Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films

Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experime...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 112; no. 4
Main Author Zang, Zhigang
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 22.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3∼4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%.
AbstractList Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3∼4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%.
Author Zang, Zhigang
Author_xml – sequence: 1
  givenname: Zhigang
  surname: Zang
  fullname: Zang, Zhigang
  email: zangzg@cqu.edu.cn
  organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China
BookMark eNp9kMtKAzEUQIMoWKsL_yDgSmFsbuI006UUXyB0oxs3QyZzUyMzSU1SpX690VYEUVdJbs65rz2y7bxDQg6BnQIbixGclgwkY3yLDIBJWQiAapsMGGOiGE9K2CV7MT7lZ8mFGJD5hTFWW3R6RdE9KqexR5eoN_TBzUbTJZ_R6DsVqMaui_TVpkf6mq_Uh2wlbKlyLe2tDr7HhIHOg7KORvuWvz51Y7s-7pMdo7qIB5tzSO4vL-6m18Xt7Opmen5baMFlKmTTVLxspTpTbcUb2YxBTComc5RhaSpEzoCPhUIJLW-0hoajYaqcqJJnSgzJ0TrvIvjnJcZUP_llcLlkzQHKCniV9SE5XlO56xgDmnoRbK_CqgZWf-yxhnqzx8yOfrDaJpWsdylP2v1qnKyN-EX-m_5P-MWHb7BetEa8AyaAkY0
CODEN APPLAB
CitedBy_id crossref_primary_10_1007_s00339_024_08209_9
crossref_primary_10_4028_p_j63xro
crossref_primary_10_1016_j_ijhydene_2021_11_021
crossref_primary_10_1016_j_tsf_2019_137711
crossref_primary_10_1016_j_mtsust_2022_100244
crossref_primary_10_3390_coatings11020116
crossref_primary_10_1002_adpr_202300154
crossref_primary_10_1016_j_jallcom_2019_152969
crossref_primary_10_1021_acs_jpcc_9b00408
crossref_primary_10_1007_s11082_022_04237_y
crossref_primary_10_1364_AO_59_000107
crossref_primary_10_1007_s13369_023_08061_8
crossref_primary_10_1149_2_0261912jss
crossref_primary_10_1016_j_matlet_2018_04_106
crossref_primary_10_1016_j_materresbull_2018_06_007
crossref_primary_10_1016_j_solmat_2022_112002
crossref_primary_10_1016_j_matlet_2018_06_076
crossref_primary_10_1049_mnl_2020_0231
crossref_primary_10_1016_j_jallcom_2021_161848
crossref_primary_10_1109_TNANO_2023_3294131
crossref_primary_10_1088_2053_1591_ab11b1
crossref_primary_10_1016_j_cej_2019_123746
crossref_primary_10_1016_j_jallcom_2018_10_020
crossref_primary_10_1016_j_jallcom_2022_165145
crossref_primary_10_1016_j_physb_2018_10_031
crossref_primary_10_1007_s11356_023_28169_6
crossref_primary_10_1016_j_tsf_2018_08_041
crossref_primary_10_1039_D4MH01000K
crossref_primary_10_1039_D0RA08670C
crossref_primary_10_1016_j_jallcom_2020_154498
crossref_primary_10_1016_j_spmi_2020_106511
crossref_primary_10_1016_j_jallcom_2024_175611
crossref_primary_10_1007_s11664_024_11361_w
crossref_primary_10_1088_2053_1591_ab1a03
crossref_primary_10_1021_acs_iecr_1c01462
crossref_primary_10_1007_s10854_022_08583_1
crossref_primary_10_1016_j_ijhydene_2020_06_195
crossref_primary_10_1364_JOSAB_36_001155
crossref_primary_10_1016_j_tsf_2019_02_007
crossref_primary_10_1007_s10854_022_08610_1
crossref_primary_10_1109_JSEN_2022_3223160
crossref_primary_10_1016_j_jallcom_2019_152985
crossref_primary_10_1016_j_apsusc_2018_08_076
crossref_primary_10_1016_j_jallcom_2019_152748
crossref_primary_10_1016_j_matlet_2018_05_050
crossref_primary_10_1016_j_tsf_2019_06_042
crossref_primary_10_1016_j_jallcom_2020_155909
crossref_primary_10_1016_j_cej_2019_01_099
crossref_primary_10_1016_j_matlet_2019_06_019
crossref_primary_10_1016_j_surfin_2020_100796
crossref_primary_10_1021_acsaem_1c00455
crossref_primary_10_1007_s00339_024_07425_7
crossref_primary_10_1016_j_apsusc_2018_03_240
crossref_primary_10_1063_5_0241401
crossref_primary_10_1007_s10854_020_04657_0
crossref_primary_10_35848_1347_4065_ad9b60
crossref_primary_10_1364_OL_43_005845
crossref_primary_10_1016_j_surfcoat_2018_12_109
crossref_primary_10_1088_1361_6463_ab7fd7
crossref_primary_10_1016_j_snb_2020_128779
crossref_primary_10_1016_j_jallcom_2018_05_234
crossref_primary_10_1016_j_jallcom_2018_07_187
crossref_primary_10_1016_j_physe_2018_09_002
crossref_primary_10_1088_1674_1056_ac685f
crossref_primary_10_1016_j_electacta_2022_140145
crossref_primary_10_1016_j_optmat_2018_06_046
crossref_primary_10_1016_j_jallcom_2020_153982
crossref_primary_10_1140_epjp_s13360_023_04846_w
crossref_primary_10_1016_j_solmat_2019_109942
crossref_primary_10_1016_j_matchemphys_2018_11_044
crossref_primary_10_1007_s10853_025_10702_2
crossref_primary_10_1021_acsami_4c12990
crossref_primary_10_1016_j_ceramint_2022_03_194
crossref_primary_10_1016_j_tsf_2018_07_023
crossref_primary_10_1016_j_tsf_2019_04_054
crossref_primary_10_1016_j_jallcom_2018_10_174
crossref_primary_10_1016_j_jallcom_2022_165178
crossref_primary_10_1016_j_apsusc_2018_12_236
crossref_primary_10_1016_j_apsusc_2019_03_310
crossref_primary_10_1016_j_jssc_2021_122648
crossref_primary_10_1016_j_ceramint_2020_11_094
crossref_primary_10_1016_j_jallcom_2019_05_266
crossref_primary_10_1134_S1063782622130097
crossref_primary_10_1364_AO_385656
crossref_primary_10_1021_acsanm_9b00527
crossref_primary_10_1016_j_ceramint_2019_12_205
crossref_primary_10_1364_OME_9_000652
crossref_primary_10_1016_j_apsusc_2019_02_187
crossref_primary_10_1016_j_jallcom_2018_06_226
crossref_primary_10_1016_j_apsusc_2020_147123
crossref_primary_10_1007_s10853_021_05783_8
crossref_primary_10_1007_s11837_021_04769_w
crossref_primary_10_1016_j_inoche_2023_111607
crossref_primary_10_1016_j_apsusc_2018_06_127
crossref_primary_10_1039_D3TC02443A
crossref_primary_10_1016_j_tsf_2018_10_051
crossref_primary_10_1016_j_solener_2020_01_084
crossref_primary_10_1016_j_jallcom_2019_04_113
crossref_primary_10_1016_j_jcrysgro_2020_125920
crossref_primary_10_1016_j_materresbull_2020_110784
crossref_primary_10_1016_j_tsf_2018_07_033
crossref_primary_10_1016_j_cej_2019_122855
crossref_primary_10_1016_j_materresbull_2021_111254
crossref_primary_10_1016_j_sse_2024_108955
crossref_primary_10_1016_j_jece_2018_11_033
crossref_primary_10_1016_j_cej_2021_130373
crossref_primary_10_1016_j_jcrysgro_2018_02_001
crossref_primary_10_1016_j_apsusc_2019_143835
crossref_primary_10_1016_j_jallcom_2019_05_160
crossref_primary_10_1016_j_physb_2024_415860
crossref_primary_10_1186_s40494_024_01472_2
crossref_primary_10_1016_j_solmat_2019_02_016
crossref_primary_10_1021_acsami_4c12331
crossref_primary_10_1063_5_0019408
crossref_primary_10_3390_coatings11050537
crossref_primary_10_1088_1361_6528_abe893
crossref_primary_10_1007_s10853_020_04647_x
crossref_primary_10_1016_j_apsusc_2018_09_184
crossref_primary_10_3390_ma17194823
crossref_primary_10_1016_j_jcis_2018_10_090
crossref_primary_10_1016_j_solmat_2019_110195
crossref_primary_10_1016_j_jallcom_2021_163135
crossref_primary_10_1016_j_solmat_2019_110073
crossref_primary_10_1016_j_solener_2020_09_022
crossref_primary_10_1039_D1RE00054C
crossref_primary_10_1155_2022_9747505
crossref_primary_10_1016_j_solmat_2018_05_015
crossref_primary_10_3389_fchem_2020_00101
crossref_primary_10_1016_j_jhazmat_2019_02_022
crossref_primary_10_1016_j_matchemphys_2019_04_063
crossref_primary_10_1016_j_ceramint_2019_08_285
crossref_primary_10_1016_j_jallcom_2019_03_117
crossref_primary_10_1016_j_matlet_2019_126626
crossref_primary_10_1016_j_matlet_2022_131796
crossref_primary_10_51753_flsrt_1120679
crossref_primary_10_1016_j_jiec_2018_03_032
crossref_primary_10_1016_j_electacta_2018_07_068
crossref_primary_10_1088_2043_6254_ab6c60
crossref_primary_10_1007_s00339_022_06288_0
crossref_primary_10_1016_j_apsusc_2018_10_177
crossref_primary_10_1016_j_jallcom_2019_05_298
crossref_primary_10_1039_D2TC03583A
crossref_primary_10_1016_j_apsusc_2019_03_204
crossref_primary_10_1016_j_matlet_2018_03_097
crossref_primary_10_1007_s10854_019_01855_3
crossref_primary_10_1016_j_apsusc_2018_09_080
crossref_primary_10_1016_j_jallcom_2018_11_310
crossref_primary_10_1016_j_jcis_2021_05_113
crossref_primary_10_1111_jace_19244
crossref_primary_10_1016_j_jallcom_2020_153700
crossref_primary_10_1016_j_optmat_2019_109433
crossref_primary_10_4028_p_p36z7e
crossref_primary_10_1016_j_jallcom_2019_152201
crossref_primary_10_1016_j_jallcom_2019_02_017
crossref_primary_10_1016_j_jallcom_2019_152202
crossref_primary_10_1016_j_apsusc_2018_09_256
crossref_primary_10_1016_j_solmat_2019_03_028
crossref_primary_10_4028_www_scientific_net_MSF_1021_327
crossref_primary_10_1016_j_ijleo_2020_166228
crossref_primary_10_1016_j_tsf_2018_10_002
crossref_primary_10_1016_j_jallcom_2023_172476
crossref_primary_10_1016_j_orgel_2019_05_023
crossref_primary_10_1016_j_physe_2021_115110
crossref_primary_10_1063_5_0167383
crossref_primary_10_1109_LPT_2020_2974780
crossref_primary_10_1088_1402_4896_acf80e
crossref_primary_10_1007_s43207_020_00088_z
crossref_primary_10_1021_acsami_9b13610
crossref_primary_10_1063_5_0072310
crossref_primary_10_1002_er_5974
crossref_primary_10_1021_acsami_9b22581
crossref_primary_10_1021_acsami_0c10484
crossref_primary_10_1016_j_jallcom_2019_02_009
crossref_primary_10_1109_TNANO_2023_3262279
crossref_primary_10_1016_j_cej_2019_122813
crossref_primary_10_1007_s00170_024_14093_7
crossref_primary_10_1016_j_jallcom_2020_154090
crossref_primary_10_1007_s10853_021_06027_5
crossref_primary_10_1155_2021_9950202
crossref_primary_10_1063_1_5143452
crossref_primary_10_1007_s00339_019_2584_y
crossref_primary_10_1016_j_jallcom_2018_08_048
crossref_primary_10_1016_j_jallcom_2020_155986
crossref_primary_10_1016_j_matlet_2018_03_040
crossref_primary_10_1016_j_ceramint_2018_10_226
crossref_primary_10_1016_j_electacta_2018_10_045
crossref_primary_10_1016_j_jallcom_2019_01_336
crossref_primary_10_1016_j_sna_2024_115283
crossref_primary_10_1016_j_snb_2020_128592
crossref_primary_10_1016_j_apsusc_2018_09_264
crossref_primary_10_1016_j_mssp_2022_106818
crossref_primary_10_1016_j_jallcom_2018_08_166
crossref_primary_10_1016_j_solener_2019_03_102
crossref_primary_10_3390_nano9050794
crossref_primary_10_1016_j_jallcom_2019_06_172
crossref_primary_10_1063_5_0084648
crossref_primary_10_1039_D2TC00652A
crossref_primary_10_1016_j_jiec_2018_04_041
crossref_primary_10_1016_j_apsusc_2018_10_004
crossref_primary_10_1049_mnl_2020_0416
crossref_primary_10_1007_s10853_023_09034_w
crossref_primary_10_1007_s11082_020_02284_x
crossref_primary_10_1016_j_solener_2019_09_095
crossref_primary_10_1016_j_jallcom_2019_05_005
crossref_primary_10_1016_j_matlet_2020_128498
crossref_primary_10_1016_j_snb_2018_05_167
crossref_primary_10_1016_j_apsusc_2019_03_257
crossref_primary_10_1088_1361_6463_abf165
crossref_primary_10_1016_j_jallcom_2021_162087
crossref_primary_10_1007_s10854_019_02435_1
crossref_primary_10_1002_bte2_20210008
crossref_primary_10_1016_j_electacta_2020_137453
crossref_primary_10_1016_j_ceramint_2018_12_182
crossref_primary_10_1364_OE_27_024900
crossref_primary_10_1016_j_jallcom_2019_02_108
crossref_primary_10_1109_LED_2021_3081627
crossref_primary_10_1016_j_snb_2018_07_144
crossref_primary_10_1364_OE_482498
crossref_primary_10_1007_s10854_020_03358_y
crossref_primary_10_1016_j_jallcom_2019_06_180
crossref_primary_10_1039_C9RA02356A
crossref_primary_10_4028_p_4wve98
crossref_primary_10_1007_s10853_024_09652_y
crossref_primary_10_1016_j_jlumin_2021_118673
crossref_primary_10_1039_D3DT03144F
crossref_primary_10_1007_s10854_024_13623_z
crossref_primary_10_1016_j_apsusc_2018_10_254
crossref_primary_10_1016_j_jallcom_2019_03_395
crossref_primary_10_1016_j_solmat_2023_112214
crossref_primary_10_1016_j_surfcoat_2019_01_002
crossref_primary_10_1016_j_ceramint_2018_10_241
crossref_primary_10_1088_2053_1591_ab815b
crossref_primary_10_1002_solr_201900339
crossref_primary_10_1016_j_apsusc_2018_11_054
crossref_primary_10_1007_s10854_018_0183_x
crossref_primary_10_1021_acsomega_3c03916
crossref_primary_10_1016_j_jcis_2018_09_081
crossref_primary_10_1016_j_apsusc_2018_06_088
crossref_primary_10_1016_j_apsusc_2019_03_151
crossref_primary_10_1016_j_jallcom_2019_152008
crossref_primary_10_1016_j_jhazmat_2021_126674
crossref_primary_10_1016_j_mssp_2024_108637
crossref_primary_10_1016_j_jhazmat_2020_122872
crossref_primary_10_1007_s10854_022_09477_y
crossref_primary_10_3390_nano13222940
crossref_primary_10_1016_j_jallcom_2018_11_136
crossref_primary_10_1007_s11664_021_09381_x
crossref_primary_10_1016_j_vacuum_2022_111680
crossref_primary_10_1016_j_commatsci_2022_111817
crossref_primary_10_1016_j_jallcom_2018_09_288
crossref_primary_10_1016_j_solmat_2018_10_022
crossref_primary_10_1007_s10876_021_02108_2
crossref_primary_10_1007_s11356_024_34333_3
crossref_primary_10_1016_j_snb_2019_03_020
crossref_primary_10_1016_j_electacta_2019_06_131
crossref_primary_10_1016_j_jallcom_2019_02_061
crossref_primary_10_1016_j_jiec_2019_01_002
crossref_primary_10_1007_s10800_022_01724_8
crossref_primary_10_1016_j_tsf_2018_09_040
crossref_primary_10_1016_j_apsusc_2018_09_107
crossref_primary_10_1016_j_jiec_2018_05_016
crossref_primary_10_1016_j_ceramint_2018_11_066
crossref_primary_10_1016_j_jallcom_2018_07_328
crossref_primary_10_1016_j_solmat_2020_110674
crossref_primary_10_1016_j_apsusc_2020_145447
crossref_primary_10_1063_1_5145035
crossref_primary_10_1016_j_jallcom_2018_11_004
crossref_primary_10_1016_j_jallcom_2019_01_142
crossref_primary_10_1016_j_apsusc_2019_03_268
crossref_primary_10_1016_j_electacta_2018_12_088
crossref_primary_10_1007_s00339_020_3335_9
crossref_primary_10_1063_5_0022895
crossref_primary_10_1016_j_surfcoat_2018_10_105
crossref_primary_10_1016_j_jallcom_2018_09_398
crossref_primary_10_1016_j_jhazmat_2019_01_052
crossref_primary_10_1016_j_jallcom_2025_179915
crossref_primary_10_1016_j_jcis_2018_07_009
crossref_primary_10_1016_j_solener_2018_10_037
crossref_primary_10_1007_s11082_023_06266_7
crossref_primary_10_1016_j_ces_2019_02_006
crossref_primary_10_1007_s10854_018_0546_3
crossref_primary_10_1016_j_jallcom_2021_162444
crossref_primary_10_1016_j_solener_2018_08_001
crossref_primary_10_1016_j_matlet_2018_05_097
crossref_primary_10_1016_j_apsusc_2018_05_139
crossref_primary_10_1016_j_inoche_2024_112836
crossref_primary_10_1016_j_jallcom_2018_11_040
crossref_primary_10_1109_TNANO_2020_3022662
crossref_primary_10_1016_j_jallcom_2018_11_285
crossref_primary_10_1063_5_0022758
crossref_primary_10_1016_j_matlet_2021_129438
crossref_primary_10_1016_j_jallcom_2018_10_225
crossref_primary_10_1016_j_solmat_2019_109918
crossref_primary_10_1149_2_0241809jss
crossref_primary_10_1049_mnl_2018_5822
crossref_primary_10_1016_j_jallcom_2018_06_081
crossref_primary_10_1016_j_jallcom_2019_152015
crossref_primary_10_1039_C9QM00727J
crossref_primary_10_1002_pssa_202000233
crossref_primary_10_1016_j_apsusc_2018_12_282
crossref_primary_10_1016_j_matlet_2018_10_173
crossref_primary_10_1007_s10854_019_01046_0
crossref_primary_10_1007_s11082_022_04161_1
crossref_primary_10_1016_j_jallcom_2018_09_379
crossref_primary_10_1016_j_jiec_2018_11_025
crossref_primary_10_1016_j_electacta_2018_07_106
crossref_primary_10_1021_acsami_4c03440
crossref_primary_10_1016_j_jallcom_2018_11_155
crossref_primary_10_1039_D0RA07689A
crossref_primary_10_1016_j_electacta_2020_137426
crossref_primary_10_1016_j_jallcom_2019_152491
crossref_primary_10_1016_j_jcrysgro_2018_10_001
crossref_primary_10_1021_acsaem_1c03939
crossref_primary_10_1016_j_rio_2024_100761
crossref_primary_10_1016_j_jallcom_2019_153461
crossref_primary_10_1007_s10854_020_02962_2
crossref_primary_10_1007_s11581_018_2721_1
crossref_primary_10_1016_j_jallcom_2019_06_011
crossref_primary_10_1016_j_jallcom_2019_152376
Cites_doi 10.1063/1.4928527
10.1016/j.matlet.2012.10.083
10.1002/adma.201001455
10.1364/OL.42.000911
10.1063/1.4863826
10.1063/1.114508
10.1063/1.4788680
10.1016/j.jallcom.2014.09.072
10.1016/S0927-0248(97)00233-X
10.1063/1.2194315
10.1364/OE.21.011448
10.1016/j.solmat.2014.10.005
10.1016/j.solener.2004.05.014
10.1126/science.aaa5333
10.1143/APEX.4.062301
10.1016/j.apsusc.2007.12.019
10.1063/1.4788717
10.1016/j.jcrysgro.2009.07.020
10.1039/c2jm32660d
10.1039/C5NR02178B
10.7567/APEX.6.086503
10.1021/jp1004314
10.1016/j.solmat.2015.10.013
10.1109/TNANO.2014.2369438
10.1016/j.solmat.2015.11.045
10.1063/1.3310805
10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
10.1016/j.electacta.2007.09.030
ContentType Journal Article
Copyright Author(s)
2018 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5017002
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_5017002
apl
GrantInformation_xml – fundername: Natural Science Foundation of Chongqing
  grantid: cstc2017jcyjBX0054,cstc2015jcyjA50023
  funderid: http://dx.doi.org/10.13039/501100005230
– fundername: National Natural Science Foundation of China
  grantid: 61574024
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-7bb825d7a4ad82b7b6139807b820e5f8ee201263ae71d2bcc1b2ef0a59a527b83
ISSN 0003-6951
IngestDate Sun Jun 29 16:46:23 EDT 2025
Tue Jul 01 01:15:58 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Fri Jun 21 00:14:23 EDT 2024
Sun Jul 14 10:05:10 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License 0003-6951/2018/112(4)/042106/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-7bb825d7a4ad82b7b6139807b820e5f8ee201263ae71d2bcc1b2ef0a59a527b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2115812826
PQPubID 2050678
PageCount 5
ParticipantIDs crossref_primary_10_1063_1_5017002
proquest_journals_2115812826
crossref_citationtrail_10_1063_1_5017002
scitation_primary_10_1063_1_5017002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180122
2018-01-22
PublicationDateYYYYMMDD 2018-01-22
PublicationDate_xml – month: 01
  year: 2018
  text: 20180122
  day: 22
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2018
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Musa, Akomolafe, Carter (c6) 1998
Ravichandran, Dhanabalan, Vasuhi, Chandramohan, Mantha (c25) 2015
Cui, Gibson (c18) 2010
Fujimoto, Oku, Akiyama (c20) 2013
Zang, Nakamura, Temmyo (c13) 2013
Kronik, Burstein, Leibovitch, Shapira, Gal, Moons, Klenk (c2) 1995
Chatterjee, Saha, Pal (c4) 2016
Poulston, Parlett, Stone, Bowker (c24) 1996
Figueiredo, Elangovan, Goncalves, Barquinha, Pereira, Franco, Alves, Martins, Fortunato (c7) 2008
de Quilettes, Vorpahl, Stranks, Nagaoka, Eperon, Ziffer, Snaith, Ginger (c26) 2015
Niu, Zhou, Ye, Zhu (c15) 2016
Deo, Shinde, Yengantiwar, Jog, Hannoyer, Sauvage, More, Ogale (c27) 2012
Sun (c28) 2015
Zang, Tang (c17) 2015
Zang, Nakamura, Temmyo (c12) 2013
Hameş, San (c16) 2004
Minami, Nishi, Miyata, Nomoto (c21) 2011
Cai, Su, Ye, Wang, Tian, Zhang, Fan, Luo, Zheng, Liang, Roy (c10) 2015
Witte, Abou-Ras, Hariskos (c3) 2013
Williams, Taylor, Mendis, Phillips, Bowen, Major, Durose (c1) 2014
Kang, Hong, Choi, Kim, Hwang, Byun, Kim, Kim, Park (c9) 2010
Mittiga, Salza, Sarto, Tucci, Vasanthi (c22) 2006
Wei, Zang, Zhang, Wang, Du, Tang (c23) 2017
Pham, Rao, Andreasson, Peng, Wang, Jinesh (c11) 2013
Musselman, Wisnet, Iza, Hesse, Scheu, MacManus-Driscoll (c19) 2010
Jeong, Aydil (c8) 2009
Michele, Sven, Adam, Keller, Barad, Sberna, Nunes, Martins, Anderson, Zaban, Fortunato (c14) 2015
Jeong, Mittiga, Salza, Masci, Passerini (c5) 2008
(2023061722470891900_c13) 2013; 92
(2023061722470891900_c15) 2016; 144
(2023061722470891900_c21) 2011; 4
(2023061722470891900_c4) 2016; 147
(2023061722470891900_c14) 2015; 132
(2023061722470891900_c26) 2015; 348
(2023061722470891900_c10) 2015; 107
(2023061722470891900_c11) 2013; 102
(2023061722470891900_c18) 2010; 114
(2023061722470891900_c7) 2008; 254
(2023061722470891900_c19) 2010; 22
(2023061722470891900_c6) 1998; 51
(2023061722470891900_c17) 2015; 619
(2023061722470891900_c9) 2010; 107
(2023061722470891900_c22) 2006; 88
(2023061722470891900_c5) 2008; 53
(2023061722470891900_c23) 2017; 42
(2023061722470891900_c16) 2004; 77
(2023061722470891900_c24) 1996; 24
(2023061722470891900_c8) 2009; 311
(2023061722470891900_c27) 2012; 22
(2023061722470891900_c3) 2013; 102
(2023061722470891900_c28) 2015; 7
(2023061722470891900_c2) 1995; 67
(2023061722470891900_c20) 2013; 6
(2023061722470891900_c12) 2013; 21
(2023061722470891900_c25) 2015; 14
(2023061722470891900_c1) 2014; 104
References_xml – start-page: 305
  year: 1998
  ident: c6
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 98
  year: 2015
  ident: c17
  publication-title: J. Alloy. Compd.
– start-page: 11448
  year: 2013
  ident: c12
  publication-title: Opt. Express
– start-page: 10850
  year: 2015
  ident: c28
  publication-title: Nanoscale
– start-page: 811
  year: 1996
  ident: c24
  publication-title: Surf. Interface Anal.
– start-page: 108
  year: 2015
  ident: c25
  publication-title: IEEE Trans. Nanotechnol.
– start-page: 1405
  year: 1995
  ident: c2
  publication-title: Appl. Phys. Lett.
– start-page: 911
  year: 2017
  ident: c23
  publication-title: Opt. Lett.
– start-page: 6408
  year: 2010
  ident: c18
  publication-title: J. Phys. Chem. C
– start-page: 086503
  year: 2013
  ident: c20
  publication-title: Appl. Phys. Express
– start-page: 053907
  year: 2014
  ident: c1
  publication-title: Appl. Phys. Lett.
– start-page: 051607
  year: 2013
  ident: c3
  publication-title: Appl. Phys. Lett.
– start-page: E254
  year: 2010
  ident: c19
  publication-title: Adv. Mater.
– start-page: 053704
  year: 2010
  ident: c9
  publication-title: J. Appl. Phys.
– start-page: 4188
  year: 2009
  ident: c8
  publication-title: J. Cryst. Growth
– start-page: 062301
  year: 2011
  ident: c21
  publication-title: Appl. Phys. Express
– start-page: 083901
  year: 2015
  ident: c10
  publication-title: Appl. Phys. Lett.
– start-page: 683
  year: 2015
  ident: c26
  publication-title: Science
– start-page: 17
  year: 2016
  ident: c4
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 2226
  year: 2008
  ident: c5
  publication-title: Electrochim. Acta
– start-page: 549
  year: 2015
  ident: c14
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 163502
  year: 2006
  ident: c22
  publication-title: Appl. Phys. Lett.
– start-page: 3949
  year: 2008
  ident: c7
  publication-title: Appl. Surf. Sci.
– start-page: 17055
  year: 2012
  ident: c27
  publication-title: J. Mater. Chem.
– start-page: 188
  year: 2013
  ident: c13
  publication-title: Mater. Lett.
– start-page: 717
  year: 2016
  ident: c15
  publication-title: Sol. Energy Mater. Sol. Cells
– start-page: 032101
  year: 2013
  ident: c11
  publication-title: Appl. Phys. Lett.
– start-page: 291
  year: 2004
  ident: c16
  publication-title: Sol. Energy
– volume: 107
  start-page: 083901
  year: 2015
  ident: 2023061722470891900_c10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4928527
– volume: 92
  start-page: 188
  year: 2013
  ident: 2023061722470891900_c13
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2012.10.083
– volume: 22
  start-page: E254
  year: 2010
  ident: 2023061722470891900_c19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201001455
– volume: 42
  start-page: 911
  year: 2017
  ident: 2023061722470891900_c23
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.000911
– volume: 104
  start-page: 053907
  year: 2014
  ident: 2023061722470891900_c1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4863826
– volume: 67
  start-page: 1405
  issue: 10
  year: 1995
  ident: 2023061722470891900_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.114508
– volume: 102
  start-page: 032101
  year: 2013
  ident: 2023061722470891900_c11
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788680
– volume: 619
  start-page: 98
  year: 2015
  ident: 2023061722470891900_c17
  publication-title: J. Alloy. Compd.
  doi: 10.1016/j.jallcom.2014.09.072
– volume: 51
  start-page: 305
  issue: 3–4
  year: 1998
  ident: 2023061722470891900_c6
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/S0927-0248(97)00233-X
– volume: 88
  start-page: 163502
  year: 2006
  ident: 2023061722470891900_c22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2194315
– volume: 21
  start-page: 11448
  year: 2013
  ident: 2023061722470891900_c12
  publication-title: Opt. Express
  doi: 10.1364/OE.21.011448
– volume: 132
  start-page: 549
  year: 2015
  ident: 2023061722470891900_c14
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2014.10.005
– volume: 77
  start-page: 291
  year: 2004
  ident: 2023061722470891900_c16
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2004.05.014
– volume: 348
  start-page: 683
  year: 2015
  ident: 2023061722470891900_c26
  publication-title: Science
  doi: 10.1126/science.aaa5333
– volume: 4
  start-page: 062301
  year: 2011
  ident: 2023061722470891900_c21
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.4.062301
– volume: 254
  start-page: 3949
  issue: 13
  year: 2008
  ident: 2023061722470891900_c7
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2007.12.019
– volume: 102
  start-page: 051607
  year: 2013
  ident: 2023061722470891900_c3
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4788717
– volume: 311
  start-page: 4188
  issue: 17
  year: 2009
  ident: 2023061722470891900_c8
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.07.020
– volume: 22
  start-page: 17055
  year: 2012
  ident: 2023061722470891900_c27
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm32660d
– volume: 7
  start-page: 10850
  year: 2015
  ident: 2023061722470891900_c28
  publication-title: Nanoscale
  doi: 10.1039/C5NR02178B
– volume: 6
  start-page: 086503
  year: 2013
  ident: 2023061722470891900_c20
  publication-title: Appl. Phys. Express
  doi: 10.7567/APEX.6.086503
– volume: 114
  start-page: 6408
  year: 2010
  ident: 2023061722470891900_c18
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1004314
– volume: 144
  start-page: 717
  year: 2016
  ident: 2023061722470891900_c15
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.10.013
– volume: 14
  start-page: 108
  year: 2015
  ident: 2023061722470891900_c25
  publication-title: IEEE Trans. Nanotechnol.
  doi: 10.1109/TNANO.2014.2369438
– volume: 147
  start-page: 17
  year: 2016
  ident: 2023061722470891900_c4
  publication-title: Sol. Energy Mater. Sol. Cells
  doi: 10.1016/j.solmat.2015.11.045
– volume: 107
  start-page: 053704
  issue: 5
  year: 2010
  ident: 2023061722470891900_c9
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3310805
– volume: 24
  start-page: 811
  year: 1996
  ident: 2023061722470891900_c24
  publication-title: Surf. Interface Anal.
  doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z
– volume: 53
  start-page: 2226
  year: 2008
  ident: 2023061722470891900_c5
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2007.09.030
SSID ssj0005233
Score 2.6606839
Snippet Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Copper oxides
Crystal structure
Energy conversion efficiency
Foils
Optical properties
Oxidation
Photovoltaic cells
Rapid quenching (metallurgy)
Solar cells
Zinc oxide
Title Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films
URI http://dx.doi.org/10.1063/1.5017002
https://www.proquest.com/docview/2115812826
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeDtoj6ULRaelolqA_Csm022Z-PpVaKWCvYQrmXJclmrwfXvaN39aF_vTPZZHcLh1RfliNkw5FPdvab2ZkJIZ-UZlzLqggN0yaM05qFhY7z0HDQpqyoc2MzvE9_pCcX8bfL5LI_QtFml6zUvr5bm1fyP1ShDbhiluw_kO0GhQb4DXzhCoTh-iDGx7b-g02eNM0V8vOf9sfNGVa-veVnwRI3rwE66F0mm3XXzbG-MapNdJxf26g8DIwJJnhkRLCc3qHnF2-vpzNX0NzXqnW6tfWJLIOZTQjqpPnYOaDHV9OJdK9F51WIMKAt5PyepRRhWrhisKY1jixDn6azl956RnywTOK1VhlkEDoI9hMs1sN4_-rpAgLlYvaYbHKQ-mCrNg-_nH7_NQjUEcKfe4j_yNeHSsVBN-R9VdFvFZ6CjmhDGgaq4fwF2XJynx627F6SR6bZJs8HRSC3yZOf7US-IpOeJx3wpPOaAs8DxEEtTWppUqRJkSb1NCnQpD1NamlSS5Pa2y3N1-Ti6_H50UnoDsIIteDZKsyUgo18lclYVjlXmQINVuQsg1ZmEnieDCDkqZAmiyqutI4UNzWTSSETDr3EDtlo5o3ZJZSrWKZY861IVcxyqSoNe-YsqZjQusrEiHz2E1n6qcPDSmaljVZIRRmVbs5H5EPXddGWRlnXac_TKN2Tsyw5bENAWMLOdkQ-doT-NsiaXr_nN32PclHVbx401lvyrF_ve2RjdXNr3oGuXKn3buH9AZQPd8A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+enhancement+of+ZnO%2FCu2O+solar+cells+with+well+oriented+and+micrometer+grain+sized+Cu2O+films&rft.jtitle=Applied+physics+letters&rft.au=Zang%2C+Zhigang&rft.date=2018-01-22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=4&rft_id=info:doi/10.1063%2F1.5017002&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon