NK Cell–Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19

NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell–cell interactions in modula...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 212; no. 11; pp. 1693 - 1705
Main Authors Lee, Madeline J, de los Rios Kobara, Izumi, Barnard, Trisha R, Vales Torres, Xariana, Tobin, Nicole H, Ferbas, Kathie G, Rimoin, Anne W, Yang, Otto O, Aldrovandi, Grace M, Wilk, Aaron J, Fulcher, Jennifer A, Blish, Catherine A
Format Journal Article
LanguageEnglish
Published United States AAI 01.06.2024
Subjects
Online AccessGet full text
ISSN0022-1767
1550-6606
1550-6606
DOI10.4049/jimmunol.2300731

Cover

Loading…
Abstract NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell–cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell–cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16− NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
AbstractList NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
scRNA-seq analysis predicts interactions between NK cells and monocytes in COVID-19. Monocytes from COVID-19 donors induce activation and proliferation in healthy NK cells. CD56 bright NK cells are activated by monocyte-derived soluble proinflammatory factors. NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell–cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell–cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19 + or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56 bright CD16 − NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell-cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell-cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16- NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have identified soluble factors, including type I IFN and TGF-β, that underlie this dysregulation. However, the role of cell–cell interactions in modulating NK cell function during COVID-19 remains unclear. To address this question, we combined cell–cell communication analysis on existing single-cell RNA sequencing data with in vitro primary cell coculture experiments to dissect the mechanisms underlying NK cell dysfunction in COVID-19. We found that NK cells are predicted to interact most strongly with monocytes and that this occurs via both soluble factors and direct interactions. To validate these findings, we performed in vitro cocultures in which NK cells from healthy human donors were incubated with monocytes from COVID-19+ or healthy donors. Coculture of healthy NK cells with monocytes from COVID-19 patients recapitulated aspects of the NK cell phenotype observed in severe COVID-19, including decreased expression of NKG2D, increased expression of activation markers, and increased proliferation. When these experiments were performed in a Transwell setting, we found that only CD56bright CD16− NK cells were activated in the presence of severe COVID-19 patient monocytes. O-link analysis of supernatants from Transwell cocultures revealed that cultures containing severe COVID-19 patient monocytes had significantly elevated levels of proinflammatory cytokines and chemokines, as well as TGF-β. Collectively, these results demonstrate that interactions between NK cells and monocytes in the peripheral blood of COVID-19 patients contribute to NK cell activation and dysfunction in severe COVID-19.
Author Yang, Otto O
Tobin, Nicole H
Aldrovandi, Grace M
Wilk, Aaron J
Ferbas, Kathie G
Blish, Catherine A
Lee, Madeline J
Vales Torres, Xariana
Fulcher, Jennifer A
Barnard, Trisha R
Rimoin, Anne W
de los Rios Kobara, Izumi
AuthorAffiliation Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
Chan Zuckerberg Biohub, San Francisco, CA
Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
AuthorAffiliation_xml – name: Department of Epidemiology, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA
– name: Stanford Immunology Program, Stanford University School of Medicine, Palo Alto, CA
– name: Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
– name: Division of Infectious Diseases, Department of Pediatrics, David Geffen School of Medicine at UCLA, Los Angeles, CA
– name: Department of Medicine, Stanford University School of Medicine, Palo Alto, CA
– name: Chan Zuckerberg Biohub, San Francisco, CA
– name: Stanford Medical Scientist Training Program, Stanford University School of Medicine, Palo Alto, CA
Author_xml – sequence: 1
  givenname: Madeline J
  orcidid: 0000-0001-5039-6806
  surname: Lee
  fullname: Lee, Madeline J
– sequence: 2
  givenname: Izumi
  orcidid: 0000-0002-6479-110X
  surname: de los Rios Kobara
  fullname: de los Rios Kobara, Izumi
– sequence: 3
  givenname: Trisha R
  orcidid: 0009-0000-3820-1375
  surname: Barnard
  fullname: Barnard, Trisha R
– sequence: 4
  givenname: Xariana
  surname: Vales Torres
  fullname: Vales Torres, Xariana
– sequence: 5
  givenname: Nicole H
  orcidid: 0000-0001-6904-6128
  surname: Tobin
  fullname: Tobin, Nicole H
– sequence: 6
  givenname: Kathie G
  orcidid: 0009-0005-8861-2240
  surname: Ferbas
  fullname: Ferbas, Kathie G
– sequence: 7
  givenname: Anne W
  surname: Rimoin
  fullname: Rimoin, Anne W
– sequence: 8
  givenname: Otto O
  orcidid: 0000-0003-1970-8992
  surname: Yang
  fullname: Yang, Otto O
– sequence: 9
  givenname: Grace M
  orcidid: 0000-0003-1604-9637
  surname: Aldrovandi
  fullname: Aldrovandi, Grace M
– sequence: 10
  givenname: Aaron J
  orcidid: 0000-0003-1430-5852
  surname: Wilk
  fullname: Wilk, Aaron J
– sequence: 11
  givenname: Jennifer A
  orcidid: 0000-0001-9895-8636
  surname: Fulcher
  fullname: Fulcher, Jennifer A
– sequence: 12
  givenname: Catherine A
  orcidid: 0000-0001-6946-7627
  surname: Blish
  fullname: Blish, Catherine A
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38578283$$D View this record in MEDLINE/PubMed
BookMark eNp1kTlPxDAQhS0EguXoqVBKmsD4iONUCC2nuAqO1nKcWTAkNsTZlbbjP_AP-SUEWBAgUU3h770Zv7dM5n3wSMg6hS0Boti-d00z9qHeYhwg53SODGiWQSolyHkyAGAspbnMl8hyjPcAIIGJRbLEVZYrpviAnJ2fJEOs69fnl7Pgg512mAzbEGPamfohufYVtrXDmMy4ZNd2bmI6F3zifHKJE2x7xcXN8V5Ki1WyMDJ1xLXZXCHXB_tXw6P09OLweLh7mlrO8i5VHIVVZZUphYxzZKwAzq2QIykyRbPcMkVLWRmmVMYrSxEKw0pRQkFNJSu-QnY-fR_HZYOVRd-1ptaPrWtMO9XBOP37xbs7fRsmmlIKDFjRO2zOHNrwNMbY6cZF23_QeAzjqDlwwQSXUvboxs9l31u-QuwB-ATse3Atjr4RCvq9J_3Vk5711EvkH4l13Ueq_bmu_l_4BrZXmYg
CitedBy_id crossref_primary_10_3390_app142311048
Cites_doi 10.3389/fimmu.2022.861251
10.2217/imt.11.102
10.1073/pnas.2102718118
10.1007/s00011-011-0350-5
10.1126/sciimmunol.abd6832
10.1093/eurheartj/ehy114
10.3390/cells10113182
10.1016/S1074-7613(03)00294-2
10.1371/journal.ppat.0020118
10.1189/jlb.0311171
10.5114/ceji.2014.42135
10.1016/j.molimm.2021.07.001
10.5483/BMBRep.2014.47.12.020
10.1128/IAI.68.11.6505-6508.2000
10.3389/fimmu.2020.01881
10.1186/s12977-016-0271-z
10.1016/j.molimm.2020.03.022
10.3389/fimmu.2023.1240275
10.1056/NEJMoa2007764
10.1016/S0952-7915(03)00107-9
10.3389/fimmu.2019.01016
10.4049/jimmunol.1402321
10.1016/j.celrep.2022.111892
10.1101/2023.06.13.544751
10.1158/2326-6066.CIR-14-0150
10.1084/jem.20210582
10.1111/boc.201800014
10.3390/ijms22136707
10.1016/0167-5699(90)90097-S
10.1038/sj.cr.7290318
10.1084/jem.188.12.2375
10.1016/S1471-4906(01)02060-9
10.1371/journal.ppat.1009448
10.1189/jlb.71.2.173
10.1111/j.1600-065X.2011.01064.x
10.1186/s12967-021-03085-w
10.1038/nature04606
10.1042/BSR20212403
10.1038/s41591-020-0944-y
10.1038/ncomms2484
10.1111/acel.13792
10.1038/s41590-023-01560-8
10.1038/s41467-021-22359-x
10.4049/jimmunol.1402301
10.1016/j.jim.2012.02.016
10.1007/s10585-021-10103-0
10.7554/eLife.30881
10.1186/s12865-022-00505-4
10.1016/j.chom.2020.04.009
10.1074/jbc.M001461200
10.1038/s42003-020-01161-3
10.1161/01.RES.0000266662.98355.66
10.1126/science.1199214
10.4049/jimmunol.1502469
10.1099/vir.0.80105-0
10.1038/s41467-021-27729-z
10.1038/s41591-020-0901-9
10.1007/s13205-021-02800-0
10.1111/j.1365-2567.2011.03409.x
10.3389/fimmu.2013.00194
10.1016/j.cytogfr.2014.11.003
10.3390/cancers12061553
10.3390/v14010046
10.1080/2162402X.2015.1052353
10.1080/15384101.2015.1121324
10.3389/fimmu.2022.883728
10.4049/jimmunol.1202542
10.1016/j.xcrm.2021.100208
10.1038/icb.2011.15
10.1182/bloodadvances.2020002650
10.1083/jcb.200109098
10.1038/s41423-020-00557-9
10.1038/s41586-021-04142-6
10.4049/jimmunol.156.1.322
10.1016/j.immuni.2021.09.002
10.1074/jbc.M115.652321
10.1016/j.coi.2016.11.003
10.3390/biomedicines9091159
10.1073/pnas.1007654108
10.1007/s00018-013-1270-z
10.1016/j.immuni.2022.01.017
10.1186/s12974-015-0474-6
10.1002/JLB.2A0520-321RR
10.1038/s41590-020-0778-2
10.1371/journal.pone.0218674
10.1371/journal.pone.0095192
10.1186/s12967-016-0843-7
10.1016/j.jaci.2021.07.022
10.1186/s13578-015-0051-9
10.1016/j.bbrc.2018.06.057
10.3390/ijms23042168
10.1038/cdd.2013.139
10.1016/j.cytogfr.2020.12.005
10.1172/JCI77440
10.3390/ijms21197076
10.1038/s41587-023-01782-z
10.3389/fimmu.2022.834862
10.1016/j.bbmt.2014.05.004
10.1126/sciimmunol.aam9628
10.1038/cddis.2017.506
10.1006/cimm.1998.1376
10.1084/jem.20151899
10.1038/s41467-021-21099-2
10.1046/j.1440-1711.1999.00837.x
10.2147/JIR.S277457
10.3389/fonc.2021.715173
10.1146/annurev.immunol.19.1.683
10.1002/eji.200939910
10.7554/eLife.74489
10.1007/s00430-019-00616-7
10.1007/s11010-015-2584-y
10.18632/oncotarget.16208
ContentType Journal Article
Copyright Copyright © 2024 by The American Association of Immunologists, Inc.
Copyright © 2024 The Authors.
Copyright © 2024 The Authors 2024
Copyright_xml – notice: Copyright © 2024 by The American Association of Immunologists, Inc.
– notice: Copyright © 2024 The Authors.
– notice: Copyright © 2024 The Authors 2024
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.4049/jimmunol.2300731
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 1705
ExternalDocumentID PMC11102029
38578283
10_4049_jimmunol_2300731
Genre Journal Article
GrantInformation_xml – fundername: Shurl and Kay Curci Foundation (SKCF)
– fundername: Steven and Alexandra Cohen Foundation (Steven & Alexandra Cohen Foundation)
– fundername: HHS | National Institutes of Health (NIH)
  grantid: T32GM007364
– fundername: HHS | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: 1F31AI172319-01
– fundername: AIDS Healthcare Foundation (AHF)
– fundername: NIAID NIH HHS
  grantid: U19 AI057229
– fundername: Chan Zuckerberg Biohub Investigator Award
– fundername: Stanford Pandemic Preparedness Hub
– fundername: Elizabeth R Koch Foundation (Elizabeth R Koch Foundation Inc.)
– fundername: NIAID NIH HHS
  grantid: F31 AI172319
– grantid: U19AI057229
– grantid: T32GM007364
– grantid: 1016687
– grantid: 1F31AI172319-01
– grantid: T32AI00729037
– grantid: OPP1113682
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KOP
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XSW
XTH
YHG
NPM
RHF
YIN
7X8
5PM
ID FETCH-LOGICAL-c327t-83e4c8bd588e233e229033c46f6458157c281b6da28853dc1e09a2b4b091ad6d3
ISSN 0022-1767
1550-6606
IngestDate Thu Aug 21 18:35:50 EDT 2025
Thu Sep 04 17:53:48 EDT 2025
Wed Feb 19 02:12:48 EST 2025
Thu Apr 24 22:52:45 EDT 2025
Tue Jul 01 03:49:10 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://creativecommons.org/licenses/by/4.0
Copyright © 2024 by The American Association of Immunologists, Inc.
This article is distributed under the terms of the CC BY 4.0 Unported license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-83e4c8bd588e233e229033c46f6458157c281b6da28853dc1e09a2b4b091ad6d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
M.J.L. and C.A.B. conceived the project and designed the experiments. M.J.L., I.D.L.R.K., T.R.B., and X.V.T performed the experiments. M.J.L. performed statistical analyses and generated figures. N.H.T., K.G.F., A.W.R., O.O.Y., G.M.A., and J.F. processed and stored patient samples used in this study. A.J.W and J.A.F. provided intellectual input. M.J.L. and C.A.B. wrote the manuscript. All authors reviewed and revised the manuscript.
ORCID 0000-0001-6946-7627
0000-0003-1430-5852
0000-0001-9895-8636
0000-0001-6904-6128
0000-0003-1970-8992
0000-0002-6479-110X
0009-0000-3820-1375
0009-0005-8861-2240
0000-0001-5039-6806
0000-0003-1604-9637
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC11102029
PMID 38578283
PQID 3034243666
PQPubID 23479
PageCount 13
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_11102029
proquest_miscellaneous_3034243666
pubmed_primary_38578283
crossref_primary_10_4049_jimmunol_2300731
crossref_citationtrail_10_4049_jimmunol_2300731
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-06-01
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2024
Publisher AAI
Publisher_xml – name: AAI
References Brownlie (2025020405495715200_r95) 2022; 13
Narni-Mancinelli (2025020405495715200_r42) 2017; 2
Ketelut-Carneiro (2025020405495715200_r90) 2015; 194
Linderman (2025020405495715200_r23) 2022; 13
Winkler (2025020405495715200_r13) 2020; 21
Loetscher (2025020405495715200_r94) 1996; 156
Mensching (2025020405495715200_r16) 2022; 13
Han (2025020405495715200_r52) 2021; 11
Li (2025020405495715200_r37) 2021; 9
Kouo (2025020405495715200_r40) 2015; 3
Westphal (2025020405495715200_r55) 2014; 21
Machado-Neto (2025020405495715200_r59) 2014; 47
Karakaslar (2025020405495715200_r66) 2023; 22
Lee (2025020405495715200_r6) 2023; 24
Maucourant (2025020405495715200_r5) 2020; 5
Kazazian (2025020405495715200_r71) 2020; 3
Cooper (2025020405495715200_r97) 2001; 22
Wang (2025020405495715200_r70) 2018
Nam (2025020405495715200_r31) 2017; 8
Wilk (2025020405495715200_r3) 2021; 218
Zamai (2025020405495715200_r51) 1998; 188
Capone (2025020405495715200_r44) 2021; 19
Wang (2025020405495715200_r101) 2000; 275
Bugide (2025020405495715200_r61) 2021; 118
Harrison (2025020405495715200_r41) 2021; 22
Wilk (2025020405495715200_r4) 2020; 26
Michel (2025020405495715200_r81) 2012; 3
Wang (2025020405495715200_r103) 2016; 13
Romo (2025020405495715200_r19) 2011; 90
Steinberg (2025020405495715200_r43) 2011; 244
Wilkinson (2025020405495715200_r79) 2000; 68
Beigel (2025020405495715200_r21) 2020; 383
Dixon (2025020405495715200_r65) 2021; 137
Hamann (2025020405495715200_r60) 2011; 133
Narumi (2025020405495715200_r93) 2015; 194
Yang (2025020405495715200_r30) 2021; 12
Zhengxiang (2025020405495715200_r53) 2021; 11
Kim (2025020405495715200_r100) 2011; 60
Kim (2025020405495715200_r88) 2018; 503
Osman (2025020405495715200_r2) 2020; 4
Parodi (2025020405495715200_r92) 2015; 4
Ljunggren (2025020405495715200_r86) 1990; 11
Koutsakos (2025020405495715200_r75) 2021; 2
Sabry (2025020405495715200_r74) 2019; 14
Malhotra (2025020405495715200_r82) 2011; 3
Zeller (2025020405495715200_r85) 2023; 14
Paradis (2025020405495715200_r102) 2018; 39
Huang (2025020405495715200_r68) 2019; 10
Trapani (2025020405495715200_r48) 2003; 15
Sanchez-Correa (2025020405495715200_r83) 2012; 90
Vargas (2025020405495715200_r36) 2020; 11
Clemente (2025020405495715200_r50) 2017; 8
Waring (2025020405495715200_r56) 1999; 77
Tang (2025020405495715200_r38) 2011; 332
Lee (2025020405495715200_r104) 2013; 4
Li (2025020405495715200_r111) 2022; 23
Guan (2025020405495715200_r33) 2021; 41
Moradi (2025020405495715200_r34) 2021; 12
Osińska (2025020405495715200_r49) 2014; 39
Hashemi (2025020405495715200_r106) 2020; 12
Wilk (2025020405495715200_r24) 2023; 42
Guérillon (2025020405495715200_r69) 2013; 70
Browaeys (2025020405495715200_r25) 2023
Bergantini (2025020405495715200_r108) 2021; 10
Sirén (2025020405495715200_r113) 2004; 85
Robertson (2025020405495715200_r96) 2002; 71
Coperchini (2025020405495715200_r105) 2021; 58
Bellora (2025020405495715200_r112) 2010; 107
Giamarellos-Bourboulis (2025020405495715200_r8) 2020; 27
Samson (2025020405495715200_r67) 2003; 19
Allan (2025020405495715200_r99) 2010; 40
Witkowski (2025020405495715200_r10) 2021; 600
Lepsenyi (2025020405495715200_r46) 2021; 38
Boudreau (2025020405495715200_r45) 2016; 196
Thompson (2025020405495715200_r84) 2017; 6
Liao (2025020405495715200_r14) 2020; 26
Newman (2025020405495715200_r20) 2006; 2
Assarsson (2025020405495715200_r22) 2014; 9
Gotthardt (2025020405495715200_r64) 2016; 7
Hessman (2025020405495715200_r39) 2020; 21
Antonopoulos (2025020405495715200_r89) 2015; 290
Shetty (2025020405495715200_r29) 2016; 411
Li (2025020405495715200_r32) 2002; 157
Fielding (2025020405495715200_r78) 2022; 11
Kunikata (2025020405495715200_r98) 1998; 189
Mirsaeidi (2025020405495715200_r54) 2016; 14
Leem (2025020405495715200_r1) 2021; 148
Bozzano (2025020405495715200_r9) 2021; 17
Krämer (2025020405495715200_r11) 2021; 54
Varchetta (2025020405495715200_r7) 2021; 18
Korbecki (2025020405495715200_r28) 2022; 23
Casado (2025020405495715200_r76) 2021; 14
Staniszewska (2025020405495715200_r26) 2007; 100
Feng (2025020405495715200_r91) 2019; 208
Zhang (2025020405495715200_r87) 2020; 122
Rölle (2025020405495715200_r114) 2014; 124
Quillay (2025020405495715200_r17) 2016; 13
Molla (2025020405495715200_r57) 2020; 13
Guan (2025020405495715200_r58) 2015; 5
Ni (2025020405495715200_r73) 2013; 4
Lam (2025020405495715200_r15) 2017; 44
Malengier-Devlies (2025020405495715200_r109) 2022; 13
Moore (2025020405495715200_r47) 2001; 19
Paolini (2025020405495715200_r72) 2015; 26
Shiow (2025020405495715200_r107) 2006; 440
Miller (2025020405495715200_r110) 2014; 20
Lee (2025020405495715200_r77) 2022; 41
Akman (2025020405495715200_r62) 2021; 109
Wang (2025020405495715200_r63) 2013; 190
Kang (2025020405495715200_r27) 2016; 15
Areström (2025020405495715200_r80) 2012; 379
Vijayakumar (2025020405495715200_r12) 2022; 55
Wu (2025020405495715200_r35) 2005; 15
Lenac Rovis (2025020405495715200_r18) 2016; 213
References_xml – volume: 13
  start-page: 861251
  year: 2022
  ident: 2025020405495715200_r109
  article-title: Severe COVID-19 patients display hyper-activated NK cells and NK cell-platelet aggregates
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.861251
– volume: 3
  start-page: 1143
  year: 2011
  ident: 2025020405495715200_r82
  article-title: NK cells: immune cross-talk and therapeutic implications
  publication-title: Immunotherapy
  doi: 10.2217/imt.11.102
– volume: 118
  start-page: e2102718118
  year: 2021
  ident: 2025020405495715200_r61
  article-title: EZH2 inhibits NK cell-mediated antitumor immunity by suppressing CXCL10 expression in an HDAC10-dependent manner
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.2102718118
– volume: 60
  start-page: 889
  year: 2011
  ident: 2025020405495715200_r100
  article-title: Potential involvement of CCL23 in atherosclerotic lesion formation/progression by the enhancement of chemotaxis, adhesion molecule expression, and MMP-2 release from monocytes
  publication-title: Inflamm. Res.
  doi: 10.1007/s00011-011-0350-5
– volume: 5
  start-page: eabd6832
  year: 2020
  ident: 2025020405495715200_r5
  article-title: Natural killer cell immunotypes related to COVID-19 disease severity
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.abd6832
– volume: 39
  start-page: 1832
  year: 2018
  ident: 2025020405495715200_r102
  article-title: CXCL1-CXCR2 lead monocytes to the heart of the matter
  publication-title: Eur. Heart. J.
  doi: 10.1093/eurheartj/ehy114
– volume: 10
  start-page: 3182
  year: 2021
  ident: 2025020405495715200_r108
  article-title: NK and T cell immunological signatures in hospitalized patients with COVID-19
  publication-title: Cells
  doi: 10.3390/cells10113182
– volume: 19
  start-page: 701
  year: 2003
  ident: 2025020405495715200_r67
  article-title: GATA-3 promotes maturation, IFN-gamma production, and liver-specific homing of NK cells
  publication-title: Immunity
  doi: 10.1016/S1074-7613(03)00294-2
– volume: 2
  start-page: e118
  year: 2006
  ident: 2025020405495715200_r20
  article-title: Cross-talk with myeloid accessory cells regulates human natural killer cell interferon-gamma responses to malaria
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0020118
– volume: 90
  start-page: 717
  year: 2011
  ident: 2025020405495715200_r19
  article-title: Natural killer cell-mediated response to human cytomegalovirus-infected macrophages is modulated by their functional polarization
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0311171
– volume: 39
  start-page: 109
  year: 2014
  ident: 2025020405495715200_r49
  article-title: Perforin: an important player in immune response
  publication-title: Cent. Eur. J. Immunol.
  doi: 10.5114/ceji.2014.42135
– volume: 137
  start-page: 94
  year: 2021
  ident: 2025020405495715200_r65
  article-title: MyD88 is an essential regulator of NK cell-mediated clearance of MCMV infection
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2021.07.001
– volume: 47
  start-page: 660
  year: 2014
  ident: 2025020405495715200_r59
  article-title: Stathmin 1 in normal and malignant hematopoiesis
  publication-title: BMB Rep.
  doi: 10.5483/BMBRep.2014.47.12.020
– volume: 68
  start-page: 6505
  year: 2000
  ident: 2025020405495715200_r79
  article-title: Latency-associated peptide of transforming growth factor β enhances mycobacteriocidal immunity in the lung during Mycobacterium bovis BCG infection in C57BL/6 mice
  publication-title: Infect. Immun.
  doi: 10.1128/IAI.68.11.6505-6508.2000
– volume: 11
  start-page: 1881
  year: 2020
  ident: 2025020405495715200_r36
  article-title: Single nucleotide polymorphism in KIR2DL1 is associated with HLA-C expression in global populations
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01881
– volume: 13
  start-page: 39
  year: 2016
  ident: 2025020405495715200_r17
  article-title: NK cells control HIV-1 infection of macrophages through soluble factors and cellular contacts in the human decidua
  publication-title: Retrovirology
  doi: 10.1186/s12977-016-0271-z
– volume: 122
  start-page: 38
  year: 2020
  ident: 2025020405495715200_r87
  article-title: S100A12 promotes inflammation and cell apoptosis in sepsis-induced ARDS via activation of NLRP3 inflammasome signaling
  publication-title: Mol. Immunol.
  doi: 10.1016/j.molimm.2020.03.022
– volume: 14
  start-page: 1240275
  year: 2023
  ident: 2025020405495715200_r85
  article-title: Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2023.1240275
– volume: 383
  start-page: 1813
  year: 2020
  ident: 2025020405495715200_r21
  article-title: Remdesivir for the treatment of COVID-19—final report
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2007764
– volume: 15
  start-page: 533
  year: 2003
  ident: 2025020405495715200_r48
  article-title: Granzyme B: pro-apoptotic, antiviral and antitumor functions
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/S0952-7915(03)00107-9
– volume: 10
  start-page: 1016
  year: 2019
  ident: 2025020405495715200_r68
  article-title: Hematopoietic-specific deletion of Foxo1 promotes NK cell specification and proliferation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01016
– volume: 194
  start-page: 4507
  year: 2015
  ident: 2025020405495715200_r90
  article-title: IL-18 triggered by the Nlrp3 inflammasome induces host innate resistance in a pulmonary model of fungal infection
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402321
– volume: 41
  start-page: 111892
  year: 2022
  ident: 2025020405495715200_r77
  article-title: SARS-CoV-2 escapes direct NK cell killing through Nsp1-mediated downregulation of ligands for NKG2D
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.111892
– volume-title: bioRxiv
  year: 2023
  ident: 2025020405495715200_r25
  article-title: MultiNicheNet: a flexible framework for differential cell-cell communication analysis from multi-sample multi-condition single-cell transcriptomics data
  doi: 10.1101/2023.06.13.544751
– volume: 3
  start-page: 412
  year: 2015
  ident: 2025020405495715200_r40
  article-title: Galectin-3 shapes antitumor immune responses by suppressing CD8+ T cells via LAG-3 and inhibiting expansion of plasmacytoid dendritic cells
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0150
– volume: 218
  start-page: e20210582
  year: 2021
  ident: 2025020405495715200_r3
  article-title: Multi-omic profiling reveals widespread dysregulation of innate immunity and hematopoiesis in COVID-19
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20210582
– year: 2018
  ident: 2025020405495715200_r70
  article-title: The role of Pdcd4 in tumour suppression and protein translation
  publication-title: Biol. Cell
  doi: 10.1111/boc.201800014
– volume: 22
  start-page: 6707
  year: 2021
  ident: 2025020405495715200_r41
  article-title: Regulation of ADAM10 by the TspanC8 family of tetraspanins and their therapeutic potential
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms22136707
– volume: 11
  start-page: 237
  year: 1990
  ident: 2025020405495715200_r86
  article-title: In search of the “missing self”: MHC molecules and NK cell recognition
  publication-title: Immunol. Today
  doi: 10.1016/0167-5699(90)90097-S
– volume: 15
  start-page: 483
  year: 2005
  ident: 2025020405495715200_r35
  article-title: The interaction of versican with its binding partners
  publication-title: Cell Res.
  doi: 10.1038/sj.cr.7290318
– volume: 188
  start-page: 2375
  year: 1998
  ident: 2025020405495715200_r51
  article-title: Natural killer (NK) cell-mediated cytotoxicity: differential use of TRAIL and Fas ligand by immature and mature primary human NK cells
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.188.12.2375
– volume: 22
  start-page: 633
  year: 2001
  ident: 2025020405495715200_r97
  article-title: The biology of human natural killer-cell subsets
  publication-title: Trends Immunol.
  doi: 10.1016/S1471-4906(01)02060-9
– volume: 17
  start-page: e1009448
  year: 2021
  ident: 2025020405495715200_r9
  article-title: Extensive activation, tissue trafficking, turnover and functional impairment of NK cells in COVID-19 patients at disease onset associates with subsequent disease severity
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1009448
– volume: 71
  start-page: 173
  year: 2002
  ident: 2025020405495715200_r96
  article-title: Role of chemokines in the biology of natural killer cells
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.71.2.173
– volume: 244
  start-page: 169
  year: 2011
  ident: 2025020405495715200_r43
  article-title: The signaling networks of the herpesvirus entry mediator (TNFRSF14) in immune regulation
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2011.01064.x
– volume: 19
  start-page: 405
  year: 2021
  ident: 2025020405495715200_r44
  article-title: Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-021-03085-w
– volume: 440
  start-page: 540
  year: 2006
  ident: 2025020405495715200_r107
  article-title: CD69 acts downstream of interferon-alpha/beta to inhibit S1P1 and lymphocyte egress from lymphoid organs
  publication-title: Nature
  doi: 10.1038/nature04606
– volume: 41
  start-page: BSR20212403
  year: 2021
  ident: 2025020405495715200_r33
  article-title: Clinical significance and biological functions of chemokine CXCL3 in head and neck squamous cell carcinoma
  publication-title: Biosci. Rep.
  doi: 10.1042/BSR20212403
– volume: 26
  start-page: 1070
  year: 2020
  ident: 2025020405495715200_r4
  article-title: A single-cell atlas of the peripheral immune response in patients with severe COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0944-y
– volume: 4
  start-page: 1479
  year: 2013
  ident: 2025020405495715200_r73
  article-title: IGF-1 promotes the development and cytotoxic activity of human NK cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2484
– volume: 22
  start-page: e13792
  year: 2023
  ident: 2025020405495715200_r66
  article-title: Transcriptional activation of Jun and Fos members of the AP-1 complex is a conserved signature of immune aging that contributes to inflammaging
  publication-title: Aging Cell
  doi: 10.1111/acel.13792
– volume: 24
  start-page: 1628
  year: 2023
  ident: 2025020405495715200_r6
  article-title: Defining the role of natural killer cells in COVID-19
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-023-01560-8
– volume: 12
  start-page: 2173
  year: 2021
  ident: 2025020405495715200_r34
  article-title: Structural plasticity of KIR2DL2 and KIR2DL3 enables altered docking geometries atop HLA-C
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22359-x
– volume: 194
  start-page: 5539
  year: 2015
  ident: 2025020405495715200_r93
  article-title: Proinflammatory proteins S100A8/S100A9 activate NK cells via interaction with RAGE
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1402301
– volume: 379
  start-page: 23
  year: 2012
  ident: 2025020405495715200_r80
  article-title: Measurement of human latent transforming growth factor-β1 using a latency associated protein-reactive ELISA
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2012.02.016
– volume: 38
  start-page: 401
  year: 2021
  ident: 2025020405495715200_r46
  article-title: CXCL2-CXCR2 axis mediates αV integrin-dependent peritoneal metastasis of colon cancer cells
  publication-title: Clin. Exp. Metastasis
  doi: 10.1007/s10585-021-10103-0
– volume: 6
  start-page: e30881
  year: 2017
  ident: 2025020405495715200_r84
  article-title: Endothelial cells express NKG2D ligands and desensitize antitumor NK responses
  publication-title: Elife
  doi: 10.7554/eLife.30881
– volume: 23
  start-page: 30
  year: 2022
  ident: 2025020405495715200_r111
  article-title: Comprehensive evaluation of the effects of long-term cryopreservation on peripheral blood mononuclear cells using flow cytometry
  publication-title: BMC Immunol.
  doi: 10.1186/s12865-022-00505-4
– volume: 27
  start-page: 992
  year: 2020
  ident: 2025020405495715200_r8
  article-title: Complex immune dysregulation in COVID-19 patients with severe respiratory Failure
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.009
– volume: 275
  start-page: 22313
  year: 2000
  ident: 2025020405495715200_r101
  article-title: Identification of a novel chemokine (CCL28), which binds CCR10 (GPR2)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M001461200
– volume: 3
  start-page: 448
  year: 2020
  ident: 2025020405495715200_r71
  article-title: FAM46C/TENT5C functions as a tumor suppressor through inhibition of Plk4 activity
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-020-01161-3
– volume: 100
  start-page: 1308
  year: 2007
  ident: 2025020405495715200_r26
  article-title: Interaction of alpha9beta1 integrin with thrombospondin-1 promotes angiogenesis
  publication-title: Circ. Res.
  doi: 10.1161/01.RES.0000266662.98355.66
– volume: 332
  start-page: 478
  year: 2011
  ident: 2025020405495715200_r38
  article-title: The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice
  publication-title: Science
  doi: 10.1126/science.1199214
– volume: 196
  start-page: 3398
  year: 2016
  ident: 2025020405495715200_r45
  article-title: KIR3DL1 and HLA-B density and binding calibrate NK education and response to HIV
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502469
– volume: 85
  start-page: 2357
  year: 2004
  ident: 2025020405495715200_r113
  article-title: Cytokine and contact-dependent activation of natural killer cells by influenza A or Sendai virus-infected macrophages
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.80105-0
– volume: 13
  start-page: 192
  year: 2022
  ident: 2025020405495715200_r23
  article-title: Zero-preserving imputation of single-cell RNA-seq data
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-27729-z
– volume: 26
  start-page: 842
  year: 2020
  ident: 2025020405495715200_r14
  article-title: Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0901-9
– volume: 11
  start-page: 262
  year: 2021
  ident: 2025020405495715200_r53
  article-title: KNTC1 knockdown suppresses cell proliferation of colon cancer
  publication-title: 3 Biotech
  doi: 10.1007/s13205-021-02800-0
– volume: 133
  start-page: 62
  year: 2011
  ident: 2025020405495715200_r60
  article-title: Analyses of phenotypic and functional characteristics of CX3CR1-expressing natural killer cells
  publication-title: Immunology
  doi: 10.1111/j.1365-2567.2011.03409.x
– volume: 4
  start-page: 194
  year: 2013
  ident: 2025020405495715200_r104
  article-title: CC chemokine ligand 20 and its cognate receptor CCR6 in mucosal T cell immunology and inflammatory bowel disease: odd couple or axis of evil?
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2013.00194
– volume: 26
  start-page: 113
  year: 2015
  ident: 2025020405495715200_r72
  article-title: NK cells and interferons
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2014.11.003
– volume: 12
  start-page: 1553
  year: 2020
  ident: 2025020405495715200_r106
  article-title: Tissue-resident NK cells: development, maturation, and clinical relevance
  publication-title: Cancers (Basel)
  doi: 10.3390/cancers12061553
– volume: 14
  start-page: 46
  year: 2021
  ident: 2025020405495715200_r76
  article-title: Expansion of CD56dimCD16neg NK cell subset and increased inhibitory KIRs in hospitalized COVID-19 patients
  publication-title: Viruses
  doi: 10.3390/v14010046
– volume: 4
  start-page: e1052353
  year: 2015
  ident: 2025020405495715200_r92
  article-title: Natural killer (NK)/melanoma cell interaction induces NK-mediated release of chemotactic high mobility group box-1 (HMGB1) capable of amplifying NK cell recruitment
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1052353
– volume: 15
  start-page: 25
  year: 2016
  ident: 2025020405495715200_r27
  article-title: Inhibitory leukocyte immunoglobulin-like receptors: immune checkpoint proteins and tumor sustaining factors
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2015.1121324
– volume: 13
  start-page: 883728
  year: 2022
  ident: 2025020405495715200_r16
  article-title: NK cells, monocytes and macrophages in HIV-1 control: impact of innate immune responses
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.883728
– volume: 190
  start-page: 1319
  year: 2013
  ident: 2025020405495715200_r63
  article-title: Identification of SERPINB1 as a physiological inhibitor of human granzyme H
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202542
– volume: 2
  start-page: 100208
  year: 2021
  ident: 2025020405495715200_r75
  article-title: Integrated immune dynamics define correlates of COVID-19 severity and antibody responses
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2021.100208
– volume: 90
  start-page: 109
  year: 2012
  ident: 2025020405495715200_r83
  article-title: Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients
  publication-title: Immunol. Cell. Biol.
  doi: 10.1038/icb.2011.15
– volume: 7
  start-page: 694
  year: 2016
  ident: 2025020405495715200_r64
  article-title: STATs in NK-cells: the good, the bad, and the ugly
  publication-title: Front. Immunol.
– volume: 4
  start-page: 5035
  year: 2020
  ident: 2025020405495715200_r2
  article-title: Impaired natural killer cell counts and cytolytic activity in patients with severe COVID-19
  publication-title: Blood Adv.
  doi: 10.1182/bloodadvances.2020002650
– volume: 157
  start-page: 509
  year: 2002
  ident: 2025020405495715200_r32
  article-title: Interactions of thrombospondins with alpha4beta1 integrin and CD47 differentially modulate T cell behavior
  publication-title: J. Cell. Biol.
  doi: 10.1083/jcb.200109098
– volume: 18
  start-page: 604
  year: 2021
  ident: 2025020405495715200_r7
  article-title: Unique immunological profile in patients with COVID-19
  publication-title: Cell. Mol. Immunol.
  doi: 10.1038/s41423-020-00557-9
– volume: 600
  start-page: 295
  year: 2021
  ident: 2025020405495715200_r10
  article-title: Untimely TGFβ responses in COVID-19 limit antiviral functions of NK cells
  publication-title: Nature
  doi: 10.1038/s41586-021-04142-6
– volume: 156
  start-page: 322
  year: 1996
  ident: 2025020405495715200_r94
  article-title: Activation of NK cells by CC chemokines. Chemotaxis, Ca2+ mobilization, and enzyme release
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.156.1.322
– volume: 54
  start-page: 2650
  year: 2021
  ident: 2025020405495715200_r11
  article-title: Early IFN-α signatures and persistent dysfunction are distinguishing features of NK cells in severe COVID-19
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.09.002
– volume: 290
  start-page: 20167
  year: 2015
  ident: 2025020405495715200_r89
  article-title: Caspase-8 as an effector and regulator of NLRP3 inflammasome signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.652321
– volume: 44
  start-page: 43
  year: 2017
  ident: 2025020405495715200_r15
  article-title: NK cells in host responses to viral infections
  publication-title: Curr. Opin. Immunol.
  doi: 10.1016/j.coi.2016.11.003
– volume: 9
  start-page: 1159
  year: 2021
  ident: 2025020405495715200_r37
  article-title: Galectins in cancer and the microenvironment: functional roles, therapeutic developments, and perspectives
  publication-title: Biomedicines
  doi: 10.3390/biomedicines9091159
– volume: 107
  start-page: 21659
  year: 2010
  ident: 2025020405495715200_r112
  article-title: The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1007654108
– volume: 70
  start-page: 3753
  year: 2013
  ident: 2025020405495715200_r69
  article-title: ING1 and ING2: multifaceted tumor suppressor genes
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-013-1270-z
– volume: 55
  start-page: 542
  year: 2022
  ident: 2025020405495715200_r12
  article-title: Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease
  publication-title: Immunity
  doi: 10.1016/j.immuni.2022.01.017
– volume: 13
  start-page: 6
  year: 2016
  ident: 2025020405495715200_r103
  article-title: CXCL5 signaling is a shared pathway of neuroinflammation and blood-brain barrier injury contributing to white matter injury in the immature brain
  publication-title: J. Neuroinflammation.
  doi: 10.1186/s12974-015-0474-6
– volume: 109
  start-page: 901
  year: 2021
  ident: 2025020405495715200_r62
  article-title: PRDM1 decreases sensitivity of human NK cells to IL2-induced cell expansion by directly repressing CD25 (IL2RA)
  publication-title: J. Leukoc. Biol.
  doi: 10.1002/JLB.2A0520-321RR
– volume: 21
  start-page: 1327
  year: 2020
  ident: 2025020405495715200_r13
  article-title: SARS-CoV-2 infection of human ACE2-transgenic mice causes severe lung inflammation and impaired function
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0778-2
– volume: 14
  start-page: e0218674
  year: 2019
  ident: 2025020405495715200_r74
  article-title: Tumor- and cytokine-primed human natural killer cells exhibit distinct phenotypic and transcriptional signatures
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0218674
– volume: 9
  start-page: e95192
  year: 2014
  ident: 2025020405495715200_r22
  article-title: Homogenous 96-plex PEA immunoassay exhibiting high sensitivity, specificity, and excellent scalability
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0095192
– volume: 14
  start-page: 89
  year: 2016
  ident: 2025020405495715200_r54
  article-title: Annexins family: insights into their functions and potential role in pathogenesis of sarcoidosis
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-0843-7
– volume: 148
  start-page: 996
  year: 2021
  ident: 2025020405495715200_r1
  article-title: Abnormality in the NK-cell population is prolonged in severe COVID-19 patients
  publication-title: J. Allergy Clin. Immunol.
  doi: 10.1016/j.jaci.2021.07.022
– volume: 5
  start-page: 60
  year: 2015
  ident: 2025020405495715200_r58
  article-title: The function, regulation and therapeutic implications of the tumor suppressor protein, PML
  publication-title: Cell. Biosci.
  doi: 10.1186/s13578-015-0051-9
– volume: 503
  start-page: 657
  year: 2018
  ident: 2025020405495715200_r88
  article-title: Inflammatory mediators ATP and S100A12 activate the NLRP3 inflammasome to induce MUC5AC production in airway epithelial cells
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2018.06.057
– volume: 23
  start-page: 2168
  year: 2022
  ident: 2025020405495715200_r28
  article-title: CXCR2 receptor: regulation of expression, signal transduction, and involvement in cancer
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms23042168
– volume: 21
  start-page: 196
  year: 2014
  ident: 2025020405495715200_r55
  article-title: Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2013.139
– volume: 58
  start-page: 82
  year: 2021
  ident: 2025020405495715200_r105
  article-title: The cytokine storm in COVID-19: further advances in our understanding the role of specific chemokines involved
  publication-title: Cytokine Growth Factor Rev.
  doi: 10.1016/j.cytogfr.2020.12.005
– volume: 124
  start-page: 5305
  year: 2014
  ident: 2025020405495715200_r114
  article-title: IL-12-producing monocytes and HLA-E control HCMV-driven NKG2C+ NK cell expansion
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI77440
– volume: 21
  start-page: 7076
  year: 2020
  ident: 2025020405495715200_r39
  article-title: YB-1 Interferes with TNFα-TNFR binding and modulates progranulin-mediated inhibition of TNFα signaling
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms21197076
– volume: 42
  start-page: 470
  year: 2023
  ident: 2025020405495715200_r24
  article-title: Comparative analysis of cell-cell communication at single-cell resolution
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-023-01782-z
– volume: 13
  start-page: 834862
  year: 2022
  ident: 2025020405495715200_r95
  article-title: Comparison of lung-homing receptor expression and activation profiles on NK cell and T cell subsets in COVID-19 and influenza
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2022.834862
– volume: 20
  start-page: 1252
  year: 2014
  ident: 2025020405495715200_r110
  article-title: Expansion and homing of adoptively transferred human natural killer cells in immunodeficient mice varies with product preparation and in vivo cytokine administration: implications for clinical therapy
  publication-title: Biol. Blood Marrow Transplant.
  doi: 10.1016/j.bbmt.2014.05.004
– volume: 2
  start-page: eaam9628
  year: 2017
  ident: 2025020405495715200_r42
  article-title: Complement factor P is a ligand for the natural killer cell-activating receptor NKp46
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aam9628
– volume: 3
  start-page: 403
  year: 2012
  ident: 2025020405495715200_r81
  article-title: Consequences of the crosstalk between monocytes/macrophages and natural killer cells
  publication-title: Front. Immunol.
– volume: 8
  start-page: e3176
  year: 2017
  ident: 2025020405495715200_r50
  article-title: Proteomic and functional analysis identifies galectin-1 as a novel regulatory component of the cytotoxic granule machinery
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.506
– volume: 189
  start-page: 135
  year: 1998
  ident: 2025020405495715200_r98
  article-title: Constitutive and induced IL-18 receptor expression by various peripheral blood cell subsets as determined by anti-hIL-18R monoclonal antibody
  publication-title: Cell. Immunol.
  doi: 10.1006/cimm.1998.1376
– volume: 213
  start-page: 1835
  year: 2016
  ident: 2025020405495715200_r18
  article-title: Inflammatory monocytes and NK cells play a crucial role in DNAM-1-dependent control of cytomegalovirus infection
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151899
– volume: 12
  start-page: 832
  year: 2021
  ident: 2025020405495715200_r30
  article-title: Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21099-2
– volume: 77
  start-page: 312
  year: 1999
  ident: 2025020405495715200_r56
  article-title: Cell death induced by the Fas/Fas ligand pathway and its role in pathology
  publication-title: Immunol. Cell. Biol.
  doi: 10.1046/j.1440-1711.1999.00837.x
– volume: 13
  start-page: 749
  year: 2020
  ident: 2025020405495715200_r57
  article-title: Role of caspase-1 in the pathogenesis of inflammatory-associated chronic noncommunicable diseases
  publication-title: J. Inflamm. Res.
  doi: 10.2147/JIR.S277457
– volume: 11
  start-page: 715173
  year: 2021
  ident: 2025020405495715200_r52
  article-title: Integrative analysis of minichromosome maintenance proteins and their prognostic significance in melanoma
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2021.715173
– volume: 19
  start-page: 683
  year: 2001
  ident: 2025020405495715200_r47
  article-title: Interleukin-10 and the interleukin-10 receptor
  publication-title: Annu. Rev. Immunol.
  doi: 10.1146/annurev.immunol.19.1.683
– volume: 40
  start-page: 2289
  year: 2010
  ident: 2025020405495715200_r99
  article-title: TGF-β affects development and differentiation of human natural killer cell subsets
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939910
– volume: 11
  start-page: e74489
  year: 2022
  ident: 2025020405495715200_r78
  article-title: SARS-CoV-2 host-shutoff impacts innate NK cell functions, but antibody-dependent NK activity is strongly activated through non-spike antibodies
  publication-title: Elife
  doi: 10.7554/eLife.74489
– volume: 208
  start-page: 555
  year: 2019
  ident: 2025020405495715200_r91
  article-title: Caspase-8-dependent control of NK- and T cell responses during cytomegalovirus infection
  publication-title: Med. Microbiol. Immunol.
  doi: 10.1007/s00430-019-00616-7
– volume: 411
  start-page: 221
  year: 2016
  ident: 2025020405495715200_r29
  article-title: Cell surface interaction of annexin A2 and galectin-3 modulates epidermal growth factor receptor signaling in Her-2 negative breast cancer cells
  publication-title: Mol. Cell. Biochem.
  doi: 10.1007/s11010-015-2584-y
– volume: 8
  start-page: 35804
  year: 2017
  ident: 2025020405495715200_r31
  article-title: Binding of galectin-1 to integrin β1 potentiates drug resistance by promoting survivin expression in breast cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16208
SSID ssj0006024
Score 2.4683306
Snippet NK cells in the peripheral blood of severe COVID-19 patients exhibit a unique profile characterized by activation and dysfunction. Previous studies have...
scRNA-seq analysis predicts interactions between NK cells and monocytes in COVID-19. Monocytes from COVID-19 donors induce activation and proliferation in...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1693
SubjectTerms Clinical and Human Immunology
Title NK Cell–Monocyte Cross-talk Underlies NK Cell Activation in Severe COVID-19
URI https://www.ncbi.nlm.nih.gov/pubmed/38578283
https://www.proquest.com/docview/3034243666
https://pubmed.ncbi.nlm.nih.gov/PMC11102029
Volume 212
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fb9MwELfKENNeEAwY5Z-CBA8oSpfYiZM-TuXPWNWCRjf1LYodRxS2dKLtw_bEd-Cb8JH4JNzFdpKOCcFeoqo5x4rvl7uzff4dIS9yzvN-yHIvi31cuqHSE4nqe1wVzBdCxHGBO7qjMd8_Cg-m0bTT-dnKWlotRU9eXHmu5Dpahf9Ar3hK9j80Wz8U_oDfoF-4gobh-k86Hg_dAe4bmIQFBh_oXJ4vlTtA3-dBXP3VrQobQaAJ9kxLu3vSljTDxY5PCl4bWnw4fv_aM3blSwOhVsA6w6MkmrLpZbUx5reWEUxCzwhZJzFwPejZO7lyT-YL93AGl-EcNzcqu3SxOp01y6jQh86xn2DF-8w9rJsfgwdbuJOqiAgKTGFyn-mS33a1goZNVpXGl6G4bk4SBLEux9FTxgBHMJ3lPm9baBrQNhSDlsFFLpmW80ZyoKscQwgTIXQMZqQw_R1sW9AWBdWenVZAYQly_CescZF14uLH0QCcA4TYtH-D3KRxXKUGvJs2aUXcp6FlqMd301vj2P_u5d63yKbtaj0q-mOqczljtxUCTe6Q2wYKzp4G4l3SUeU2uaWrmZ5vk82RydO4R0bjoYNY-_X9h8Wk02DSqTHpGDmnwaQzKx2NScdi8j45evtmMtj3TOEOTzIaL72EqVAmIo-SRFHGFNYUYEyGvOBhlARRLAGlgucZTSBazGWg_H5GRSggeM1ynrMHZKOcl-ohcbiK-sipl1FVQBwFQlEsilDKKCgCURRdsmsHLpWG1R6Lq5ykMLvFUU_tqKdm1LvkVd3iTDO6_EX2udVFCmYX99KyUs1Xi5QhdWbIYPLfJTtaN_XTrFK7JFnTWi2AlO7rd8rZ54ra3YLr0fWbPiZbzYf3hGwsv63UUwicl-JZhdTf7TnACQ
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=NK+Cell%E2%80%93Monocyte+Cross-talk+Underlies+NK+Cell+Activation+in+Severe+COVID-19&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Lee%2C+Madeline+J.&rft.au=de+los+Rios+Kobara%2C+Izumi&rft.au=Barnard%2C+Trisha+R.&rft.au=Vales+Torres%2C+Xariana&rft.date=2024-06-01&rft.pub=AAI&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=212&rft.issue=11&rft.spage=1693&rft.epage=1705&rft_id=info:doi/10.4049%2Fjimmunol.2300731&rft_id=info%3Apmid%2F38578283&rft.externalDocID=PMC11102029
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon