Counting near-infrared single-photons with 95% efficiency
Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-p...
Saved in:
Published in | Optics express Vol. 16; no. 5; p. 3032 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
03.03.2008
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one- and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 % +/- 2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector. |
---|---|
AbstractList | Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one- and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 % +/- 2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector. Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one- and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 % +/- 2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector.Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many quantum-information applications. Superconducting transition-edge sensors (TESs) are capable of detecting visible and near-infrared light at the single-photon level and are capable of discriminating between one- and two-photon absorption events; however these capabilities place stringent design requirements on the TES heat capacity, thermometry, and optical detection efficiency. We describe the fabrication and evaluation of a fiber-coupled, photon-number-resolving TES detector optimized for absorption at 1550 and 1310 nm wavelengths. The measured system detection efficiency at 1556 nm is 95 % +/- 2 %, which to our knowledge is the highest system detection efficiency reported for a near-infrared single-photon detector. |
Author | Nam, Sae Woo Miller, Aaron J. Lita, Adriana E. |
Author_xml | – sequence: 1 givenname: Adriana E. surname: Lita fullname: Lita, Adriana E. – sequence: 2 givenname: Aaron J. surname: Miller fullname: Miller, Aaron J. – sequence: 3 givenname: Sae Woo surname: Nam fullname: Nam, Sae Woo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18542389$$D View this record in MEDLINE/PubMed |
BookMark | eNptkEtLAzEUhYMo9qE71zIbXTk1j8kks5RSH1DopvuQydzYyDSpyQzSf-9Iq4i4uofLdw6cM0GnPnhA6IrgGWFlcb9azEg5w5hhRk_QmOCqyAssxekvPUKTlN4wJoWoxDkaEckLymQ1RtU89L5z_jXzoGPuvI06QpOl4dVCvtuELviUfbhuk1X8JgNrnXHgzf4CnVndJrg83ilaPy7W8-d8uXp6mT8sc8Oo6HLJGwllqYUhmErJQOOaWk6IsZwLqGllNJNN0TQETF2AKBvKuDFYCysGOUW3h9hdDO89pE5tXTLQttpD6JMSpOSCCTGA10ewr7fQqF10Wx336rvrANADYGJIKYJVxnW6c8F3UbtWEay-BlWrhSKlOgw6mO7-mH5y_8M_AaIrdSE |
CitedBy_id | crossref_primary_10_1364_OE_541186 crossref_primary_10_1364_OPTICAQ_523445 crossref_primary_10_1103_PhysRevA_108_032411 crossref_primary_10_1103_PhysRevLett_118_163602 crossref_primary_10_1364_OE_450172 crossref_primary_10_1103_PhysRevA_88_012327 crossref_primary_10_1103_PhysRevLett_126_023601 crossref_primary_10_1103_PhysRevResearch_3_043205 crossref_primary_10_1016_j_physleta_2017_10_022 crossref_primary_10_1103_PhysRevLett_121_047401 crossref_primary_10_1364_JOSAB_27_000852 crossref_primary_10_1364_OPTICAQ_510125 crossref_primary_10_1364_OE_397767 crossref_primary_10_1364_AO_50_000061 crossref_primary_10_1002_andp_202200545 crossref_primary_10_1103_PhysRevA_80_022114 crossref_primary_10_3103_S002713492202045X crossref_primary_10_1063_5_0077045 crossref_primary_10_1103_PhysRevLett_117_030802 crossref_primary_10_1016_j_nima_2019_04_074 crossref_primary_10_1088_1367_2630_aadc78 crossref_primary_10_1142_S0219749911007113 crossref_primary_10_1103_PhysRevD_103_075007 