MolGPT: Molecular Generation Using a Transformer-Decoder Model
Application of deep learning techniques for generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language pr...
Saved in:
Published in | Journal of chemical information and modeling Vol. 62; no. 9; pp. 2064 - 2076 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Chemical Society
09.05.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1549-9596 1549-960X 1549-960X |
DOI | 10.1021/acs.jcim.1c00600 |
Cover
Loading…
Abstract | Application of deep learning techniques for
generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model. |
---|---|
AbstractList | Application of deep learning techniques for
generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model. Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model. Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model.Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The representation of molecules in SMILES notation as a string of characters enables the usage of state of the art models in natural language processing, such as Transformers, for molecular design in general. Inspired by generative pre-training (GPT) models that have been shown to be successful in generating meaningful text, we train a transformer-decoder on the next token prediction task using masked self-attention for the generation of druglike molecules in this study. We show that our model, MolGPT, performs on par with other previously proposed modern machine learning frameworks for molecular generation in terms of generating valid, unique, and novel molecules. Furthermore, we demonstrate that the model can be trained conditionally to control multiple properties of the generated molecules. We also show that the model can be used to generate molecules with desired scaffolds as well as desired molecular properties by conditioning the generation on scaffold SMILES strings of desired scaffolds and property values. Using saliency maps, we highlight the interpretability of the generative process of the model. |
Author | Bagal, Viraj Vinod, P. K. Aggarwal, Rishal Priyakumar, U. Deva |
Author_xml | – sequence: 1 givenname: Viraj surname: Bagal fullname: Bagal, Viraj organization: International Institute of Information Technology, Hyderabad 500 032, India, Indian Institute of Science Education and Research, Pune 411 008, India – sequence: 2 givenname: Rishal surname: Aggarwal fullname: Aggarwal, Rishal organization: International Institute of Information Technology, Hyderabad 500 032, India – sequence: 3 givenname: P. K. surname: Vinod fullname: Vinod, P. K. organization: International Institute of Information Technology, Hyderabad 500 032, India – sequence: 4 givenname: U. Deva orcidid: 0000-0001-7114-3955 surname: Priyakumar fullname: Priyakumar, U. Deva organization: International Institute of Information Technology, Hyderabad 500 032, India |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34694798$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kT1PwzAYhC1URD9gZ0KRWFhS_BE7NgMSKlCQimBoJTbLcWyUKomLnQz8e1zaLpWY7h2eO53eG4NB61oDwCWCUwQxulU6TNe6aqZIQ8ggPAEjRDORCgY_B4ebCjYE4xDWEBIiGD4DQ5IxkeWCj8D9m6vnH8u7JKrRfa18Mjet8aqrXJusQtV-JSpZetUG63xjfPpotCuNj4bS1Ofg1Ko6mIu9TsDq-Wk5e0kX7_PX2cMi1QTnXco5QozZPBOFUCXPFGWZKkpsIbWGCF3GkqqwhVWQc4yR5YSWnHOSc6pgSckE3OxyN9599yZ0sqmCNnWtWuP6IDHlLKMYIRLR6yN07XrfxnYSM8YEywhEkbraU33RmFJufNUo_yMPn4kA2wHauxC8sVJX3d9XOq-qWiIotxPIOIHcTiD3E0QjPDIesv-1_AL16Ikv |
CitedBy_id | crossref_primary_10_1016_j_ymeth_2025_03_001 crossref_primary_10_1021_acs_jcim_4c01792 crossref_primary_10_1093_bioinformatics_btad222 crossref_primary_10_1186_s13321_025_00976_8 crossref_primary_10_1186_s13321_024_00887_0 crossref_primary_10_1021_acs_jcim_4c01309 crossref_primary_10_1016_j_compbiomed_2023_107285 crossref_primary_10_1186_s13321_023_00791_z crossref_primary_10_1021_acsenergylett_4c02086 crossref_primary_10_1093_bioadv_vbae099 crossref_primary_10_1016_j_compbiomed_2024_109403 crossref_primary_10_1021_acs_est_4c08298 crossref_primary_10_1093_bfgp_elad012 crossref_primary_10_1021_acs_jcim_3c01456 crossref_primary_10_1080_10643389_2025_2469868 crossref_primary_10_3389_fphar_2024_1458739 crossref_primary_10_1016_j_chaos_2024_115105 crossref_primary_10_1038_s42256_024_00808_8 crossref_primary_10_1038_s41467_024_49388_6 crossref_primary_10_1002_sdtp_18036 crossref_primary_10_1021_acs_jcim_3c01562 crossref_primary_10_1039_D4SC03921A crossref_primary_10_1002_minf_202200215 crossref_primary_10_1093_bib_bbad327 crossref_primary_10_7717_peerj_cs_2222 crossref_primary_10_1002_wcms_1681 crossref_primary_10_26599_BDMA_2023_9020009 crossref_primary_10_1002_smll_202204941 crossref_primary_10_1038_s41467_024_50469_9 crossref_primary_10_1007_s12539_024_00681_4 crossref_primary_10_1021_acs_jcim_4c01669 crossref_primary_10_1021_acs_jcim_4c01787 crossref_primary_10_1038_s41598_023_43046_5 crossref_primary_10_1186_s13321_024_00936_8 crossref_primary_10_1038_s41467_025_56349_0 crossref_primary_10_1109_ACCESS_2023_3285811 crossref_primary_10_1021_jacs_4c11686 crossref_primary_10_1186_s13321_023_00727_7 crossref_primary_10_1038_s42256_023_00639_z crossref_primary_10_1038_s41598_023_45385_9 crossref_primary_10_1109_TCBB_2024_3349990 crossref_primary_10_3390_molecules30061262 crossref_primary_10_1039_D4DD00084F crossref_primary_10_1186_s40537_022_00663_7 crossref_primary_10_1038_s41524_024_01470_9 crossref_primary_10_1093_bib_bbac418 crossref_primary_10_3390_molecules29020495 crossref_primary_10_1021_acs_jcim_3c02070 crossref_primary_10_1039_D1CC07035E crossref_primary_10_1021_acs_jpca_3c02179 crossref_primary_10_1016_j_jare_2025_02_030 crossref_primary_10_1021_acs_jcim_4c00791 crossref_primary_10_1093_bib_bbae275 crossref_primary_10_1016_j_ccr_2025_216602 crossref_primary_10_1007_s12539_024_00623_0 crossref_primary_10_1007_s11433_024_2469_4 crossref_primary_10_1021_acs_jcim_2c01618 crossref_primary_10_1093_bib_bbad185 crossref_primary_10_12688_f1000research_130936_1 crossref_primary_10_12688_f1000research_130936_2 crossref_primary_10_1016_j_csbj_2023_05_001 crossref_primary_10_1021_acsmedchemlett_2c00515 crossref_primary_10_1021_acs_jmedchem_4c02462 crossref_primary_10_1109_TCBB_2024_3477592 crossref_primary_10_1109_JETCAS_2024_3477976 crossref_primary_10_1093_bib_bbae186 crossref_primary_10_4018_JOEUC_316124 crossref_primary_10_1016_j_compbiomed_2024_108486 crossref_primary_10_1016_j_sbi_2025_102990 crossref_primary_10_1021_acs_jcim_4c00525 crossref_primary_10_1039_D4MD00423J crossref_primary_10_1039_D4DD00014E crossref_primary_10_1021_acs_jcim_4c02264 crossref_primary_10_1039_D4DD00135D crossref_primary_10_1021_acs_jpclett_4c03128 crossref_primary_10_1016_j_eswa_2023_122949 crossref_primary_10_1016_j_egyai_2024_100361 crossref_primary_10_1186_s13321_023_00696_x crossref_primary_10_1186_s13321_024_00863_8 crossref_primary_10_1002_advs_202304305 crossref_primary_10_1016_j_ejmech_2024_116735 crossref_primary_10_1038_s41524_024_01466_5 crossref_primary_10_1016_j_ymeth_2024_01_009 crossref_primary_10_3390_ijms24021146 crossref_primary_10_1063_5_0157644 crossref_primary_10_1016_j_drudis_2024_104067 crossref_primary_10_1177_14727978251321985 crossref_primary_10_1038_s42256_023_00636_2 crossref_primary_10_1093_bioinformatics_btad059 crossref_primary_10_1016_j_neunet_2024_106207 crossref_primary_10_3390_ph18030282 crossref_primary_10_2139_ssrn_4779486 crossref_primary_10_1093_bib_bbac303 crossref_primary_10_1016_j_eswa_2023_123127 crossref_primary_10_1038_s42256_025_00982_3 crossref_primary_10_1021_acs_energyfuels_3c01186 crossref_primary_10_1016_j_aichem_2024_100074 crossref_primary_10_1039_D4DD00076E crossref_primary_10_1186_s42162_024_00411_6 crossref_primary_10_1021_acs_jcim_4c01396 crossref_primary_10_1016_j_aichem_2024_100072 crossref_primary_10_1002_prep_202200264 crossref_primary_10_1063_5_0131067 crossref_primary_10_1016_j_aichem_2024_100070 crossref_primary_10_1021_acs_analchem_2c05817 crossref_primary_10_1021_acs_jcim_3c00536 crossref_primary_10_1109_TKDE_2024_3469578 crossref_primary_10_1007_s10462_024_10775_6 crossref_primary_10_1007_s10462_024_10714_5 crossref_primary_10_1080_17460441_2023_2134340 crossref_primary_10_1007_s11030_024_10942_5 crossref_primary_10_1093_bioinformatics_btad519 crossref_primary_10_1016_j_jpha_2025_101257 crossref_primary_10_1016_j_compbiomed_2025_109740 crossref_primary_10_1038_s42003_024_06746_w crossref_primary_10_1039_D4DD00019F crossref_primary_10_1186_s13321_025_00984_8 crossref_primary_10_1016_j_patter_2023_100678 crossref_primary_10_1038_s41598_025_86840_z crossref_primary_10_1039_D4SC03744H crossref_primary_10_1080_07391102_2023_2234039 crossref_primary_10_1016_j_compchemeng_2024_108989 crossref_primary_10_1039_D3CS00287J crossref_primary_10_1016_j_sbi_2023_102537 crossref_primary_10_1002_cjce_25525 crossref_primary_10_1016_j_compbiolchem_2023_107911 crossref_primary_10_1007_s11219_024_09671_7 crossref_primary_10_1016_j_eswa_2024_125410 crossref_primary_10_1186_s13662_025_03871_6 crossref_primary_10_1186_s13321_023_00719_7 crossref_primary_10_1039_D4DD00074A crossref_primary_10_3934_era_2024098 crossref_primary_10_1002_wcms_1725 crossref_primary_10_1186_s13321_023_00711_1 crossref_primary_10_1038_s41598_024_61124_0 crossref_primary_10_1021_acs_chemmater_4c02726 crossref_primary_10_3390_ijms25116186 crossref_primary_10_1007_s13132_024_01814_2 crossref_primary_10_1038_s42256_024_00821_x crossref_primary_10_1021_jacsau_4c00066 crossref_primary_10_1007_s11030_023_10771_y crossref_primary_10_1007_s12039_023_02196_9 crossref_primary_10_1016_j_jare_2025_02_011 crossref_primary_10_1021_acs_jcim_4c02230 crossref_primary_10_1016_j_patter_2024_100947 crossref_primary_10_1088_2632_2153_acadcd crossref_primary_10_3390_app142411526 crossref_primary_10_1021_acs_jcim_3c00293 crossref_primary_10_1016_j_ailsci_2023_100064 crossref_primary_10_1002_prep_202300109 crossref_primary_10_1109_TKDE_2024_3393356 crossref_primary_10_1080_17460441_2024_2367014 crossref_primary_10_1007_s40843_024_2851_9 crossref_primary_10_1038_s41467_023_42870_7 crossref_primary_10_1093_bib_bbad235 crossref_primary_10_1016_j_pscia_2024_100050 crossref_primary_10_3389_fphar_2024_1331062 crossref_primary_10_1021_acs_jcim_4c01907 crossref_primary_10_1109_ACCESS_2024_3446663 crossref_primary_10_1016_j_copbio_2024_103175 crossref_primary_10_1016_j_solener_2023_112115 crossref_primary_10_1021_acs_jcim_3c00969 crossref_primary_10_1016_j_ces_2023_119188 crossref_primary_10_1016_j_compchemeng_2024_108895 crossref_primary_10_7717_peerj_cs_2564 crossref_primary_10_1093_bioadv_vbad001 crossref_primary_10_1080_17460441_2024_2313475 crossref_primary_10_1002_minf_202300288 crossref_primary_10_1038_s41589_024_01679_1 crossref_primary_10_1021_acs_jcim_3c01250 crossref_primary_10_1109_TAI_2024_3387402 crossref_primary_10_1021_acs_jcim_3c01496 crossref_primary_10_1093_bib_bbad467 crossref_primary_10_1016_j_artmed_2024_102827 crossref_primary_10_1016_j_compbiomed_2023_106721 crossref_primary_10_1038_s41598_023_42952_y crossref_primary_10_1109_TITS_2024_3355211 crossref_primary_10_1002_pmic_202300011 crossref_primary_10_1021_acs_jcim_4c01691 crossref_primary_10_1038_s41467_024_45102_8 crossref_primary_10_1038_s42004_024_01341_w crossref_primary_10_1016_j_compbiolchem_2025_108392 crossref_primary_10_1016_j_jhazmat_2025_137232 crossref_primary_10_1038_s41524_025_01538_0 crossref_primary_10_1021_acs_jpclett_2c00624 crossref_primary_10_3390_ijms242316761 crossref_primary_10_1021_acs_jcim_2c00390 crossref_primary_10_1186_s13321_022_00646_z crossref_primary_10_1038_s41598_024_81189_1 crossref_primary_10_1039_D3DD00095H crossref_primary_10_1021_acs_iecr_3c02305 crossref_primary_10_1186_s13321_024_00916_y crossref_primary_10_1109_ACCESS_2024_3367715 crossref_primary_10_1002_jcc_27315 crossref_primary_10_1093_nsr_nwaf028 crossref_primary_10_3389_fphar_2021_827606 crossref_primary_10_1145_3715318 crossref_primary_10_1002_wcms_1637 |
Cites_doi | 10.3390/biom8040131 10.1186/s13321-018-0286-7 10.1109/ICCV.2017.244 10.1021/acs.jcim.8b00839 10.1021/ci049714+ 10.1016/j.drudis.2018.01.039 10.1186/s13321-019-0404-1 10.1038/nchem.1243 10.1126/science.aat2663 10.1039/C9SC01928F 10.1093/nar/gkw1074 10.1021/acs.molpharmaceut.7b00346 10.1038/s42256-020-0174-5 10.3389/fphar.2020.565644 10.1021/acscentsci.7b00572 10.1186/s13321-020-00441-8 10.1093/nar/gkv951 10.1039/D0CP03508D 10.1021/acscentsci.9b00576 10.1007/978-3-030-01418-6_41 10.1021/acs.molpharmaceut.8b00839 10.1021/acs.jcim.8b00234 10.1126/sciadv.aap7885 10.1021/acs.jcim.9b00694 10.1021/acs.jcim.7b00690 10.1021/acs.molpharmaceut.7b01137 10.1186/1758-2946-1-8 10.1007/s10822-013-9672-4 10.1021/js9804011 10.1038/s41524-018-0128-1 10.1186/s13321-017-0235-x 10.1186/s13321-019-0397-9 10.1186/s13321-019-0393-0 10.1609/aaai.v34i01.5433 10.1021/jm9602928 10.1021/acscentsci.7b00512 10.1002/minf.201700111 10.1039/D1SC02783B 10.1021/ci00057a005 |
ContentType | Journal Article |
Copyright | Copyright American Chemical Society May 9, 2022 |
Copyright_xml | – notice: Copyright American Chemical Society May 9, 2022 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
DOI | 10.1021/acs.jcim.1c00600 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace METADEX Computer and Information Systems Abstracts Professional MEDLINE - Academic |
DatabaseTitleList | MEDLINE Materials Research Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1549-960X |
EndPage | 2076 |
ExternalDocumentID | 34694798 10_1021_acs_jcim_1c00600 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- -~X 4.4 55A 5GY 5VS 7~N AABXI AAYXX ABBLG ABJNI ABLBI ABMVS ABQRX ABUCX ACGFS ACIWK ACNCT ACS ADHLV AEESW AENEX AFEFF AHGAQ ALMA_UNASSIGNED_HOLDINGS AQSVZ CITATION CUPRZ D0L DU5 EBS ED~ F5P GGK GNL IH9 JG~ P2P PQQKQ RNS ROL UI2 VF5 VG9 W1F CGR CUY CVF ECM EIF NPM 7SC 7SR 7U5 8BQ 8FD JG9 JQ2 L7M L~C L~D 7X8 |
ID | FETCH-LOGICAL-c327t-881166f749b9ad84a564abd2f05fe39cd959abfbfa088221f835d8883785a0d53 |
IEDL.DBID | ACS |
ISSN | 1549-9596 1549-960X |
IngestDate | Fri Jul 11 04:31:42 EDT 2025 Mon Jun 30 10:53:41 EDT 2025 Thu Jan 02 22:53:52 EST 2025 Thu Apr 24 23:05:57 EDT 2025 Tue Jul 01 03:04:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
License | https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 https://doi.org/10.15223/policy-045 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-881166f749b9ad84a564abd2f05fe39cd959abfbfa088221f835d8883785a0d53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-7114-3955 |
PMID | 34694798 |
PQID | 2666964301 |
PQPubID | 28739 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2586452113 proquest_journals_2666964301 pubmed_primary_34694798 crossref_citationtrail_10_1021_acs_jcim_1c00600 crossref_primary_10_1021_acs_jcim_1c00600 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-05-09 20220509 |
PublicationDateYYYYMMDD | 2022-05-09 |
PublicationDate_xml | – month: 05 year: 2022 text: 2022-05-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Journal of chemical information and modeling |
PublicationTitleAlternate | J Chem Inf Model |
PublicationYear | 2022 |
Publisher | American Chemical Society |
Publisher_xml | – name: American Chemical Society |
References | ref9/cit9 ref45/cit45 Karras T. (ref4/cit4) 2019 Guimaraes G. L. (ref31/cit31) 2017 Liu Q. (ref17/cit17) 2018; 31 Jin W. (ref20/cit20) 2018 ref16/cit16 Bjerrum E. J. (ref27/cit27) 2017 ref52/cit52 Sanchez-Lengeling B. (ref32/cit32) 2017 ref23/cit23 ref8/cit8 ref2/cit2 ref34/cit34 Devlin J. (ref6/cit6) 2018 ref37/cit37 Landrum G. (ref48/cit48) 2013 ref10/cit10 Goodfellow I. (ref3/cit3) 2014; 27 ref35/cit35 ref53/cit53 ref19/cit19 ref21/cit21 ref42/cit42 ref46/cit46 De Cao N. (ref33/cit33) 2018 ref49/cit49 ref13/cit13 ref24/cit24 ref38/cit38 ref50/cit50 ref54/cit54 ref36/cit36 ref11/cit11 ref25/cit25 ref29/cit29 Kusner M. J. (ref18/cit18) 2017 ref39/cit39 ref14/cit14 ref51/cit51 ref28/cit28 ref40/cit40 ref26/cit26 Vaswani A. (ref5/cit5) 2017 Lim J. (ref43/cit43) 2019 ref12/cit12 ref15/cit15 ref41/cit41 ref22/cit22 ref30/cit30 ref47/cit47 ref1/cit1 ref44/cit44 ref7/cit7 |
References_xml | – ident: ref28/cit28 doi: 10.3390/biom8040131 – volume-title: ChemRxiv year: 2017 ident: ref32/cit32 – ident: ref21/cit21 doi: 10.1186/s13321-018-0286-7 – ident: ref40/cit40 doi: 10.1109/ICCV.2017.244 – ident: ref44/cit44 – ident: ref9/cit9 doi: 10.1021/acs.jcim.8b00839 – start-page: 4401 year: 2019 ident: ref4/cit4 publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: arXiv:1905.1363 year: 2019 ident: ref43/cit43 publication-title: arXiv preprint – ident: ref46/cit46 doi: 10.1021/ci049714+ – start-page: 5998 year: 2017 ident: ref5/cit5 publication-title: Advances in Neural Information Processing Systems – ident: ref7/cit7 doi: 10.1016/j.drudis.2018.01.039 – start-page: arXiv:1805.1197 year: 2018 ident: ref33/cit33 publication-title: arXiv preprint – ident: ref39/cit39 doi: 10.1186/s13321-019-0404-1 – ident: ref51/cit51 doi: 10.1038/nchem.1243 – ident: ref8/cit8 doi: 10.1126/science.aat2663 – start-page: arXiv:1703.0707 year: 2017 ident: ref27/cit27 publication-title: arXiv preprint – ident: ref37/cit37 doi: 10.1039/C9SC01928F – ident: ref47/cit47 doi: 10.1093/nar/gkw1074 – ident: ref22/cit22 doi: 10.1021/acs.molpharmaceut.7b00346 – ident: ref41/cit41 doi: 10.1038/s42256-020-0174-5 – volume: 31 start-page: 7795 year: 2018 ident: ref17/cit17 publication-title: Advances in neural information processing systems – start-page: arXiv:1705.1084 year: 2017 ident: ref31/cit31 publication-title: arXiv preprint – ident: ref10/cit10 doi: 10.3389/fphar.2020.565644 – ident: ref35/cit35 doi: 10.1021/acscentsci.7b00572 – ident: ref42/cit42 doi: 10.1186/s13321-020-00441-8 – start-page: arXiv:1703.0192 year: 2017 ident: ref18/cit18 publication-title: arXiv preprint – ident: ref2/cit2 doi: 10.1093/nar/gkv951 – ident: ref29/cit29 doi: 10.1039/D0CP03508D – ident: ref53/cit53 doi: 10.1021/acscentsci.9b00576 – ident: ref19/cit19 doi: 10.1007/978-3-030-01418-6_41 – ident: ref24/cit24 doi: 10.1021/acs.molpharmaceut.8b00839 – ident: ref52/cit52 doi: 10.1021/acs.jcim.8b00234 – ident: ref15/cit15 doi: 10.1126/sciadv.aap7885 – ident: ref25/cit25 doi: 10.1021/acs.jcim.9b00694 – volume: 27 start-page: 2672 year: 2014 ident: ref3/cit3 publication-title: Advances in neural information processing systems – ident: ref34/cit34 doi: 10.1021/acs.jcim.7b00690 – ident: ref23/cit23 doi: 10.1021/acs.molpharmaceut.7b01137 – ident: ref50/cit50 doi: 10.1186/1758-2946-1-8 – ident: ref1/cit1 doi: 10.1007/s10822-013-9672-4 – ident: ref54/cit54 doi: 10.1021/js9804011 – ident: ref45/cit45 – ident: ref38/cit38 doi: 10.1038/s41524-018-0128-1 – ident: ref16/cit16 doi: 10.1186/s13321-017-0235-x – ident: ref30/cit30 doi: 10.1186/s13321-019-0397-9 – ident: ref26/cit26 doi: 10.1186/s13321-019-0393-0 – volume-title: RDKit: A Software Suite for Cheminformatics, Computational Chemistry, and Predictive Modeling year: 2013 ident: ref48/cit48 – ident: ref12/cit12 doi: 10.1609/aaai.v34i01.5433 – ident: ref49/cit49 doi: 10.1021/jm9602928 – ident: ref13/cit13 doi: 10.1021/acscentsci.7b00512 – ident: ref14/cit14 doi: 10.1002/minf.201700111 – start-page: arXiv:1802.0436 year: 2018 ident: ref20/cit20 publication-title: arXiv preprint – ident: ref36/cit36 doi: 10.1039/D1SC02783B – start-page: arXiv:1810.0480 year: 2018 ident: ref6/cit6 publication-title: arXiv preprint – ident: ref11/cit11 doi: 10.1021/ci00057a005 |
SSID | ssj0033962 |
Score | 2.716186 |
SecondaryResourceType | review_article |
Snippet | Application of deep learning techniques for
generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug design. The... Application of deep learning techniques for de novo generation of molecules, termed as inverse molecular design, has been gaining enormous traction in drug... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 2064 |
SubjectTerms | Deep learning Drug Design Machine Learning Natural language processing Property values Scaffolds Strings Transformers |
Title | MolGPT: Molecular Generation Using a Transformer-Decoder Model |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34694798 https://www.proquest.com/docview/2666964301 https://www.proquest.com/docview/2586452113 |
Volume | 62 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3JTsMwELVQL3BhXwoFBYkLh7RxvMTmgFSVpUIqQqKVeotsJ5aA0qI2vfD1eLIUsQrOcRxrxpN59tjvIXTCRZAmnFhfKNi6AbIhQZSLK-7ShXZ4hFrYGujd8u6A3gzZ8J0m53MFP8QtZWbNR_Pw3MQGyEPy5XlEgSa_3bmvfrqEyFw7FAjHfMlkVZH8roOPGegHWJmnl6u1QqdolrMSwqmSp-Y8003z-pWz8Q8jX0erJcr02sW02EBL6XgTLXcqcbctdN6bjK7v-mder5LH9QoCavCTl58j8JTXr1BtOvUvUrj9PvVAPG20jQZXl_1O1y-lFHxDwijzhcCYcxtRqaVKBFWMU6WT0AbMpkSaxNlMaautAsgdYuuAWeIWxyQSTAUJIzuoNp6M0z3k6YhqSZgRgXQBjxPNhWU4SpTEBris6qhVmTc2Jc84yF2M4rzeHeLY2SUGu8SlXerodPHGS8Gx8UvbRuWxuIy2WexABgdesQDX0fHisbMoFD_UOJ3MXRsmoIaLMamj3cLTi48RyiWNpNj_x0AO0EoINyHg7KNsoFo2naeHDp9k-iifmW-FWt4h |
linkProvider | American Chemical Society |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MolGPT%3A+Molecular+Generation+Using+a+Transformer-Decoder+Model&rft.jtitle=Journal+of+chemical+information+and+modeling&rft.au=Bagal%2C+Viraj&rft.au=Aggarwal%2C+Rishal&rft.au=Vinod%2C+P+K&rft.au=Priyakumar%2C+U+Deva&rft.date=2022-05-09&rft.pub=American+Chemical+Society&rft.issn=1549-9596&rft.eissn=1549-960X&rft.volume=62&rft.issue=9&rft.spage=2064&rft_id=info:doi/10.1021%2Facs.jcim.1c00600&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-9596&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-9596&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-9596&client=summon |