1002/cphc.20200019932346904 – reference: 22G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, G. M. Veith, K. S. Thornton, K. W. Chapman, J. Am. Chem. Soc. 2022, 144, 11975. 10.1021/jacs.2c0504335763716 – reference: 18H. Kohlmann, Eur. J. Inorg. Chem. 2019, 4174. 10.1002/ejic.201900733 – reference: 44F. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15. 10.4028/www.scientific.net/SSP.130.15 – reference: 12M. Aykol, J. H. Montoya, J. Hummelshøj, J. Am. Chem. Soc. 2021, 143, 9244. 10.1021/jacs.1c0488834114812 – reference: 1A. W. Sleight, Phys. Today 1991, 44, 24. 10.1063/1.881303 – reference: 8K. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, M. Tatsumisago, Inorg. Chem. 2018, 57, 9925. 10.1021/acs.inorgchem.8b0104930091598 – reference: 48L. Peng, R. J. Clément, M. Lin, Y. Yang, 2021, NMR and MRI of Electrochemical Energy Storage Materials and Devices, Chapter1 https://doi.org/10.1039/9781839160097-00001 Royal Chemical Sciety pp. 1–70. – reference: 10F. Kagawa, H. Oike, Adv. Mater. 2017, 29, 1601979. 10.1002/adma.201601979 – reference: 39E. Sebti, H. A. Evans, H. Chen, P. M. Richardson, K. M. White, R. Giovine, K. P. Koirala, Y. Xu, E. Gonzalez-Correa, C. Wang, C. M. Brown, A. K. Cheetham, P. Canepa, R. J. Clément, J. Am. Chem. Soc. 2022, 144, 5795. 10.1021/jacs.1c1133535325534 – reference: 45K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272. 10.1107/S0021889811038970 – reference: 41A. Bohnsack, F. Stenzel, A. Zajonc, G. Balzer, M. S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 1067. 10.1002/zaac.19976230710 – reference: 43S. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao-Horn, iScience 2019, 16, 270. 10.1016/j.isci.2019.05.03631203184 – reference: 47R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751. 10.1107/S0567739476001551 – reference: 46B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537. 10.1107/S090904950501271915968136 – reference: 20Z. Jiang, A. Ramanathan, D. P. Shoemaker, J. Mater. Chem. C 2017, 5, 5709. 10.1039/C6TC04931A – reference: 14H. Ito, K. Shitara, Y. Wang, K. Fujii, M. Yashima, Y. Goto, C. Moriyoshi, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, Adv. Sci. 2021, 8, 2101413. 10.1002/advs.202101413 – reference: 3X. Tan, S. Geng, Y. Ji, Q. Shao, T. Zhu, P. Wang, Y. Li, X. Huang, Adv. Mater. 2020, 32, 2002857. 10.1002/adma.202002857 – reference: 32H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Nature 2006, 439, 419. 10.1038/nature0442116437105 – reference: 13A. Miura, C. J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T. Yaguchi, M. Shirai, M. Nagao, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, Adv. Mater. 2021, 33, 2100312. 10.1002/adma.202100312 – reference: 30J. E. Shelby, M. Lopes, Introduction to Glass Science and Technology, The Royal Society of Chemistry, 2005. – reference: 28H. Mizoguchi, S. W. Park, T. Katase, G. V. Vazhenin, J. Kim, H. Hosono, J. Am. Chem. Soc. 2021, 143, 69. 10.1021/jacs.0c1104733356202 – reference: 40X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427. 10.1002/anie.201909805 – reference: 27M. Esters, M. B. Alemayehu, Z. Jones, N. T. Nguyen, M. D. Anderson, C. Grosse, S. F. Fischer, D. C. Johnson, Angew. Chem., Int. Ed. 2015, 54, 1130. 10.1002/anie.201409714 – reference: 21A. J. Martinolich, J. A. Kurzman, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 11031. 10.1021/jacs.6b0636727490369 – reference: 17H. He, C.-H. H. Yee, D. E. McNally, J. W. Simonson, S. Zellman, M. Klemm, P. Kamenov, G. Geschwind, A. Zebro, S. Ghose, J. Bai, E. Dooryhee, G. Kotliar, M. C. Aronson, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7890. 10.1073/pnas.180028411530018065 – reference: 11M. J. McDermott, S. S. Dwaraknath, K. A. Persson, Nat. Commun. 2021, 12, 3097. 10.1038/s41467-021-23339-x34035255 – reference: 34H. Kwak, S. Wang, J. Park, Y. Liu, K. T. Kim, Y. Choi, Y. Mo, Y. S. Jung, ACS Energy Lett. 2022, 7, 1776. 10.1021/acsenergylett.2c00438 – reference: 33D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier, W. Sun, npj Comput. Mater. 2021, 7, 151. 10.1038/s41524-021-00626-1 – reference: 35J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012. 10.1021/jacs.0c0013432212650 – reference: 2H. Oike, M. Kamitani, Y. Tokura, F. Kagawa, Sci. Adv. 2018, 4, eaau3489. 10.1126/sciadv.aau348930310870 – reference: 25A. J. Martinolich, J. R. Neilson, Chem. Mater. 2017, 29, 479. 10.1021/acs.chemmater.6b04861 – reference: 24J. R. Chamorro, T. M. McQueen, Acc. Chem. Res. 2018, 51, 2918. 10.1021/acs.accounts.8b0038230299082 – reference: 7K. Kaup, L. Zhou, A. Huq, L. F. Nazar, J. Mater. Chem. A 2020, 8, 12446. 10.1039/D0TA02805C – reference: 31W. Klement, R. H. Willens, P. O. L. Duwez, Nature 1960, 187, 869. 10.1038/187869b0 – reference: 42J. Liang, E. Maas, J. Luo, X. Li, N. Chen, K. R. Adair, W. Li, J. Li, Y. Hu, J. Liu, L. Zhang, S. Zhao, S. Lu, J. Wang, H. Huang, W. Zhao, S. Parnell, R. I. Smith, S. Ganapathy, M. Wagemaker, X. Sun, Adv. Energy Mater. 2022, 12, 2103921. 10.1002/aenm.202103921 – reference: 36T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075. 10.1002/adma.201803075 – reference: 15A. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 10814. 10.1021/jacs.7b0542328665593 – reference: 16M. Bianchini, J. Wang, R. J. Clément, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. Ceder, Nat. Mater. 2020, 19, 1088. 10.1038/s41563-020-0688-632424371 – reference: 5Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489. 10.1126/science.aan541229599236 – reference: 9K. Karube, J. S. White, N. Reynolds, J. L. Gavilano, H. Oike, A. Kikkawa, F. Kagawa, Y. Tokunaga, H. M. Rønnow, Y. Tokura, Y. Taguchi, Nat. Mater. 2016, 15, 1237. 10.1038/nmat475227643728 – reference: 4A. K. Cheetham, Science 1994, 264, 794. 10.1126/science.264.5160.79417794719 – reference: 37R. Schlem, A. Banik, S. Ohno, E. Suard, W. G. Zeier, Chem. Mater. 2021, 33, 327. 10.1021/acs.chemmater.0c04352 – reference: 19M. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158. 10.1126/science.125405125190792 – reference: 23F. J. DiSalvo, Science 1990, 247, 649. 10.1126/science.247.4943.64917771880 – volume: 33 start-page: 2100312 year: 2021 ident: 2024011619342704900_r13 publication-title: Adv. Mater. doi: 10.1002/adma.202100312 – volume: 187 start-page: 869 year: 1960 ident: 2024011619342704900_r31 publication-title: Nature doi: 10.1038/187869b0 – volume: 7 start-page: 1776 year: 2022 ident: 2024011619342704900_r34 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.2c00438 – volume: 51 start-page: 2918 year: 2018 ident: 2024011619342704900_r24 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00382 – volume: 8 start-page: 2101413 year: 2021 ident: 2024011619342704900_r14 publication-title: Adv. Sci. doi: 10.1002/advs.202101413 – volume: 29 start-page: 1601979 year: 2017 ident: 2024011619342704900_r10 publication-title: Adv. Mater. doi: 10.1002/adma.201601979 – volume: 32 start-page: 2002857 year: 2020 ident: 2024011619342704900_r3 publication-title: Adv. Mater. doi: 10.1002/adma.202002857 – volume: 143 start-page: 9244 year: 2021 ident: 2024011619342704900_r12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c04888 – volume: 139 start-page: 10814 year: 2017 ident: 2024011619342704900_r15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b05423 – volume: 29 start-page: 479 year: 2017 ident: 2024011619342704900_r25 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04861 – volume: 8 start-page: 12446 year: 2020 ident: 2024011619342704900_r7 publication-title: J. Mater. Chem. A doi: 10.1039/D0TA02805C – volume: 19 start-page: 1088 year: 2020 ident: 2024011619342704900_r16 publication-title: Nat. Mater. doi: 10.1038/s41563-020-0688-6 – ident: 2024011619342704900_r30 – start-page: 4174 year: 2019 ident: 2024011619342704900_r18 publication-title: Eur. J. Inorg. Chem. doi: 10.1002/ejic.201900733 – volume: 144 start-page: 11975 year: 2022 ident: 2024011619342704900_r22 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c05043 – volume: 44 start-page: 24 year: 1991 ident: 2024011619342704900_r1 publication-title: Phys. Today doi: 10.1063/1.881303 – volume: 57 start-page: 9925 year: 2018 ident: 2024011619342704900_r8 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.8b01049 – volume: 12 start-page: 2103921 year: 2022 ident: 2024011619342704900_r42 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202103921 – year: 2021 ident: 2024011619342704900_r48 – volume: 359 start-page: 1489 year: 2018 ident: 2024011619342704900_r5 publication-title: Science doi: 10.1126/science.aan5412 – volume: 142 start-page: 7012 year: 2020 ident: 2024011619342704900_r35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00134 – volume: 44 start-page: 1272 year: 2011 ident: 2024011619342704900_r45 publication-title: J. Appl. Crystallogr. doi: 10.1107/S0021889811038970 – volume: 12 start-page: 3097 year: 2021 ident: 2024011619342704900_r11 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23339-x – volume: 144 start-page: 5795 year: 2022 ident: 2024011619342704900_r39 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c11335 – volume: 16 start-page: 270 year: 2019 ident: 2024011619342704900_r43 publication-title: iScience doi: 10.1016/j.isci.2019.05.036 – volume: 345 start-page: 1158 year: 2014 ident: 2024011619342704900_r19 publication-title: Science doi: 10.1126/science.1254051 – volume: 15 start-page: 1237 year: 2016 ident: 2024011619342704900_r9 publication-title: Nat. Mater. doi: 10.1038/nmat4752 – volume: 247 start-page: 649 year: 1990 ident: 2024011619342704900_r23 publication-title: Science doi: 10.1126/science.247.4943.649 – volume: 30 start-page: 1803075 year: 2018 ident: 2024011619342704900_r36 publication-title: Adv. Mater. doi: 10.1002/adma.201803075 – volume: 143 start-page: 69 year: 2021 ident: 2024011619342704900_r28 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c11047 – volume: 130 start-page: 15 year: 2007 ident: 2024011619342704900_r44 publication-title: Solid State Phenom. doi: 10.4028/www.scientific.net/SSP.130.15 – volume: 623 start-page: 1067 year: 1997 ident: 2024011619342704900_r41 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19976230710 – volume: 12 start-page: 537 year: 2005 ident: 2024011619342704900_r46 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049505012719 – volume: 354 start-page: 217 year: 1991 ident: 2024011619342704900_r6 publication-title: Nature doi: 10.1038/354217a0 – volume: 439 start-page: 419 year: 2006 ident: 2024011619342704900_r32 publication-title: Nature doi: 10.1038/nature04421 – volume: 7 start-page: 151 year: 2021 ident: 2024011619342704900_r33 publication-title: npj Comput. Mater. doi: 10.1038/s41524-021-00626-1 – volume: 54 start-page: 1130 year: 2015 ident: 2024011619342704900_r27 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201409714 – volume: 115 start-page: 7890 year: 2018 ident: 2024011619342704900_r17 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1800284115 – volume: 138 start-page: 11031 year: 2016 ident: 2024011619342704900_r21 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06367 – volume: 264 start-page: 794 year: 1994 ident: 2024011619342704900_r4 publication-title: Science doi: 10.1126/science.264.5160.794 – volume: 2 start-page: e1600225 year: 2016 ident: 2024011619342704900_r29 publication-title: Sci. Adv. doi: 10.1126/sciadv.1600225 – volume: 58 start-page: 16427 year: 2019 ident: 2024011619342704900_r40 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201909805 – volume: 613 start-page: 26 year: 1992 ident: 2024011619342704900_r38 publication-title: Z. Anorg. Allg. Chem. doi: 10.1002/zaac.19926130104 – volume: 5 start-page: 5709 year: 2017 ident: 2024011619342704900_r20 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC04931A – volume: 33 start-page: 327 year: 2021 ident: 2024011619342704900_r37 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.0c04352 – volume: 4 start-page: eaau3489 year: 2018 ident: 2024011619342704900_r2 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau3489 – volume: 32 start-page: 751 year: 1976 ident: 2024011619342704900_r47 publication-title: Acta Crystallogr., Sect. A doi: 10.1107/S0567739476001551 – volume: 21 start-page: 1345 year: 2020 ident: 2024011619342704900_r26 publication-title: ChemPhysChem doi: 10.1002/cphc.202000199 |
SSID | ssj0008549 |
Score | 2.4267385 |
Snippet | Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the... |
SourceID | crossref chemicalsocietyjapan |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1262 |
Title | Stability and Metastability of Li3YCl6 and Li3HoCl6 |
URI | http://dx.doi.org/10.1246/bcsj.20230132 |
Volume | 96 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90HtSDUadxfoWD8SQILZ9Hs6jLknnaknkitJTEZWFG8OJf7yttgSVodBcCrw_Wvd_L45W-D4RuQlhGpJjB2oR6tun6xDYjn1EzA2XBfsqwXfUhm7z4o5k7nnvzpj9hlV1SUot9deaVbIIq0ABXkSX7D2TrhwIBzgFfOALCcPwTxuApVrGtsobShJdJUVPEt_838jpc-tUgnI9WcLG2iatKb-s4gbp4gA7lBPoYXqZ5-9MAJiJHTiZHWjq57Pc7tVGMTOzLjiIWl3aQuKEJ3ovbNpSy9axWCKdl9hysTCrXl2GnecZVXWLKioUl5iv2eZr3UB0dKNYlwBkLvljzbaMdHATVTvzzvIniCT29wpH_QZVRhdvv135mH_WZEkUhJbEQUmh5Iy23YnqIDtR6wHiQ4B6hLZ4fo92hbsPXR6QG2QAcjTWQjVVmKJCrQQ3yCZo9PU6HI1N1ujAZwUFphqkXcYJF0C1zacYDmD_JAuqHkZMyz2PglaUOuDMJJm5Ko4TYGRUdmin4Z9iPyCnq5aucnyHDtmHc5YnjpOAc4iQMIjv1MnD7gwSo4QCRLkHESq2LuFP6A3Sn5RQzVTxe9DBZ_sR-W7O_y6op3YznG83mAu016n6JeuXHJ78C37Ck15V2fAPr12AC |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Metastability+of+Li3YCl6+and+Li3HoCl6&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.date=2023-11-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=11&rft.spage=1262&rft.epage=1268&rft_id=info:doi/10.1246%2Fbcsj.20230132&rft.externalDocID=10_1246_bcsj_20230132 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon |