Stability and Metastability of Li3YCl6 and Li3HoCl6

Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and meta...

Full description

Saved in:
Bibliographic Details
Published inBulletin of the Chemical Society of Japan Vol. 96; no. 11; pp. 1262 - 1268
Main Authors Ito, Hiroaki, Nakahira, Yuki, Ishimatsu, Naoki, Goto, Yosuke, Yamashita, Aichi, Mizuguchi, Yoshikazu, Moriyoshi, Chikako, Toyao, Takashi, Shimizu, Ken-ichi, Oike, Hiroshi, Enoki, Masanori, Rosero-Navarro, Nataly Carolina, Miura, Akira, Tadanaga, Kiyoharu
Format Journal Article
LanguageEnglish
Published The Chemical Society of Japan 15.11.2023
Subjects
Online AccessGet full text
ISSN0009-2673
1348-0634
DOI10.1246/bcsj.20230132

Cover

Abstract Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and metastability. In this study, we organized remnant and intermediate metastability based on temperature. The intermediate metastable phase, which is less stable than the temperature-independent stable phase, typically transforms into the stable phase(s) at high temperatures. In contrast, the remnant metastable phase is formed by first obtaining most stable phase at specific temperatures and then “trapping” it by rapidly changing the temperature. By investigating Li+ conducting chlorides, Li3MCl6 (M = Y and Ho), we demonstrated that heating starting materials to approximately 600 K produced low-temperature Li3MCl6 phase with one formula unit while further heating resulted in high-temperature Li3MCl6 phase with three formula units. Annealing quenched Li3MCl6 at 573 K resulted in a phase transition from the high-temperature to low-temperature phase, indicating that the high-temperature phase was remnant metastable at low temperatures.
AbstractList Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the metastable phase is affected by multiple thermodynamic and kinetic parameters, leading to ambiguity in the organization of stability and metastability. In this study, we organized remnant and intermediate metastability based on temperature. The intermediate metastable phase, which is less stable than the temperature-independent stable phase, typically transforms into the stable phase(s) at high temperatures. In contrast, the remnant metastable phase is formed by first obtaining most stable phase at specific temperatures and then “trapping” it by rapidly changing the temperature. By investigating Li+ conducting chlorides, Li3MCl6 (M = Y and Ho), we demonstrated that heating starting materials to approximately 600 K produced low-temperature Li3MCl6 phase with one formula unit while further heating resulted in high-temperature Li3MCl6 phase with three formula units. Annealing quenched Li3MCl6 at 573 K resulted in a phase transition from the high-temperature to low-temperature phase, indicating that the high-temperature phase was remnant metastable at low temperatures.
Author Oike, Hiroshi
Goto, Yosuke
Mizuguchi, Yoshikazu
Toyao, Takashi
Nakahira, Yuki
Yamashita, Aichi
Enoki, Masanori
Ishimatsu, Naoki
Moriyoshi, Chikako
Rosero-Navarro, Nataly Carolina
Ito, Hiroaki
Miura, Akira
Shimizu, Ken-ichi
Tadanaga, Kiyoharu
Author_xml – sequence: 1
  givenname: Hiroaki
  surname: Ito
  fullname: Ito, Hiroaki
– sequence: 2
  givenname: Yuki
  surname: Nakahira
  fullname: Nakahira, Yuki
– sequence: 3
  givenname: Naoki
  surname: Ishimatsu
  fullname: Ishimatsu, Naoki
– sequence: 4
  givenname: Yosuke
  surname: Goto
  fullname: Goto, Yosuke
– sequence: 5
  givenname: Aichi
  surname: Yamashita
  fullname: Yamashita, Aichi
– sequence: 6
  givenname: Yoshikazu
  surname: Mizuguchi
  fullname: Mizuguchi, Yoshikazu
– sequence: 7
  givenname: Chikako
  surname: Moriyoshi
  fullname: Moriyoshi, Chikako
– sequence: 8
  givenname: Takashi
  surname: Toyao
  fullname: Toyao, Takashi
– sequence: 9
  givenname: Ken-ichi
  surname: Shimizu
  fullname: Shimizu, Ken-ichi
– sequence: 10
  givenname: Hiroshi
  surname: Oike
  fullname: Oike, Hiroshi
– sequence: 11
  givenname: Masanori
  surname: Enoki
  fullname: Enoki, Masanori
– sequence: 12
  givenname: Nataly Carolina
  surname: Rosero-Navarro
  fullname: Rosero-Navarro, Nataly Carolina
– sequence: 13
  givenname: Akira
  surname: Miura
  fullname: Miura, Akira
– sequence: 14
  givenname: Kiyoharu
  surname: Tadanaga
  fullname: Tadanaga, Kiyoharu
BookMark eNp1jz9PwzAQxS1UJNLCyJ4vkGL7nD9mQxFQpCAGYGCKbMcWjtK4is2Qb49LCwNSp7t7997pfku0GN2oEbomeE0oK26k8v2aYgqYAD1DCQFWZbgAtkAJxphntCjhAi297-NY5YwnCF6DkHawYU7F2KXPOgj_pziTNhY-6qH4WcZ-4-Jwic6NGLy-OtYVen-4f6s3WfPy-FTfNZkCWoas6nKugWLCiGLS6DL-CKaURcVJp_JcEco7onUnKLBOcgHYSILzUlaE0oLDCmWHu2py3k_atLvJbsU0twS3e-J2T9z-Ekc__PMrG0SwbgyTsMPJ1O0x9am3VkUgp6wOcy92Ymx79zWNUTsR_gZlnG4l
CitedBy_id crossref_primary_10_1039_D3CE01185B
crossref_primary_10_1021_acsmaterialslett_4c00315
crossref_primary_10_1021_jacs_4c10294
crossref_primary_10_1039_D4SC05575F
crossref_primary_10_1021_jacs_4c09476
crossref_primary_10_1021_acsami_4c12938
Cites_doi 10.1002/adma.202100312
10.1038/187869b0
10.1021/acsenergylett.2c00438
10.1021/acs.accounts.8b00382
10.1002/advs.202101413
10.1002/adma.201601979
10.1002/adma.202002857
10.1021/jacs.1c04888
10.1021/jacs.7b05423
10.1021/acs.chemmater.6b04861
10.1039/D0TA02805C
10.1038/s41563-020-0688-6
10.1002/ejic.201900733
10.1021/jacs.2c05043
10.1063/1.881303
10.1021/acs.inorgchem.8b01049
10.1002/aenm.202103921
10.1126/science.aan5412
10.1021/jacs.0c00134
10.1107/S0021889811038970
10.1038/s41467-021-23339-x
10.1021/jacs.1c11335
10.1016/j.isci.2019.05.036
10.1126/science.1254051
10.1038/nmat4752
10.1126/science.247.4943.649
10.1002/adma.201803075
10.1021/jacs.0c11047
10.4028/www.scientific.net/SSP.130.15
10.1002/zaac.19976230710
10.1107/S0909049505012719
10.1038/354217a0
10.1038/nature04421
10.1038/s41524-021-00626-1
10.1002/anie.201409714
10.1073/pnas.1800284115
10.1021/jacs.6b06367
10.1126/science.264.5160.794
10.1126/sciadv.1600225
10.1002/anie.201909805
10.1002/zaac.19926130104
10.1039/C6TC04931A
10.1021/acs.chemmater.0c04352
10.1126/sciadv.aau3489
10.1107/S0567739476001551
10.1002/cphc.202000199
ContentType Journal Article
Copyright The Chemical Society of Japan
Copyright_xml – notice: The Chemical Society of Japan
DBID AAYXX
CITATION
DOI 10.1246/bcsj.20230132
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
DocumentTitleAlternate Stability and Metastability of Li3YCl6 and Li3HoCl6
EISSN 1348-0634
EndPage 1268
ExternalDocumentID 10_1246_bcsj_20230132
FullText_t_NoSnippeting true
GroupedDBID -~X
23N
5GY
6J9
ABEFU
ABZEH
ACCUC
ACGFO
ACIWK
ACNCT
AENEX
AFFNX
AIDUJ
ALMA_UNASSIGNED_HOLDINGS
BCRHZ
CS3
DU5
EBS
EJD
F5P
GX1
JSI
JSP
OK1
P0W
P2P
RAD
RJT
RZJ
SC5
TN5
TWZ
UPT
WH7
~02
0R~
AAUAY
AAYXX
ABDFA
ABEJV
ABGNP
ABJNI
ABVGC
ABXVV
ADIPN
ADNBA
ADVOB
AGMDO
AGORE
AJNCP
CITATION
KOP
NU-
OJZSN
OWPYF
ROX
ID FETCH-LOGICAL-c327t-8d59e320141c4bfe72463f7b6891dc55c129d1eeda234db9a30fb1057b8122693
ISSN 0009-2673
IngestDate Tue Jul 01 00:34:51 EDT 2025
Thu Apr 24 23:08:25 EDT 2025
Sat Nov 25 04:00:09 EST 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Solid electrolytes
Synthesis design
Metastability
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-8d59e320141c4bfe72463f7b6891dc55c129d1eeda234db9a30fb1057b8122693
OpenAccessLink http://dx.doi.org/10.1246/bcsj.20230132
PageCount 7
ParticipantIDs crossref_primary_10_1246_bcsj_20230132
crossref_citationtrail_10_1246_bcsj_20230132
chemicalsocietyjapan_journals_10_1246_bcsj_20230132
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-11-15
PublicationDateYYYYMMDD 2023-11-15
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Bulletin of the Chemical Society of Japan
PublicationYear 2023
Publisher The Chemical Society of Japan
Publisher_xml – name: The Chemical Society of Japan
References 2H. Oike, M. Kamitani, Y. Tokura, F. Kagawa, Sci. Adv. 2018, 4, eaau3489. 10.1126/sciadv.aau348930310870
36T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075. 10.1002/adma.201803075
28H. Mizoguchi, S. W. Park, T. Katase, G. V. Vazhenin, J. Kim, H. Hosono, J. Am. Chem. Soc. 2021, 143, 69. 10.1021/jacs.0c1104733356202
22G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, G. M. Veith, K. S. Thornton, K. W. Chapman, J. Am. Chem. Soc. 2022, 144, 11975. 10.1021/jacs.2c0504335763716
16M. Bianchini, J. Wang, R. J. Clément, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. Ceder, Nat. Mater. 2020, 19, 1088. 10.1038/s41563-020-0688-632424371
35J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012. 10.1021/jacs.0c0013432212650
4A. K. Cheetham, Science 1994, 264, 794. 10.1126/science.264.5160.79417794719
24J. R. Chamorro, T. M. McQueen, Acc. Chem. Res. 2018, 51, 2918. 10.1021/acs.accounts.8b0038230299082
26D. L. M. Cordova, D. C. Johnson, ChemPhysChem 2020, 21, 1345. 10.1002/cphc.20200019932346904
43S. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao-Horn, iScience 2019, 16, 270. 10.1016/j.isci.2019.05.03631203184
3X. Tan, S. Geng, Y. Ji, Q. Shao, T. Zhu, P. Wang, Y. Li, X. Huang, Adv. Mater. 2020, 32, 2002857. 10.1002/adma.202002857
25A. J. Martinolich, J. R. Neilson, Chem. Mater. 2017, 29, 479. 10.1021/acs.chemmater.6b04861
34H. Kwak, S. Wang, J. Park, Y. Liu, K. T. Kim, Y. Choi, Y. Mo, Y. S. Jung, ACS Energy Lett. 2022, 7, 1776. 10.1021/acsenergylett.2c00438
11M. J. McDermott, S. S. Dwaraknath, K. A. Persson, Nat. Commun. 2021, 12, 3097. 10.1038/s41467-021-23339-x34035255
12M. Aykol, J. H. Montoya, J. Hummelshøj, J. Am. Chem. Soc. 2021, 143, 9244. 10.1021/jacs.1c0488834114812
42J. Liang, E. Maas, J. Luo, X. Li, N. Chen, K. R. Adair, W. Li, J. Li, Y. Hu, J. Liu, L. Zhang, S. Zhao, S. Lu, J. Wang, H. Huang, W. Zhao, S. Parnell, R. I. Smith, S. Ganapathy, M. Wagemaker, X. Sun, Adv. Energy Mater. 2022, 12, 2103921. 10.1002/aenm.202103921
39E. Sebti, H. A. Evans, H. Chen, P. M. Richardson, K. M. White, R. Giovine, K. P. Koirala, Y. Xu, E. Gonzalez-Correa, C. Wang, C. M. Brown, A. K. Cheetham, P. Canepa, R. J. Clément, J. Am. Chem. Soc. 2022, 144, 5795. 10.1021/jacs.1c1133535325534
13A. Miura, C. J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T. Yaguchi, M. Shirai, M. Nagao, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, Adv. Mater. 2021, 33, 2100312. 10.1002/adma.202100312
29W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225. 10.1126/sciadv.160022528138514
45K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272. 10.1107/S0021889811038970
15A. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 10814. 10.1021/jacs.7b0542328665593
37R. Schlem, A. Banik, S. Ohno, E. Suard, W. G. Zeier, Chem. Mater. 2021, 33, 327. 10.1021/acs.chemmater.0c04352
6M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 1991, 354, 217. 10.1038/354217a0
20Z. Jiang, A. Ramanathan, D. P. Shoemaker, J. Mater. Chem. C 2017, 5, 5709. 10.1039/C6TC04931A
30J. E. Shelby, M. Lopes, Introduction to Glass Science and Technology, The Royal Society of Chemistry, 2005.
41A. Bohnsack, F. Stenzel, A. Zajonc, G. Balzer, M. S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 1067. 10.1002/zaac.19976230710
44F. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15. 10.4028/www.scientific.net/SSP.130.15
33D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier, W. Sun, npj Comput. Mater. 2021, 7, 151. 10.1038/s41524-021-00626-1
5Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489. 10.1126/science.aan541229599236
17H. He, C.-H. H. Yee, D. E. McNally, J. W. Simonson, S. Zellman, M. Klemm, P. Kamenov, G. Geschwind, A. Zebro, S. Ghose, J. Bai, E. Dooryhee, G. Kotliar, M. C. Aronson, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7890. 10.1073/pnas.180028411530018065
27M. Esters, M. B. Alemayehu, Z. Jones, N. T. Nguyen, M. D. Anderson, C. Grosse, S. F. Fischer, D. C. Johnson, Angew. Chem., Int. Ed. 2015, 54, 1130. 10.1002/anie.201409714
48L. Peng, R. J. Clément, M. Lin, Y. Yang, 2021, NMR and MRI of Electrochemical Energy Storage Materials and Devices, Chapter1 https://doi.org/10.1039/9781839160097-00001 Royal Chemical Sciety pp. 1–70.
8K. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, M. Tatsumisago, Inorg. Chem. 2018, 57, 9925. 10.1021/acs.inorgchem.8b0104930091598
46B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537. 10.1107/S090904950501271915968136
10F. Kagawa, H. Oike, Adv. Mater. 2017, 29, 1601979. 10.1002/adma.201601979
47R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751. 10.1107/S0567739476001551
32H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Nature 2006, 439, 419. 10.1038/nature0442116437105
40X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427. 10.1002/anie.201909805
7K. Kaup, L. Zhou, A. Huq, L. F. Nazar, J. Mater. Chem. A 2020, 8, 12446. 10.1039/D0TA02805C
14H. Ito, K. Shitara, Y. Wang, K. Fujii, M. Yashima, Y. Goto, C. Moriyoshi, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, Adv. Sci. 2021, 8, 2101413. 10.1002/advs.202101413
18H. Kohlmann, Eur. J. Inorg. Chem. 2019, 4174. 10.1002/ejic.201900733
1A. W. Sleight, Phys. Today 1991, 44, 24. 10.1063/1.881303
23F. J. DiSalvo, Science 1990, 247, 649. 10.1126/science.247.4943.64917771880
9K. Karube, J. S. White, N. Reynolds, J. L. Gavilano, H. Oike, A. Kikkawa, F. Kagawa, Y. Tokunaga, H. M. Rønnow, Y. Tokura, Y. Taguchi, Nat. Mater. 2016, 15, 1237. 10.1038/nmat475227643728
19M. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158. 10.1126/science.125405125190792
21A. J. Martinolich, J. A. Kurzman, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 11031. 10.1021/jacs.6b0636727490369
31W. Klement, R. H. Willens, P. O. L. Duwez, Nature 1960, 187, 869. 10.1038/187869b0
38H.-J. Steiner, H. D. Lutz, Z. Anorg. Allg. Chem. 1992, 613, 26. 10.1002/zaac.19926130104
DiSalvo (2024011619342704900_r23) 1990; 247
Karube (2024011619342704900_r9) 2016; 15
Kagawa (2024011619342704900_r10) 2017; 29
Haynes (2024011619342704900_r15) 2017; 139
Izumi (2024011619342704900_r44) 2007; 130
Oike (2024011619342704900_r2) 2018; 4
McDermott (2024011619342704900_r11) 2021; 12
Liang (2024011619342704900_r35) 2020; 142
Bohnsack (2024011619342704900_r41) 1997; 623
He (2024011619342704900_r17) 2018; 115
Momma (2024011619342704900_r45) 2011; 44
Kanazawa (2024011619342704900_r8) 2018; 57
Sebti (2024011619342704900_r39) 2022; 144
Sleight (2024011619342704900_r1) 1991; 44
Martinolich (2024011619342704900_r25) 2017; 29
Sun (2024011619342704900_r29) 2016; 2
Liang (2024011619342704900_r42) 2022; 12
Peng (2024011619342704900_r48) 2021
Ito (2024011619342704900_r14) 2021; 8
Klement (2024011619342704900_r31) 1960; 187
Ravel (2024011619342704900_r46) 2005; 12
Cordova (2024011619342704900_r26) 2020; 21
Muy (2024011619342704900_r43) 2019; 16
Sheng (2024011619342704900_r32) 2006; 439
Evans (2024011619342704900_r33) 2021; 7
Mizoguchi (2024011619342704900_r28) 2021; 143
Schlem (2024011619342704900_r37) 2021; 33
Aykol (2024011619342704900_r12) 2021; 143
Kohlmann (2024011619342704900_r18) 2019
Yao (2024011619342704900_r5) 2018; 359
Martinolich (2024011619342704900_r21) 2016; 138
Nielsen (2024011619342704900_r19) 2014; 345
Steiner (2024011619342704900_r38) 1992; 613
Esters (2024011619342704900_r27) 2015; 54
Cheetham (2024011619342704900_r4) 1994; 264
Tatsumisago (2024011619342704900_r6) 1991; 354
2024011619342704900_r30
Asano (2024011619342704900_r36) 2018; 30
Miura (2024011619342704900_r13) 2021; 33
Li (2024011619342704900_r40) 2019; 58
Bianchini (2024011619342704900_r16) 2020; 19
Kwak (2024011619342704900_r34) 2022; 7
Kaup (2024011619342704900_r7) 2020; 8
Chamorro (2024011619342704900_r24) 2018; 51
Shannon (2024011619342704900_r47) 1976; 32
Tan (2024011619342704900_r3) 2020; 32
Kamm (2024011619342704900_r22) 2022; 144
Jiang (2024011619342704900_r20) 2017; 5
References_xml – reference: 29W. Sun, S. T. Dacek, S. P. Ong, G. Hautier, A. Jain, W. D. Richards, A. C. Gamst, K. A. Persson, G. Ceder, Sci. Adv. 2016, 2, e1600225. 10.1126/sciadv.160022528138514
– reference: 38H.-J. Steiner, H. D. Lutz, Z. Anorg. Allg. Chem. 1992, 613, 26. 10.1002/zaac.19926130104
– reference: 6M. Tatsumisago, Y. Shinkuma, T. Minami, Nature 1991, 354, 217. 10.1038/354217a0
– reference: 26D. L. M. Cordova, D. C. Johnson, ChemPhysChem 2020, 21, 1345. 10.1002/cphc.20200019932346904
– reference: 22G. E. Kamm, G. Huang, S. M. Vornholt, R. D. McAuliffe, G. M. Veith, K. S. Thornton, K. W. Chapman, J. Am. Chem. Soc. 2022, 144, 11975. 10.1021/jacs.2c0504335763716
– reference: 18H. Kohlmann, Eur. J. Inorg. Chem. 2019, 4174. 10.1002/ejic.201900733
– reference: 44F. Izumi, K. Momma, Solid State Phenom. 2007, 130, 15. 10.4028/www.scientific.net/SSP.130.15
– reference: 12M. Aykol, J. H. Montoya, J. Hummelshøj, J. Am. Chem. Soc. 2021, 143, 9244. 10.1021/jacs.1c0488834114812
– reference: 1A. W. Sleight, Phys. Today 1991, 44, 24. 10.1063/1.881303
– reference: 8K. Kanazawa, S. Yubuchi, C. Hotehama, M. Otoyama, S. Shimono, H. Ishibashi, Y. Kubota, A. Sakuda, A. Hayashi, M. Tatsumisago, Inorg. Chem. 2018, 57, 9925. 10.1021/acs.inorgchem.8b0104930091598
– reference: 48L. Peng, R. J. Clément, M. Lin, Y. Yang, 2021, NMR and MRI of Electrochemical Energy Storage Materials and Devices, Chapter1 https://doi.org/10.1039/9781839160097-00001 Royal Chemical Sciety pp. 1–70.
– reference: 10F. Kagawa, H. Oike, Adv. Mater. 2017, 29, 1601979. 10.1002/adma.201601979
– reference: 39E. Sebti, H. A. Evans, H. Chen, P. M. Richardson, K. M. White, R. Giovine, K. P. Koirala, Y. Xu, E. Gonzalez-Correa, C. Wang, C. M. Brown, A. K. Cheetham, P. Canepa, R. J. Clément, J. Am. Chem. Soc. 2022, 144, 5795. 10.1021/jacs.1c1133535325534
– reference: 45K. Momma, F. Izumi, J. Appl. Crystallogr. 2011, 44, 1272. 10.1107/S0021889811038970
– reference: 41A. Bohnsack, F. Stenzel, A. Zajonc, G. Balzer, M. S. Wickleder, G. Meyer, Z. Anorg. Allg. Chem. 1997, 623, 1067. 10.1002/zaac.19976230710
– reference: 43S. Muy, J. Voss, R. Schlem, R. Koerver, S. J. Sedlmaier, F. Maglia, P. Lamp, W. G. Zeier, Y. Shao-Horn, iScience 2019, 16, 270. 10.1016/j.isci.2019.05.03631203184
– reference: 47R. D. Shannon, Acta Crystallogr., Sect. A 1976, 32, 751. 10.1107/S0567739476001551
– reference: 46B. Ravel, M. Newville, J. Synchrotron Radiat. 2005, 12, 537. 10.1107/S090904950501271915968136
– reference: 20Z. Jiang, A. Ramanathan, D. P. Shoemaker, J. Mater. Chem. C 2017, 5, 5709. 10.1039/C6TC04931A
– reference: 14H. Ito, K. Shitara, Y. Wang, K. Fujii, M. Yashima, Y. Goto, C. Moriyoshi, N. C. Rosero-Navarro, A. Miura, K. Tadanaga, Adv. Sci. 2021, 8, 2101413. 10.1002/advs.202101413
– reference: 3X. Tan, S. Geng, Y. Ji, Q. Shao, T. Zhu, P. Wang, Y. Li, X. Huang, Adv. Mater. 2020, 32, 2002857. 10.1002/adma.202002857
– reference: 32H. W. Sheng, W. K. Luo, F. M. Alamgir, J. M. Bai, E. Ma, Nature 2006, 439, 419. 10.1038/nature0442116437105
– reference: 13A. Miura, C. J. Bartel, Y. Goto, Y. Mizuguchi, C. Moriyoshi, Y. Kuroiwa, Y. Wang, T. Yaguchi, M. Shirai, M. Nagao, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, N. C. Rosero-Navarro, K. Tadanaga, G. Ceder, W. Sun, Adv. Mater. 2021, 33, 2100312. 10.1002/adma.202100312
– reference: 30J. E. Shelby, M. Lopes, Introduction to Glass Science and Technology, The Royal Society of Chemistry, 2005.
– reference: 28H. Mizoguchi, S. W. Park, T. Katase, G. V. Vazhenin, J. Kim, H. Hosono, J. Am. Chem. Soc. 2021, 143, 69. 10.1021/jacs.0c1104733356202
– reference: 40X. Li, J. Liang, N. Chen, J. Luo, K. R. Adair, C. Wang, M. N. Banis, T. K. Sham, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, X. Sun, Angew. Chem., Int. Ed. 2019, 58, 16427. 10.1002/anie.201909805
– reference: 27M. Esters, M. B. Alemayehu, Z. Jones, N. T. Nguyen, M. D. Anderson, C. Grosse, S. F. Fischer, D. C. Johnson, Angew. Chem., Int. Ed. 2015, 54, 1130. 10.1002/anie.201409714
– reference: 21A. J. Martinolich, J. A. Kurzman, J. R. Neilson, J. Am. Chem. Soc. 2016, 138, 11031. 10.1021/jacs.6b0636727490369
– reference: 17H. He, C.-H. H. Yee, D. E. McNally, J. W. Simonson, S. Zellman, M. Klemm, P. Kamenov, G. Geschwind, A. Zebro, S. Ghose, J. Bai, E. Dooryhee, G. Kotliar, M. C. Aronson, Proc. Natl. Acad. Sci. U.S.A. 2018, 115, 7890. 10.1073/pnas.180028411530018065
– reference: 11M. J. McDermott, S. S. Dwaraknath, K. A. Persson, Nat. Commun. 2021, 12, 3097. 10.1038/s41467-021-23339-x34035255
– reference: 34H. Kwak, S. Wang, J. Park, Y. Liu, K. T. Kim, Y. Choi, Y. Mo, Y. S. Jung, ACS Energy Lett. 2022, 7, 1776. 10.1021/acsenergylett.2c00438
– reference: 33D. Evans, J. Chen, G. Bokas, W. Chen, G. Hautier, W. Sun, npj Comput. Mater. 2021, 7, 151. 10.1038/s41524-021-00626-1
– reference: 35J. Liang, X. Li, S. Wang, K. R. Adair, W. Li, Y. Zhao, C. Wang, Y. Hu, L. Zhang, S. Zhao, S. Lu, H. Huang, R. Li, Y. Mo, X. Sun, J. Am. Chem. Soc. 2020, 142, 7012. 10.1021/jacs.0c0013432212650
– reference: 2H. Oike, M. Kamitani, Y. Tokura, F. Kagawa, Sci. Adv. 2018, 4, eaau3489. 10.1126/sciadv.aau348930310870
– reference: 25A. J. Martinolich, J. R. Neilson, Chem. Mater. 2017, 29, 479. 10.1021/acs.chemmater.6b04861
– reference: 24J. R. Chamorro, T. M. McQueen, Acc. Chem. Res. 2018, 51, 2918. 10.1021/acs.accounts.8b0038230299082
– reference: 7K. Kaup, L. Zhou, A. Huq, L. F. Nazar, J. Mater. Chem. A 2020, 8, 12446. 10.1039/D0TA02805C
– reference: 31W. Klement, R. H. Willens, P. O. L. Duwez, Nature 1960, 187, 869. 10.1038/187869b0
– reference: 42J. Liang, E. Maas, J. Luo, X. Li, N. Chen, K. R. Adair, W. Li, J. Li, Y. Hu, J. Liu, L. Zhang, S. Zhao, S. Lu, J. Wang, H. Huang, W. Zhao, S. Parnell, R. I. Smith, S. Ganapathy, M. Wagemaker, X. Sun, Adv. Energy Mater. 2022, 12, 2103921. 10.1002/aenm.202103921
– reference: 36T. Asano, A. Sakai, S. Ouchi, M. Sakaida, A. Miyazaki, S. Hasegawa, Adv. Mater. 2018, 30, 1803075. 10.1002/adma.201803075
– reference: 15A. S. Haynes, C. C. Stoumpos, H. Chen, D. Chica, M. G. Kanatzidis, J. Am. Chem. Soc. 2017, 139, 10814. 10.1021/jacs.7b0542328665593
– reference: 16M. Bianchini, J. Wang, R. J. Clément, B. Ouyang, P. Xiao, D. Kitchaev, T. Shi, Y. Zhang, Y. Wang, H. Kim, M. Zhang, J. Bai, F. Wang, W. Sun, G. Ceder, Nat. Mater. 2020, 19, 1088. 10.1038/s41563-020-0688-632424371
– reference: 5Y. Yao, Z. Huang, P. Xie, S. D. Lacey, R. J. Jacob, H. Xie, F. Chen, A. Nie, T. Pu, M. Rehwoldt, D. Yu, M. R. Zachariah, C. Wang, R. Shahbazian-Yassar, J. Li, L. Hu, Science 2018, 359, 1489. 10.1126/science.aan541229599236
– reference: 9K. Karube, J. S. White, N. Reynolds, J. L. Gavilano, H. Oike, A. Kikkawa, F. Kagawa, Y. Tokunaga, H. M. Rønnow, Y. Tokura, Y. Taguchi, Nat. Mater. 2016, 15, 1237. 10.1038/nmat475227643728
– reference: 4A. K. Cheetham, Science 1994, 264, 794. 10.1126/science.264.5160.79417794719
– reference: 37R. Schlem, A. Banik, S. Ohno, E. Suard, W. G. Zeier, Chem. Mater. 2021, 33, 327. 10.1021/acs.chemmater.0c04352
– reference: 19M. H. Nielsen, S. Aloni, J. J. De Yoreo, Science 2014, 345, 1158. 10.1126/science.125405125190792
– reference: 23F. J. DiSalvo, Science 1990, 247, 649. 10.1126/science.247.4943.64917771880
– volume: 33
  start-page: 2100312
  year: 2021
  ident: 2024011619342704900_r13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202100312
– volume: 187
  start-page: 869
  year: 1960
  ident: 2024011619342704900_r31
  publication-title: Nature
  doi: 10.1038/187869b0
– volume: 7
  start-page: 1776
  year: 2022
  ident: 2024011619342704900_r34
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.2c00438
– volume: 51
  start-page: 2918
  year: 2018
  ident: 2024011619342704900_r24
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00382
– volume: 8
  start-page: 2101413
  year: 2021
  ident: 2024011619342704900_r14
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202101413
– volume: 29
  start-page: 1601979
  year: 2017
  ident: 2024011619342704900_r10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601979
– volume: 32
  start-page: 2002857
  year: 2020
  ident: 2024011619342704900_r3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002857
– volume: 143
  start-page: 9244
  year: 2021
  ident: 2024011619342704900_r12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c04888
– volume: 139
  start-page: 10814
  year: 2017
  ident: 2024011619342704900_r15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05423
– volume: 29
  start-page: 479
  year: 2017
  ident: 2024011619342704900_r25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04861
– volume: 8
  start-page: 12446
  year: 2020
  ident: 2024011619342704900_r7
  publication-title: J. Mater. Chem. A
  doi: 10.1039/D0TA02805C
– volume: 19
  start-page: 1088
  year: 2020
  ident: 2024011619342704900_r16
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-0688-6
– ident: 2024011619342704900_r30
– start-page: 4174
  year: 2019
  ident: 2024011619342704900_r18
  publication-title: Eur. J. Inorg. Chem.
  doi: 10.1002/ejic.201900733
– volume: 144
  start-page: 11975
  year: 2022
  ident: 2024011619342704900_r22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c05043
– volume: 44
  start-page: 24
  year: 1991
  ident: 2024011619342704900_r1
  publication-title: Phys. Today
  doi: 10.1063/1.881303
– volume: 57
  start-page: 9925
  year: 2018
  ident: 2024011619342704900_r8
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.8b01049
– volume: 12
  start-page: 2103921
  year: 2022
  ident: 2024011619342704900_r42
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202103921
– year: 2021
  ident: 2024011619342704900_r48
– volume: 359
  start-page: 1489
  year: 2018
  ident: 2024011619342704900_r5
  publication-title: Science
  doi: 10.1126/science.aan5412
– volume: 142
  start-page: 7012
  year: 2020
  ident: 2024011619342704900_r35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00134
– volume: 44
  start-page: 1272
  year: 2011
  ident: 2024011619342704900_r45
  publication-title: J. Appl. Crystallogr.
  doi: 10.1107/S0021889811038970
– volume: 12
  start-page: 3097
  year: 2021
  ident: 2024011619342704900_r11
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23339-x
– volume: 144
  start-page: 5795
  year: 2022
  ident: 2024011619342704900_r39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c11335
– volume: 16
  start-page: 270
  year: 2019
  ident: 2024011619342704900_r43
  publication-title: iScience
  doi: 10.1016/j.isci.2019.05.036
– volume: 345
  start-page: 1158
  year: 2014
  ident: 2024011619342704900_r19
  publication-title: Science
  doi: 10.1126/science.1254051
– volume: 15
  start-page: 1237
  year: 2016
  ident: 2024011619342704900_r9
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4752
– volume: 247
  start-page: 649
  year: 1990
  ident: 2024011619342704900_r23
  publication-title: Science
  doi: 10.1126/science.247.4943.649
– volume: 30
  start-page: 1803075
  year: 2018
  ident: 2024011619342704900_r36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803075
– volume: 143
  start-page: 69
  year: 2021
  ident: 2024011619342704900_r28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c11047
– volume: 130
  start-page: 15
  year: 2007
  ident: 2024011619342704900_r44
  publication-title: Solid State Phenom.
  doi: 10.4028/www.scientific.net/SSP.130.15
– volume: 623
  start-page: 1067
  year: 1997
  ident: 2024011619342704900_r41
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19976230710
– volume: 12
  start-page: 537
  year: 2005
  ident: 2024011619342704900_r46
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 354
  start-page: 217
  year: 1991
  ident: 2024011619342704900_r6
  publication-title: Nature
  doi: 10.1038/354217a0
– volume: 439
  start-page: 419
  year: 2006
  ident: 2024011619342704900_r32
  publication-title: Nature
  doi: 10.1038/nature04421
– volume: 7
  start-page: 151
  year: 2021
  ident: 2024011619342704900_r33
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-021-00626-1
– volume: 54
  start-page: 1130
  year: 2015
  ident: 2024011619342704900_r27
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201409714
– volume: 115
  start-page: 7890
  year: 2018
  ident: 2024011619342704900_r17
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1800284115
– volume: 138
  start-page: 11031
  year: 2016
  ident: 2024011619342704900_r21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06367
– volume: 264
  start-page: 794
  year: 1994
  ident: 2024011619342704900_r4
  publication-title: Science
  doi: 10.1126/science.264.5160.794
– volume: 2
  start-page: e1600225
  year: 2016
  ident: 2024011619342704900_r29
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1600225
– volume: 58
  start-page: 16427
  year: 2019
  ident: 2024011619342704900_r40
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201909805
– volume: 613
  start-page: 26
  year: 1992
  ident: 2024011619342704900_r38
  publication-title: Z. Anorg. Allg. Chem.
  doi: 10.1002/zaac.19926130104
– volume: 5
  start-page: 5709
  year: 2017
  ident: 2024011619342704900_r20
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC04931A
– volume: 33
  start-page: 327
  year: 2021
  ident: 2024011619342704900_r37
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.0c04352
– volume: 4
  start-page: eaau3489
  year: 2018
  ident: 2024011619342704900_r2
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3489
– volume: 32
  start-page: 751
  year: 1976
  ident: 2024011619342704900_r47
  publication-title: Acta Crystallogr., Sect. A
  doi: 10.1107/S0567739476001551
– volume: 21
  start-page: 1345
  year: 2020
  ident: 2024011619342704900_r26
  publication-title: ChemPhysChem
  doi: 10.1002/cphc.202000199
SSID ssj0008549
Score 2.4267385
Snippet Metastable solid electrolytes exhibit superior conductivity compared to stable ones, making them a subject of considerable interest. However, synthesis of the...
SourceID crossref
chemicalsocietyjapan
SourceType Enrichment Source
Index Database
Publisher
StartPage 1262
Title Stability and Metastability of Li3YCl6 and Li3HoCl6
URI http://dx.doi.org/10.1246/bcsj.20230132
Volume 96
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NT4MwFG90HtSDUadxfoWD8SQILZ9Hs6jLknnaknkitJTEZWFG8OJf7yttgSVodBcCrw_Wvd_L45W-D4RuQlhGpJjB2oR6tun6xDYjn1EzA2XBfsqwXfUhm7z4o5k7nnvzpj9hlV1SUot9deaVbIIq0ABXkSX7D2TrhwIBzgFfOALCcPwTxuApVrGtsobShJdJUVPEt_838jpc-tUgnI9WcLG2iatKb-s4gbp4gA7lBPoYXqZ5-9MAJiJHTiZHWjq57Pc7tVGMTOzLjiIWl3aQuKEJ3ovbNpSy9axWCKdl9hysTCrXl2GnecZVXWLKioUl5iv2eZr3UB0dKNYlwBkLvljzbaMdHATVTvzzvIniCT29wpH_QZVRhdvv135mH_WZEkUhJbEQUmh5Iy23YnqIDtR6wHiQ4B6hLZ4fo92hbsPXR6QG2QAcjTWQjVVmKJCrQQ3yCZo9PU6HI1N1ujAZwUFphqkXcYJF0C1zacYDmD_JAuqHkZMyz2PglaUOuDMJJm5Ko4TYGRUdmin4Z9iPyCnq5aucnyHDtmHc5YnjpOAc4iQMIjv1MnD7gwSo4QCRLkHESq2LuFP6A3Sn5RQzVTxe9DBZ_sR-W7O_y6op3YznG83mAu016n6JeuXHJ78C37Ck15V2fAPr12AC
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stability+and+Metastability+of+Li3YCl6+and+Li3HoCl6&rft.jtitle=Bulletin+of+the+Chemical+Society+of+Japan&rft.date=2023-11-15&rft.pub=The+Chemical+Society+of+Japan&rft.issn=0009-2673&rft.eissn=1348-0634&rft.volume=96&rft.issue=11&rft.spage=1262&rft.epage=1268&rft_id=info:doi/10.1246%2Fbcsj.20230132&rft.externalDocID=10_1246_bcsj_20230132
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0009-2673&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0009-2673&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0009-2673&client=summon