crossref_primary_10_1088_0953_4075_42_11_114009 crossref_primary_10_1088_1674_1056_26_2_020302 crossref_primary_10_1103_PhysRevA_82_052325 crossref_primary_10_1103_PhysRevA_107_012418 crossref_primary_10_1103_PhysRevX_5_041015 crossref_primary_10_1109_TASC_2010_2087740 crossref_primary_10_1038_s42254_023_00589_w crossref_primary_10_1364_JOSAB_33_001451 crossref_primary_10_1364_OE_18_008107 crossref_primary_10_1103_PhysRevA_106_062608 crossref_primary_10_1088_1367_2630_ab61da crossref_primary_10_1021_acs_nanolett_0c00985 crossref_primary_10_1364_JOSAB_31_000816 crossref_primary_10_1016_j_newar_2020_101526 crossref_primary_10_1088_1361_6463_ab9139 crossref_primary_10_1088_1742_6596_737_1_012032 crossref_primary_10_1364_JOSAB_415137 crossref_primary_10_1364_OL_383194 crossref_primary_10_1016_j_physrep_2017_10_002 crossref_primary_10_1088_0953_4075_48_8_083001 crossref_primary_10_1103_PhysRevApplied_9_064030 crossref_primary_10_1088_1361_6455_aab5dd crossref_primary_10_1364_JOSAB_27_00A170 crossref_primary_10_1088_0031_8949_2014_T163_014019 crossref_primary_10_1103_PhysRevA_96_013804 crossref_primary_10_1364_OE_21_022523 crossref_primary_10_1364_OE_21_000893 crossref_primary_10_1103_PhysRevApplied_19_034067 crossref_primary_10_1364_OE_22_011945 crossref_primary_10_1063_1_4739839 crossref_primary_10_1063_1_4809731 crossref_primary_10_1038_nphys2931 crossref_primary_10_1103_PhysRevA_101_031801 crossref_primary_10_1103_PhysRevA_82_052303 crossref_primary_10_1103_PhysRevA_95_012134 crossref_primary_10_1016_j_optlaseng_2022_107102 crossref_primary_10_1088_1361_6455_ab6cfc crossref_primary_10_1109_TTHZ_2011_2159560 crossref_primary_10_1109_JPHOT_2023_3237199 crossref_primary_10_1109_JPHOT_2012_2190394 crossref_primary_10_1063_1_4966139 crossref_primary_10_1002_lpor_202100707 crossref_primary_10_1007_s10909_012_0527_5 crossref_primary_10_1364_OE_20_019075 crossref_primary_10_1364_OE_21_022657 crossref_primary_10_1038_s41598_022_05336_2 crossref_primary_10_22331_q_2018_09_13_93 crossref_primary_10_1007_s10909_022_02774_0 crossref_primary_10_1038_srep19489 crossref_primary_10_1088_1367_2630_15_2_025021 crossref_primary_10_1038_s41598_017_15190_2 crossref_primary_10_1007_s11128_024_04416_8 crossref_primary_10_3390_s20123475 crossref_primary_10_1088_1748_0221_8_09_T09001 crossref_primary_10_1364_OPTICA_3_001331 crossref_primary_10_1007_s10909_014_1149_x crossref_primary_10_1109_TASC_2019_2906276 crossref_primary_10_1088_1367_2630_abfa63 crossref_primary_10_1088_1367_2630_17_2_023038 crossref_primary_10_4071_imaps_485 crossref_primary_10_1103_PhysRevA_86_042328 crossref_primary_10_1364_OE_20_023798 crossref_primary_10_1063_5_0149478 crossref_primary_10_1103_PhysRevA_87_043833 crossref_primary_10_1103_PhysRevA_88_063820 crossref_primary_10_1364_OE_17_023557 crossref_primary_10_1021_acs_nanolett_0c02613 crossref_primary_10_1088_1612_202X_ad174d crossref_primary_10_1016_j_pquantelec_2022_100414 crossref_primary_10_1038_nphoton_2017_63 crossref_primary_10_1007_s10773_014_2040_x crossref_primary_10_1103_PhysRevLett_120_040406 crossref_primary_10_1007_s10909_022_02928_0 crossref_primary_10_1007_s10909_023_03015_8 crossref_primary_10_1103_PhysRevA_95_022102 crossref_primary_10_1103_PhysRevResearch_5_013034 crossref_primary_10_1109_JQE_2010_2042141 crossref_primary_10_1088_1361_6501_acaf12 crossref_primary_10_1088_1367_2630_17_10_103044 crossref_primary_10_1002_lpor_201900097 crossref_primary_10_1088_1367_2630_17_2_023023 crossref_primary_10_1103_PhysRevLett_107_083603 crossref_primary_10_1007_s10773_014_2098_5 crossref_primary_10_1364_OE_447817 crossref_primary_10_1103_PhysRevA_103_013710 crossref_primary_10_1103_PhysRevLett_103_163602 crossref_primary_10_1103_PhysRevA_104_033717 crossref_primary_10_1103_PhysRevLett_112_110405 crossref_primary_10_1088_1402_4896_ac955f crossref_primary_10_1364_OE_27_032863 crossref_primary_10_3390_s19163620 crossref_primary_10_1364_OPTICA_6_001356 crossref_primary_10_1103_PhysRevA_95_012319 crossref_primary_10_22331_q_2020_03_02_239 crossref_primary_10_1109_TIM_2018_2882217 crossref_primary_10_1116_5_0107125 crossref_primary_10_1103_PhysRevD_98_035006 crossref_primary_10_1007_s10909_018_1932_1 crossref_primary_10_1364_OE_486270 crossref_primary_10_1103_PhysRevLett_107_063904 crossref_primary_10_3103_S1068337211030078 crossref_primary_10_1007_s10909_018_2034_9 crossref_primary_10_1103_PhysRevA_80_013819 crossref_primary_10_1364_OE_21_029013 crossref_primary_10_1002_smll_202103963 crossref_primary_10_1063_1_5115814 crossref_primary_10_1103_PhysRevResearch_2_042002 crossref_primary_10_1103_PhysRevA_88_013822 crossref_primary_10_1007_s11128_018_1828_7 crossref_primary_10_1103_PhysRevA_85_032337 crossref_primary_10_1038_nphoton_2012_300 crossref_primary_10_1103_PhysRevA_105_052412 crossref_primary_10_1088_1361_6455_aaf031 crossref_primary_10_1103_PhysRevA_98_062322 crossref_primary_10_1364_OE_25_023545 crossref_primary_10_1088_1742_6596_735_1_012072 crossref_primary_10_1364_OE_22_003475 crossref_primary_10_1103_PhysRevA_110_023717 crossref_primary_10_1103_PhysRevApplied_18_064007 crossref_primary_10_1038_s41598_018_21092_8 crossref_primary_10_1103_PhysRevA_97_013833 crossref_primary_10_1088_0026_1394_46_4_S29 crossref_primary_10_1038_s42005_022_00835_0 crossref_primary_10_1088_1367_2630_11_4_045022 crossref_primary_10_1364_OE_19_000870 crossref_primary_10_1109_JSTQE_2009_2034616 crossref_primary_10_1063_1_3610677 crossref_primary_10_1088_1367_2630_14_8_085001 crossref_primary_10_1103_PhysRevLett_119_083601 crossref_primary_10_1063_1_4895101 crossref_primary_10_1088_1367_2630_ad2d40 crossref_primary_10_1364_OE_543511 crossref_primary_10_1038_s44172_024_00308_y crossref_primary_10_1038_s41566_022_01105_9 crossref_primary_10_1088_1367_2630_18_1_013020 crossref_primary_10_1088_1367_2630_ab42ae crossref_primary_10_1364_JOSAB_36_000B20 crossref_primary_10_1007_s10946_009_9107_9 crossref_primary_10_1063_1_4960533 crossref_primary_10_1063_1_3263715 crossref_primary_10_1088_2040_8978_17_6_065501 crossref_primary_10_1103_PhysRevA_99_043822 crossref_primary_10_1063_1_4830373 crossref_primary_10_1364_OE_389619 crossref_primary_10_1088_1361_6641_ab1551 crossref_primary_10_1002_lpor_201100021 crossref_primary_10_1088_0026_1394_47_5_R01 crossref_primary_10_1063_1_4732813 crossref_primary_10_1088_1742_6596_350_1_012028 crossref_primary_10_1364_JOSAB_29_002066 crossref_primary_10_1088_1367_2630_12_11_113025 crossref_primary_10_1364_OE_25_000907 crossref_primary_10_1103_PhysRevApplied_21_024023 crossref_primary_10_1103_PhysRevA_87_052315 crossref_primary_10_1103_PhysRevD_79_095024 crossref_primary_10_1063_1_4931066 crossref_primary_10_1103_PhysRevA_92_012318 crossref_primary_10_1126_science_aab0097 crossref_primary_10_1103_PhysRevA_86_013826 crossref_primary_10_1103_PRXQuantum_2_030204 crossref_primary_10_1364_OE_19_009102 crossref_primary_10_7498_aps_70_20210185 crossref_primary_10_3788_gzxb20235205_0552201 crossref_primary_10_1038_nphys4270 crossref_primary_10_1103_PhysRevApplied_12_064024 crossref_primary_10_1103_RevModPhys_95_045006 crossref_primary_10_1364_OL_38_001609 crossref_primary_10_1103_PhysRevA_104_012612 crossref_primary_10_1364_OE_19_009352 crossref_primary_10_1021_acs_nanolett_8b01795 crossref_primary_10_1103_PhysRevA_101_033823 crossref_primary_10_1103_PhysRevResearch_4_L012041 crossref_primary_10_1088_1361_6668_aa7495 crossref_primary_10_1103_PhysRevA_86_032325 crossref_primary_10_1016_j_optcom_2024_131244 crossref_primary_10_1103_PhysRevA_100_013814 crossref_primary_10_1063_1_4820474 crossref_primary_10_3390_photonics11080728 crossref_primary_10_1103_PhysRevA_98_033829 crossref_primary_10_1364_OE_17_006727 crossref_primary_10_1109_LPT_2012_2217124 crossref_primary_10_1088_1681_7575_ab4533 crossref_primary_10_1088_2515_7647_ababf6 crossref_primary_10_1002_adfm_201807379 crossref_primary_10_1364_OPTICAQ_532232 crossref_primary_10_7567_APEX_6_062202 crossref_primary_10_1103_PhysRevResearch_3_013263 crossref_primary_10_1109_JLT_2022_3195000 crossref_primary_10_1103_PhysRevA_95_053806 crossref_primary_10_1063_1_4746248 crossref_primary_10_1103_PhysRevA_83_043814 crossref_primary_10_1134_S0021364023602270 crossref_primary_10_1364_OE_22_022062 crossref_primary_10_1007_s10909_022_02887_6 crossref_primary_10_1038_s41534_019_0195_2 crossref_primary_10_1088_2058_9565_aa7983 crossref_primary_10_1088_1361_6668_aaa6b4 crossref_primary_10_1103_PhysRevA_94_052307 crossref_primary_10_1038_s41534_020_00320_y crossref_primary_10_1364_OL_42_004792 crossref_primary_10_1364_OL_421646 crossref_primary_10_1103_PhysRevA_81_032117 crossref_primary_10_1142_S0219749919410120 crossref_primary_10_1063_1_3494616 crossref_primary_10_1088_1367_2630_15_2_023006 crossref_primary_10_1103_PhysRevA_84_060301 crossref_primary_10_1364_OE_466175 crossref_primary_10_1016_j_optcom_2022_128987 crossref_primary_10_1063_1_4816059 crossref_primary_10_1109_TASC_2020_3039711 crossref_primary_10_1007_s10909_018_2064_3 crossref_primary_10_1103_PhysRevLett_121_150402 crossref_primary_10_1364_AO_56_00B222 crossref_primary_10_1364_JOSAB_27_00A137 crossref_primary_10_1080_09500340_2011_585251 crossref_primary_10_1109_TASC_2010_2089953 crossref_primary_10_1063_1_4993779 crossref_primary_10_1364_PRJ_7_000862 crossref_primary_10_1515_nanoph_2020_0186 crossref_primary_10_1364_OE_17_010290 crossref_primary_10_1088_1674_4926_45_3_032702 crossref_primary_10_1364_OE_20_005044 crossref_primary_10_1063_1_3600793 crossref_primary_10_1103_PhysRevLett_108_120404 crossref_primary_10_1364_OL_44_001746 crossref_primary_10_1364_JOSAB_31_000B20 crossref_primary_10_1007_s10909_014_1127_3 crossref_primary_10_1364_JOSAB_31_000B25 crossref_primary_10_1016_j_optlastec_2012_01_010 crossref_primary_10_1007_s11467_021_1103_8 crossref_primary_10_1038_s41586_022_04725_x crossref_primary_10_1088_1748_0221_9_05_T05002 crossref_primary_10_1364_JOSAB_31_000586 crossref_primary_10_1364_OE_380416 crossref_primary_10_1364_OE_19_024434 crossref_primary_10_1007_s11664_018_6806_4 crossref_primary_10_1103_PhysRevLett_105_070501 crossref_primary_10_1103_RevModPhys_84_621 crossref_primary_10_1080_09500340_2015_1021723 crossref_primary_10_1103_PhysRevA_110_052437 crossref_primary_10_1364_JOSAB_31_000B34 crossref_primary_10_1103_PhysRevLett_107_213602 crossref_primary_10_1103_PhysRevA_78_050301 crossref_primary_10_1103_PhysRevLett_129_203603 crossref_primary_10_1103_PhysRevA_110_043715 crossref_primary_10_1103_PhysRevLett_128_240503 crossref_primary_10_1103_PhysRevLett_106_250503 crossref_primary_10_1007_s11664_018_6750_3 crossref_primary_10_1109_TNSM_2022_3165202 crossref_primary_10_1038_s41598_023_30218_6 crossref_primary_10_7498_aps_62_194205 crossref_primary_10_1103_PhysRevD_107_082002 crossref_primary_10_1364_OE_20_005017 crossref_primary_10_1063_1_3464556 crossref_primary_10_1103_PhysRevA_100_041802 crossref_primary_10_1039_D3MA00182B crossref_primary_10_1103_PhysRevA_102_023712 crossref_primary_10_1103_PhysRevA_95_023815 crossref_primary_10_1364_OE_19_023249 crossref_primary_10_1038_s41598_017_15174_2 crossref_primary_10_1016_j_optcom_2017_07_087 crossref_primary_10_1140_epjqt_s40507_022_00141_2 crossref_primary_10_1103_PhysRevA_90_032325 crossref_primary_10_1016_j_physletb_2017_06_051 crossref_primary_10_1103_PhysRevA_94_032332 crossref_primary_10_1103_RevModPhys_89_015004 crossref_primary_10_1103_PhysRevA_88_052127 crossref_primary_10_1038_nphys2253 crossref_primary_10_1038_s41566_017_0011_5 crossref_primary_10_1088_1361_6455_ab526f crossref_primary_10_1088_1402_4896_ad7543 crossref_primary_10_1088_1367_2630_ab0609 crossref_primary_10_1103_PhysRevA_105_022436 crossref_primary_10_1007_s11467_024_1428_1 crossref_primary_10_1016_j_revip_2019_100030 crossref_primary_10_1109_TASC_2012_2235114 crossref_primary_10_1038_s41598_017_16773_9 crossref_primary_10_1364_OE_27_010482 crossref_primary_10_1364_OE_516313 crossref_primary_10_1088_1612_202X_acb921 crossref_primary_10_1103_RevModPhys_84_777 crossref_primary_10_1088_1367_2630_ad3be5 crossref_primary_10_1103_PhysRevLett_111_130406 crossref_primary_10_1364_OE_449866 crossref_primary_10_1364_OL_40_001548 crossref_primary_10_1103_PhysRevA_80_042311 crossref_primary_10_1364_JOSAB_31_000020 crossref_primary_10_1364_OE_423142 crossref_primary_10_1103_PhysRevA_80_042310 crossref_primary_10_1103_PhysRevX_7_041036 crossref_primary_10_1088_1361_6455_aafbc0 crossref_primary_10_1002_lpor_202400031 crossref_primary_10_1139_cjp_2023_0190 crossref_primary_10_1103_PhysRevLett_128_160501 crossref_primary_10_1103_PhysRevA_84_023810 crossref_primary_10_1103_PRXQuantum_5_010346 crossref_primary_10_1364_OE_21_027641 crossref_primary_10_1007_s11434_013_5698_1 crossref_primary_10_7498_aps_63_070701 crossref_primary_10_1021_acsphotonics_9b01754 crossref_primary_10_1017_qut_2024_4 crossref_primary_10_1038_s41566_017_0010_6 crossref_primary_10_1103_PhysRevA_102_033701 crossref_primary_10_1103_PhysRevLett_118_257402 crossref_primary_10_1007_s11433_017_9113_4 crossref_primary_10_1007_s12043_023_02622_0 crossref_primary_10_1103_PhysRevB_104_184517 crossref_primary_10_1016_j_nima_2022_167588 crossref_primary_10_1103_PhysRevApplied_14_044029 crossref_primary_10_1134_S1054660X1009032X crossref_primary_10_1038_srep04535 crossref_primary_10_1103_PhysRevA_108_062411 crossref_primary_10_1007_s10909_018_1883_6 crossref_primary_10_1063_5_0234649 crossref_primary_10_1038_npjqi_2016_25 crossref_primary_10_1126_science_1231440 crossref_primary_10_1038_npjqi_2016_23 crossref_primary_10_1063_1_3659686 crossref_primary_10_1134_S1063785011050269 crossref_primary_10_1103_PhysRevA_101_013815 crossref_primary_10_1134_S1063785018080059 crossref_primary_10_1016_j_optcom_2012_04_017 crossref_primary_10_1038_nphoton_2013_13 crossref_primary_10_1016_j_optcom_2011_10_071 crossref_primary_10_31857_S1234567823160115 crossref_primary_10_1007_s00340_015_6297_4 crossref_primary_10_1103_PhysRevD_106_015011 crossref_primary_10_1103_PhysRevA_94_020301 crossref_primary_10_1364_OL_37_002829 crossref_primary_10_1103_PhysRevLett_105_093603 crossref_primary_10_1364_JOSAB_35_000C38 crossref_primary_10_3390_photonics12010008 crossref_primary_10_1103_RevModPhys_83_33 crossref_primary_10_1103_PhysRevApplied_16_034051 crossref_primary_10_1038_ncomms1641 crossref_primary_10_1103_PhysRevLett_118_020402 crossref_primary_10_1088_1748_0221_18_01_C01023 crossref_primary_10_1103_PhysRevLett_114_100402 crossref_primary_10_1109_TASC_2024_3350569 crossref_primary_10_1016_j_nima_2023_168408 crossref_primary_10_1038_s41534_023_00772_y crossref_primary_10_1109_TASC_2009_2019027 crossref_primary_10_1109_TASC_2009_2019028 crossref_primary_10_1007_JHEP10_2020_143 crossref_primary_10_1080_09500340802302352 crossref_primary_10_1002_adfm_202406510 crossref_primary_10_1007_s10909_018_2095_9 crossref_primary_10_1007_s10909_020_02383_9 crossref_primary_10_1016_j_physc_2015_05_005 crossref_primary_10_1063_1_4789360 crossref_primary_10_22331_q_2024_05_23_1355 crossref_primary_10_1364_OSAC_2_002227 crossref_primary_10_1038_nphoton_2013_37 crossref_primary_10_1007_s11128_019_2423_2 crossref_primary_10_1088_1751_8113_48_7_075306 crossref_primary_10_1103_PhysRevA_96_053815 crossref_primary_10_1002_qute_202300060 crossref_primary_10_1364_OE_21_006707 crossref_primary_10_1103_PhysRevLett_109_023601 crossref_primary_10_1364_AO_52_000274 crossref_primary_10_1103_PRXQuantum_3_020336 crossref_primary_10_1364_OE_417989 crossref_primary_10_1103_PhysRevLett_132_230602 crossref_primary_10_1103_PhysRevA_95_022304 crossref_primary_10_1142_S0219749912300021 crossref_primary_10_1016_j_physleta_2021_127828 crossref_primary_10_1016_j_physleta_2024_129964 crossref_primary_10_1063_1_4959095 crossref_primary_10_1364_OL_44_001371 crossref_primary_10_1103_PhysRevA_85_033812 crossref_primary_10_3390_nano11010039 crossref_primary_10_1364_OL_38_002171 crossref_primary_10_1088_2058_9565_ace54b crossref_primary_10_1063_1_4756916 crossref_primary_10_1364_OE_496206 crossref_primary_10_1364_OE_24_027319 crossref_primary_10_3390_app142311249 crossref_primary_10_1038_ncomms1628 crossref_primary_10_1103_PhysRevA_105_063721 crossref_primary_10_1007_s10909_022_02784_y crossref_primary_10_1103_PhysRevA_82_031802 crossref_primary_10_1103_PhysRevB_88_245306 crossref_primary_10_1103_PhysRevLett_112_223602 crossref_primary_10_1016_j_ijleo_2020_165820 crossref_primary_10_1103_PhysRevResearch_2_033091 crossref_primary_10_1007_s11128_014_0854_3 crossref_primary_10_3390_s23073495 crossref_primary_10_1103_PhysRevLett_119_013601 crossref_primary_10_1007_s10909_023_03017_6 crossref_primary_10_1088_1361_6668_aa5f33 crossref_primary_10_1080_00107514_2022_2043596 crossref_primary_10_1080_09500340903203103 crossref_primary_10_1364_OE_22_020358 crossref_primary_10_1088_1367_2630_ab5330 crossref_primary_10_1103_PRXQuantum_3_010202 crossref_primary_10_1002_adma_202109621 crossref_primary_10_1364_OE_21_015959 crossref_primary_10_1016_j_physleta_2022_128059 crossref_primary_10_1103_PhysRevD_105_095009 crossref_primary_10_1103_PhysRevA_102_013513 crossref_primary_10_1103_PhysRevLett_118_130503 crossref_primary_10_1109_TASC_2019_2905566 crossref_primary_10_1364_OE_26_015914 crossref_primary_10_1103_PhysRevA_92_063825 crossref_primary_10_1103_PhysRevA_99_022336 crossref_primary_10_1364_JOSAB_35_001985 crossref_primary_10_1021_acsnano_7b06363 crossref_primary_10_1088_1748_0221_19_12_P12015 crossref_primary_10_1103_PhysRevA_96_023822 crossref_primary_10_1103_PhysRevA_89_022119 crossref_primary_10_1364_JOSAB_29_000319 crossref_primary_10_1134_S0021364020070103 crossref_primary_10_1103_PhysRevLett_116_143601 crossref_primary_10_1103_PhysRevLett_104_103602 crossref_primary_10_1103_PhysRevLett_128_131801 crossref_primary_10_1007_s00340_015_6019_y crossref_primary_10_1016_j_optcom_2019_07_051 crossref_primary_10_1126_science_1190491 crossref_primary_10_1103_PhysRevA_89_012310 crossref_primary_10_1088_1361_6668_ac6a1c crossref_primary_10_1103_PhysRevA_102_012407 crossref_primary_10_1103_PhysRevLett_102_080404 crossref_primary_10_1364_JOSAB_35_001514 crossref_primary_10_1103_PhysRevApplied_13_054015 crossref_primary_10_1038_ncomms11200 crossref_primary_10_1088_0953_2048_28_10_104001 crossref_primary_10_1103_PhysRevA_84_022325 crossref_primary_10_1126_science_1188172 crossref_primary_10_1364_OL_36_002800 crossref_primary_10_1103_PhysRevA_107_012607 crossref_primary_10_1103_PhysRevA_108_012605 crossref_primary_10_22331_q_2022_07_20_769 crossref_primary_10_1063_1_3642986 crossref_primary_10_1063_1_4984134 crossref_primary_10_1364_JOSAB_441210 crossref_primary_10_1103_PhysRevApplied_19_064041 crossref_primary_10_1103_PRXQuantum_4_010333 crossref_primary_10_1063_PT_3_3039 crossref_primary_10_1103_PhysRevA_90_023846 crossref_primary_10_1109_JSTQE_2014_2358077 crossref_primary_10_2478_s11772_010_0050_7 crossref_primary_10_1007_s11128_017_1591_1 crossref_primary_10_1098_rsta_2016_0235 crossref_primary_10_1038_nature12012 crossref_primary_10_1039_D1CS00434D crossref_primary_10_1038_nphoton_2009_230 crossref_primary_10_1103_PhysRevLett_107_080403 crossref_primary_10_1103_PhysRevA_80_043822 crossref_primary_10_1103_PhysRevLett_124_013605 crossref_primary_10_1364_JOSAB_428105 crossref_primary_10_1364_OE_26_022457 crossref_primary_10_1103_PRXQuantum_5_030331 crossref_primary_10_1364_OE_17_018693 crossref_primary_10_1088_1674_1056_ac11ce crossref_primary_10_1109_TASC_2013_2251451 crossref_primary_10_3390_s16070953 crossref_primary_10_1103_PhysRevLett_119_010402 crossref_primary_10_1088_1367_2630_18_9_093008 crossref_primary_10_1038_ncomms11356 crossref_primary_10_1103_PhysRevLett_115_250401 crossref_primary_10_1103_PhysRevResearch_3_043116 crossref_primary_10_1088_2040_8978_18_3_035204 crossref_primary_10_1088_1367_2630_aab746 crossref_primary_10_1103_PhysRevA_102_013703 crossref_primary_10_1103_PhysRevA_84_010304 crossref_primary_10_1103_PhysRevD_107_115018 crossref_primary_10_3389_fphy_2017_00009 crossref_primary_10_1088_1367_2630_16_5_053001 crossref_primary_10_1103_PhysRevA_84_032320 crossref_primary_10_1109_TASC_2024_3363129 crossref_primary_10_1109_JSAC_2009_091208 crossref_primary_10_1364_JOSAB_440232 crossref_primary_10_1038_ncomms14870 crossref_primary_10_1088_0953_4075_44_20_205502 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1364/OE.16.003032 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1094-4087 |
ExternalDocumentID | 18542389 10_1364_OE_16_003032 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 123 29N 2WC 8SL AAFWJ AAWJZ AAYXX ACGFO ADBBV AEDJG AENEX AFPKN AKGWG ALMA_UNASSIGNED_HOLDINGS ATHME AYPRP AZSQR AZYMN BAWUL BCNDV C1A CITATION CS3 DIK DSZJF DU5 E3Z EBS EJD F5P GROUPED_DOAJ GX1 KQ8 M~E OFLFD OK1 OPJBK OPLUZ OVT P2P RNS ROL ROS TR2 TR6 XSB CGR CUY CVF ECM EIF NPM ROP 7X8 |
ID | FETCH-LOGICAL-c327t-85d8e66a7c102883ea0b2f511cf557eb29ca38d4dd1ecb4e76d235cc0a7f7d23 |
ISSN | 1094-4087 |
IngestDate | Fri Jul 11 05:27:39 EDT 2025 Wed Feb 19 02:33:05 EST 2025 Tue Jul 01 03:19:29 EDT 2025 Thu Apr 24 23:06:43 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://opg.optica.org/policies/opg-tdm-policy.json https://doi.org/10.1364/OA_License_v1#VOR-OA |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-85d8e66a7c102883ea0b2f511cf557eb29ca38d4dd1ecb4e76d235cc0a7f7d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://doi.org/10.1364/oe.16.003032 |
PMID | 18542389 |
PQID | 71657377 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_71657377 pubmed_primary_18542389 crossref_citationtrail_10_1364_OE_16_003032 crossref_primary_10_1364_OE_16_003032 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-03-03 |
PublicationDateYYYYMMDD | 2008-03-03 |
PublicationDate_xml | – month: 03 year: 2008 text: 2008-03-03 day: 03 |
PublicationDecade | 2000 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Optics express |
PublicationTitleAlternate | Opt Express |
PublicationYear | 2008 |
SSID | ssj0014797 |
Score | 2.4962702 |
Snippet | Single-photon detectors operating at visible and near-infrared wavelengths with high detection efficiency and low noise are a requirement for many... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3032 |
SubjectTerms | Equipment Design Equipment Failure Analysis Photometry - instrumentation Photometry - methods Photons Radiation Dosage Radiometry - instrumentation Radiometry - methods Reproducibility of Results Sensitivity and Specificity Spectrophotometry, Infrared - instrumentation Spectrophotometry, Infrared - methods Transducers |
Title | Counting near-infrared single-photons with 95% efficiency |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18542389 https://www.proquest.com/docview/71657377 |
Volume | 16 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swELc20KS9TBtjUBgsD-MJpXNiO3YeK5QJIUEfViTeIse-aEgorUqQ0B72t-_sfLRBRYK9RJFrO-n9Luc7352PkO9pyVIjJQ1BSBPySFH8pKgKobScUYvDwCUnX14l59f84kbcdDXc2-ySuhibPxvzSv4HVWxDXF2W7CuQ7SfFBrxHfPGKCOP1RRifdYUeKuTXEGdc-nByZ_7fQbj4Pa9dIIzfak3FSSxc9Mat_5gHztzpwp_VDI-LPh7DhejcNorlxOI_qfRpNu7B6fMHJ3qJ3HPR_3LVsNcv7aJ05oMdBZ9iR9maEESTD-3KdiGEDW2d5EzWOESsiUFcF-ON8pklHIk6zcaR8wF13YbHYD9ZnvqgQe97S3g-zfLIxeK50W_Jdoz2gStdcfk3691HXDZVdbqXbjMecPSP9WcPdZFnDAyvaMw-kg-thRBMGrg_kTdQ7ZB3PlLX3H8maQd6MAA9GIIeONADBD1YQb5LZj-z2dl52Na_CA2LZR0qYRUkiZbGaYGKgaZFXKKGbEohJBRxajRTllsbgSk4yMTGTBhDtSwl3n4hW9W8gn2XmK9KW8RcgVG8LGgKEFEGaM4WWqGEHpHTjhC5ac-GdyVK7vJNRB-Rk773ojkT5Zl-3zqa5ii0nCdKVzB_uM_RSBeSSTkiew2pV_MogQq-Sg9e-IxD8n7Fwl_JVr18gCNUE-vi2G-vHHvG-AfAA2NZ |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Counting+near-infrared+single-photons+with+95%25+efficiency&rft.jtitle=Optics+express&rft.au=Lita%2C+Adriana+E.&rft.au=Miller%2C+Aaron+J.&rft.au=Nam%2C+Sae+Woo&rft.date=2008-03-03&rft.issn=1094-4087&rft.eissn=1094-4087&rft.volume=16&rft.issue=5&rft.spage=3032&rft_id=info:doi/10.1364%2FOE.16.003032&rft.externalDBID=n%2Fa&rft.externalDocID=10_1364_OE_16_003032 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1094-4087&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1094-4087&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1094-4087&client=summon |