Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films
Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experime...
Saved in:
Published in | Applied physics letters Vol. 112; no. 4 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
22.01.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3∼4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%. |
---|---|
AbstractList | Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious enhancement of power conversion efficiency (PCE) for ZnO/Cu2O solar cells with perfectly oriented and micrometer grain sized Cu2O films was experimentally demonstrated. Cu2O was fabricated using radical oxidation of Cu foils at a low temperature of 500 °C. When followed by a rapid quenching and post annealing treatment, the perfectly oriented and micrometer sized Cu2O crystals (3∼4 μm) could be obtained. The crystal structure and optical properties of Cu2O were investigated in detail. Compared to conventional solar cells without any treatment, the PCE of the solar cells based on Cu2O with treatment was 3.18%, corresponding to a significant PCE improvement of 60.6%. |
Author | Zang, Zhigang |
Author_xml | – sequence: 1 givenname: Zhigang surname: Zang fullname: Zang, Zhigang email: zangzg@cqu.edu.cn organization: Key Laboratory of Optoelectronic Technology & Systems, Ministry of Education, Chongqing University, Chongqing 400044, China |
BookMark | eNp9kMtKAzEUQIMoWKsL_yDgSmFsbuI006UUXyB0oxs3QyZzUyMzSU1SpX690VYEUVdJbs65rz2y7bxDQg6BnQIbixGclgwkY3yLDIBJWQiAapsMGGOiGE9K2CV7MT7lZ8mFGJD5hTFWW3R6RdE9KqexR5eoN_TBzUbTJZ_R6DsVqMaui_TVpkf6mq_Uh2wlbKlyLe2tDr7HhIHOg7KORvuWvz51Y7s-7pMdo7qIB5tzSO4vL-6m18Xt7Opmen5baMFlKmTTVLxspTpTbcUb2YxBTComc5RhaSpEzoCPhUIJLW-0hoajYaqcqJJnSgzJ0TrvIvjnJcZUP_llcLlkzQHKCniV9SE5XlO56xgDmnoRbK_CqgZWf-yxhnqzx8yOfrDaJpWsdylP2v1qnKyN-EX-m_5P-MWHb7BetEa8AyaAkY0 |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1007_s00339_024_08209_9 crossref_primary_10_4028_p_j63xro crossref_primary_10_1016_j_ijhydene_2021_11_021 crossref_primary_10_1016_j_tsf_2019_137711 crossref_primary_10_1016_j_mtsust_2022_100244 crossref_primary_10_3390_coatings11020116 crossref_primary_10_1002_adpr_202300154 crossref_primary_10_1016_j_jallcom_2019_152969 crossref_primary_10_1021_acs_jpcc_9b00408 crossref_primary_10_1007_s11082_022_04237_y crossref_primary_10_1364_AO_59_000107 crossref_primary_10_1007_s13369_023_08061_8 crossref_primary_10_1149_2_0261912jss crossref_primary_10_1016_j_matlet_2018_04_106 crossref_primary_10_1016_j_materresbull_2018_06_007 crossref_primary_10_1016_j_solmat_2022_112002 crossref_primary_10_1016_j_matlet_2018_06_076 crossref_primary_10_1049_mnl_2020_0231 crossref_primary_10_1016_j_jallcom_2021_161848 crossref_primary_10_1109_TNANO_2023_3294131 crossref_primary_10_1088_2053_1591_ab11b1 crossref_primary_10_1016_j_cej_2019_123746 crossref_primary_10_1016_j_jallcom_2018_10_020 crossref_primary_10_1016_j_jallcom_2022_165145 crossref_primary_10_1016_j_physb_2018_10_031 crossref_primary_10_1007_s11356_023_28169_6 crossref_primary_10_1016_j_tsf_2018_08_041 crossref_primary_10_1039_D4MH01000K crossref_primary_10_1039_D0RA08670C crossref_primary_10_1016_j_jallcom_2020_154498 crossref_primary_10_1016_j_spmi_2020_106511 crossref_primary_10_1016_j_jallcom_2024_175611 crossref_primary_10_1007_s11664_024_11361_w crossref_primary_10_1088_2053_1591_ab1a03 crossref_primary_10_1021_acs_iecr_1c01462 crossref_primary_10_1007_s10854_022_08583_1 crossref_primary_10_1016_j_ijhydene_2020_06_195 crossref_primary_10_1364_JOSAB_36_001155 crossref_primary_10_1016_j_tsf_2019_02_007 crossref_primary_10_1007_s10854_022_08610_1 crossref_primary_10_1109_JSEN_2022_3223160 crossref_primary_10_1016_j_jallcom_2019_152985 crossref_primary_10_1016_j_apsusc_2018_08_076 crossref_primary_10_1016_j_jallcom_2019_152748 crossref_primary_10_1016_j_matlet_2018_05_050 crossref_primary_10_1016_j_tsf_2019_06_042 crossref_primary_10_1016_j_jallcom_2020_155909 crossref_primary_10_1016_j_cej_2019_01_099 crossref_primary_10_1016_j_matlet_2019_06_019 crossref_primary_10_1016_j_surfin_2020_100796 crossref_primary_10_1021_acsaem_1c00455 crossref_primary_10_1007_s00339_024_07425_7 crossref_primary_10_1016_j_apsusc_2018_03_240 crossref_primary_10_1063_5_0241401 crossref_primary_10_1007_s10854_020_04657_0 crossref_primary_10_35848_1347_4065_ad9b60 crossref_primary_10_1364_OL_43_005845 crossref_primary_10_1016_j_surfcoat_2018_12_109 crossref_primary_10_1088_1361_6463_ab7fd7 crossref_primary_10_1016_j_snb_2020_128779 crossref_primary_10_1016_j_jallcom_2018_05_234 crossref_primary_10_1016_j_jallcom_2018_07_187 crossref_primary_10_1016_j_physe_2018_09_002 crossref_primary_10_1088_1674_1056_ac685f crossref_primary_10_1016_j_electacta_2022_140145 crossref_primary_10_1016_j_optmat_2018_06_046 crossref_primary_10_1016_j_jallcom_2020_153982 crossref_primary_10_1140_epjp_s13360_023_04846_w crossref_primary_10_1016_j_solmat_2019_109942 crossref_primary_10_1016_j_matchemphys_2018_11_044 crossref_primary_10_1007_s10853_025_10702_2 crossref_primary_10_1021_acsami_4c12990 crossref_primary_10_1016_j_ceramint_2022_03_194 crossref_primary_10_1016_j_tsf_2018_07_023 crossref_primary_10_1016_j_tsf_2019_04_054 crossref_primary_10_1016_j_jallcom_2018_10_174 crossref_primary_10_1016_j_jallcom_2022_165178 crossref_primary_10_1016_j_apsusc_2018_12_236 crossref_primary_10_1016_j_apsusc_2019_03_310 crossref_primary_10_1016_j_jssc_2021_122648 crossref_primary_10_1016_j_ceramint_2020_11_094 crossref_primary_10_1016_j_jallcom_2019_05_266 crossref_primary_10_1134_S1063782622130097 crossref_primary_10_1364_AO_385656 crossref_primary_10_1021_acsanm_9b00527 crossref_primary_10_1016_j_ceramint_2019_12_205 crossref_primary_10_1364_OME_9_000652 crossref_primary_10_1016_j_apsusc_2019_02_187 crossref_primary_10_1016_j_jallcom_2018_06_226 crossref_primary_10_1016_j_apsusc_2020_147123 crossref_primary_10_1007_s10853_021_05783_8 crossref_primary_10_1007_s11837_021_04769_w crossref_primary_10_1016_j_inoche_2023_111607 crossref_primary_10_1016_j_apsusc_2018_06_127 crossref_primary_10_1039_D3TC02443A crossref_primary_10_1016_j_tsf_2018_10_051 crossref_primary_10_1016_j_solener_2020_01_084 crossref_primary_10_1016_j_jallcom_2019_04_113 crossref_primary_10_1016_j_jcrysgro_2020_125920 crossref_primary_10_1016_j_materresbull_2020_110784 crossref_primary_10_1016_j_tsf_2018_07_033 crossref_primary_10_1016_j_cej_2019_122855 crossref_primary_10_1016_j_materresbull_2021_111254 crossref_primary_10_1016_j_sse_2024_108955 crossref_primary_10_1016_j_jece_2018_11_033 crossref_primary_10_1016_j_cej_2021_130373 crossref_primary_10_1016_j_jcrysgro_2018_02_001 crossref_primary_10_1016_j_apsusc_2019_143835 crossref_primary_10_1016_j_jallcom_2019_05_160 crossref_primary_10_1016_j_physb_2024_415860 crossref_primary_10_1186_s40494_024_01472_2 crossref_primary_10_1016_j_solmat_2019_02_016 crossref_primary_10_1021_acsami_4c12331 crossref_primary_10_1063_5_0019408 crossref_primary_10_3390_coatings11050537 crossref_primary_10_1088_1361_6528_abe893 crossref_primary_10_1007_s10853_020_04647_x crossref_primary_10_1016_j_apsusc_2018_09_184 crossref_primary_10_3390_ma17194823 crossref_primary_10_1016_j_jcis_2018_10_090 crossref_primary_10_1016_j_solmat_2019_110195 crossref_primary_10_1016_j_jallcom_2021_163135 crossref_primary_10_1016_j_solmat_2019_110073 crossref_primary_10_1016_j_solener_2020_09_022 crossref_primary_10_1039_D1RE00054C crossref_primary_10_1155_2022_9747505 crossref_primary_10_1016_j_solmat_2018_05_015 crossref_primary_10_3389_fchem_2020_00101 crossref_primary_10_1016_j_jhazmat_2019_02_022 crossref_primary_10_1016_j_matchemphys_2019_04_063 crossref_primary_10_1016_j_ceramint_2019_08_285 crossref_primary_10_1016_j_jallcom_2019_03_117 crossref_primary_10_1016_j_matlet_2019_126626 crossref_primary_10_1016_j_matlet_2022_131796 crossref_primary_10_51753_flsrt_1120679 crossref_primary_10_1016_j_jiec_2018_03_032 crossref_primary_10_1016_j_electacta_2018_07_068 crossref_primary_10_1088_2043_6254_ab6c60 crossref_primary_10_1007_s00339_022_06288_0 crossref_primary_10_1016_j_apsusc_2018_10_177 crossref_primary_10_1016_j_jallcom_2019_05_298 crossref_primary_10_1039_D2TC03583A crossref_primary_10_1016_j_apsusc_2019_03_204 crossref_primary_10_1016_j_matlet_2018_03_097 crossref_primary_10_1007_s10854_019_01855_3 crossref_primary_10_1016_j_apsusc_2018_09_080 crossref_primary_10_1016_j_jallcom_2018_11_310 crossref_primary_10_1016_j_jcis_2021_05_113 crossref_primary_10_1111_jace_19244 crossref_primary_10_1016_j_jallcom_2020_153700 crossref_primary_10_1016_j_optmat_2019_109433 crossref_primary_10_4028_p_p36z7e crossref_primary_10_1016_j_jallcom_2019_152201 crossref_primary_10_1016_j_jallcom_2019_02_017 crossref_primary_10_1016_j_jallcom_2019_152202 crossref_primary_10_1016_j_apsusc_2018_09_256 crossref_primary_10_1016_j_solmat_2019_03_028 crossref_primary_10_4028_www_scientific_net_MSF_1021_327 crossref_primary_10_1016_j_ijleo_2020_166228 crossref_primary_10_1016_j_tsf_2018_10_002 crossref_primary_10_1016_j_jallcom_2023_172476 crossref_primary_10_1016_j_orgel_2019_05_023 crossref_primary_10_1016_j_physe_2021_115110 crossref_primary_10_1063_5_0167383 crossref_primary_10_1109_LPT_2020_2974780 crossref_primary_10_1088_1402_4896_acf80e crossref_primary_10_1007_s43207_020_00088_z crossref_primary_10_1021_acsami_9b13610 crossref_primary_10_1063_5_0072310 crossref_primary_10_1002_er_5974 crossref_primary_10_1021_acsami_9b22581 crossref_primary_10_1021_acsami_0c10484 crossref_primary_10_1016_j_jallcom_2019_02_009 crossref_primary_10_1109_TNANO_2023_3262279 crossref_primary_10_1016_j_cej_2019_122813 crossref_primary_10_1007_s00170_024_14093_7 crossref_primary_10_1016_j_jallcom_2020_154090 crossref_primary_10_1007_s10853_021_06027_5 crossref_primary_10_1155_2021_9950202 crossref_primary_10_1063_1_5143452 crossref_primary_10_1007_s00339_019_2584_y crossref_primary_10_1016_j_jallcom_2018_08_048 crossref_primary_10_1016_j_jallcom_2020_155986 crossref_primary_10_1016_j_matlet_2018_03_040 crossref_primary_10_1016_j_ceramint_2018_10_226 crossref_primary_10_1016_j_electacta_2018_10_045 crossref_primary_10_1016_j_jallcom_2019_01_336 crossref_primary_10_1016_j_sna_2024_115283 crossref_primary_10_1016_j_snb_2020_128592 crossref_primary_10_1016_j_apsusc_2018_09_264 crossref_primary_10_1016_j_mssp_2022_106818 crossref_primary_10_1016_j_jallcom_2018_08_166 crossref_primary_10_1016_j_solener_2019_03_102 crossref_primary_10_3390_nano9050794 crossref_primary_10_1016_j_jallcom_2019_06_172 crossref_primary_10_1063_5_0084648 crossref_primary_10_1039_D2TC00652A crossref_primary_10_1016_j_jiec_2018_04_041 crossref_primary_10_1016_j_apsusc_2018_10_004 crossref_primary_10_1049_mnl_2020_0416 crossref_primary_10_1007_s10853_023_09034_w crossref_primary_10_1007_s11082_020_02284_x crossref_primary_10_1016_j_solener_2019_09_095 crossref_primary_10_1016_j_jallcom_2019_05_005 crossref_primary_10_1016_j_matlet_2020_128498 crossref_primary_10_1016_j_snb_2018_05_167 crossref_primary_10_1016_j_apsusc_2019_03_257 crossref_primary_10_1088_1361_6463_abf165 crossref_primary_10_1016_j_jallcom_2021_162087 crossref_primary_10_1007_s10854_019_02435_1 crossref_primary_10_1002_bte2_20210008 crossref_primary_10_1016_j_electacta_2020_137453 crossref_primary_10_1016_j_ceramint_2018_12_182 crossref_primary_10_1364_OE_27_024900 crossref_primary_10_1016_j_jallcom_2019_02_108 crossref_primary_10_1109_LED_2021_3081627 crossref_primary_10_1016_j_snb_2018_07_144 crossref_primary_10_1364_OE_482498 crossref_primary_10_1007_s10854_020_03358_y crossref_primary_10_1016_j_jallcom_2019_06_180 crossref_primary_10_1039_C9RA02356A crossref_primary_10_4028_p_4wve98 crossref_primary_10_1007_s10853_024_09652_y crossref_primary_10_1016_j_jlumin_2021_118673 crossref_primary_10_1039_D3DT03144F crossref_primary_10_1007_s10854_024_13623_z crossref_primary_10_1016_j_apsusc_2018_10_254 crossref_primary_10_1016_j_jallcom_2019_03_395 crossref_primary_10_1016_j_solmat_2023_112214 crossref_primary_10_1016_j_surfcoat_2019_01_002 crossref_primary_10_1016_j_ceramint_2018_10_241 crossref_primary_10_1088_2053_1591_ab815b crossref_primary_10_1002_solr_201900339 crossref_primary_10_1016_j_apsusc_2018_11_054 crossref_primary_10_1007_s10854_018_0183_x crossref_primary_10_1021_acsomega_3c03916 crossref_primary_10_1016_j_jcis_2018_09_081 crossref_primary_10_1016_j_apsusc_2018_06_088 crossref_primary_10_1016_j_apsusc_2019_03_151 crossref_primary_10_1016_j_jallcom_2019_152008 crossref_primary_10_1016_j_jhazmat_2021_126674 crossref_primary_10_1016_j_mssp_2024_108637 crossref_primary_10_1016_j_jhazmat_2020_122872 crossref_primary_10_1007_s10854_022_09477_y crossref_primary_10_3390_nano13222940 crossref_primary_10_1016_j_jallcom_2018_11_136 crossref_primary_10_1007_s11664_021_09381_x crossref_primary_10_1016_j_vacuum_2022_111680 crossref_primary_10_1016_j_commatsci_2022_111817 crossref_primary_10_1016_j_jallcom_2018_09_288 crossref_primary_10_1016_j_solmat_2018_10_022 crossref_primary_10_1007_s10876_021_02108_2 crossref_primary_10_1007_s11356_024_34333_3 crossref_primary_10_1016_j_snb_2019_03_020 crossref_primary_10_1016_j_electacta_2019_06_131 crossref_primary_10_1016_j_jallcom_2019_02_061 crossref_primary_10_1016_j_jiec_2019_01_002 crossref_primary_10_1007_s10800_022_01724_8 crossref_primary_10_1016_j_tsf_2018_09_040 crossref_primary_10_1016_j_apsusc_2018_09_107 crossref_primary_10_1016_j_jiec_2018_05_016 crossref_primary_10_1016_j_ceramint_2018_11_066 crossref_primary_10_1016_j_jallcom_2018_07_328 crossref_primary_10_1016_j_solmat_2020_110674 crossref_primary_10_1016_j_apsusc_2020_145447 crossref_primary_10_1063_1_5145035 crossref_primary_10_1016_j_jallcom_2018_11_004 crossref_primary_10_1016_j_jallcom_2019_01_142 crossref_primary_10_1016_j_apsusc_2019_03_268 crossref_primary_10_1016_j_electacta_2018_12_088 crossref_primary_10_1007_s00339_020_3335_9 crossref_primary_10_1063_5_0022895 crossref_primary_10_1016_j_surfcoat_2018_10_105 crossref_primary_10_1016_j_jallcom_2018_09_398 crossref_primary_10_1016_j_jhazmat_2019_01_052 crossref_primary_10_1016_j_jallcom_2025_179915 crossref_primary_10_1016_j_jcis_2018_07_009 crossref_primary_10_1016_j_solener_2018_10_037 crossref_primary_10_1007_s11082_023_06266_7 crossref_primary_10_1016_j_ces_2019_02_006 crossref_primary_10_1007_s10854_018_0546_3 crossref_primary_10_1016_j_jallcom_2021_162444 crossref_primary_10_1016_j_solener_2018_08_001 crossref_primary_10_1016_j_matlet_2018_05_097 crossref_primary_10_1016_j_apsusc_2018_05_139 crossref_primary_10_1016_j_inoche_2024_112836 crossref_primary_10_1016_j_jallcom_2018_11_040 crossref_primary_10_1109_TNANO_2020_3022662 crossref_primary_10_1016_j_jallcom_2018_11_285 crossref_primary_10_1063_5_0022758 crossref_primary_10_1016_j_matlet_2021_129438 crossref_primary_10_1016_j_jallcom_2018_10_225 crossref_primary_10_1016_j_solmat_2019_109918 crossref_primary_10_1149_2_0241809jss crossref_primary_10_1049_mnl_2018_5822 crossref_primary_10_1016_j_jallcom_2018_06_081 crossref_primary_10_1016_j_jallcom_2019_152015 crossref_primary_10_1039_C9QM00727J crossref_primary_10_1002_pssa_202000233 crossref_primary_10_1016_j_apsusc_2018_12_282 crossref_primary_10_1016_j_matlet_2018_10_173 crossref_primary_10_1007_s10854_019_01046_0 crossref_primary_10_1007_s11082_022_04161_1 crossref_primary_10_1016_j_jallcom_2018_09_379 crossref_primary_10_1016_j_jiec_2018_11_025 crossref_primary_10_1016_j_electacta_2018_07_106 crossref_primary_10_1021_acsami_4c03440 crossref_primary_10_1016_j_jallcom_2018_11_155 crossref_primary_10_1039_D0RA07689A crossref_primary_10_1016_j_electacta_2020_137426 crossref_primary_10_1016_j_jallcom_2019_152491 crossref_primary_10_1016_j_jcrysgro_2018_10_001 crossref_primary_10_1021_acsaem_1c03939 crossref_primary_10_1016_j_rio_2024_100761 crossref_primary_10_1016_j_jallcom_2019_153461 crossref_primary_10_1007_s10854_020_02962_2 crossref_primary_10_1007_s11581_018_2721_1 crossref_primary_10_1016_j_jallcom_2019_06_011 crossref_primary_10_1016_j_jallcom_2019_152376 |
Cites_doi | 10.1063/1.4928527 10.1016/j.matlet.2012.10.083 10.1002/adma.201001455 10.1364/OL.42.000911 10.1063/1.4863826 10.1063/1.114508 10.1063/1.4788680 10.1016/j.jallcom.2014.09.072 10.1016/S0927-0248(97)00233-X 10.1063/1.2194315 10.1364/OE.21.011448 10.1016/j.solmat.2014.10.005 10.1016/j.solener.2004.05.014 10.1126/science.aaa5333 10.1143/APEX.4.062301 10.1016/j.apsusc.2007.12.019 10.1063/1.4788717 10.1016/j.jcrysgro.2009.07.020 10.1039/c2jm32660d 10.1039/C5NR02178B 10.7567/APEX.6.086503 10.1021/jp1004314 10.1016/j.solmat.2015.10.013 10.1109/TNANO.2014.2369438 10.1016/j.solmat.2015.11.045 10.1063/1.3310805 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z 10.1016/j.electacta.2007.09.030 |
ContentType | Journal Article |
Copyright | Author(s) 2018 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2018 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5017002 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_5017002 apl |
GrantInformation_xml | – fundername: Natural Science Foundation of Chongqing grantid: cstc2017jcyjBX0054,cstc2015jcyjA50023 funderid: http://dx.doi.org/10.13039/501100005230 – fundername: National Natural Science Foundation of China grantid: 61574024 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-7bb825d7a4ad82b7b6139807b820e5f8ee201263ae71d2bcc1b2ef0a59a527b83 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 16:46:23 EDT 2025 Tue Jul 01 01:15:58 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Fri Jun 21 00:14:23 EDT 2024 Sun Jul 14 10:05:10 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | 0003-6951/2018/112(4)/042106/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-7bb825d7a4ad82b7b6139807b820e5f8ee201263ae71d2bcc1b2ef0a59a527b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2115812826 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1063_1_5017002 proquest_journals_2115812826 crossref_citationtrail_10_1063_1_5017002 scitation_primary_10_1063_1_5017002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180122 2018-01-22 |
PublicationDateYYYYMMDD | 2018-01-22 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180122 day: 22 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2018 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Musa, Akomolafe, Carter (c6) 1998 Ravichandran, Dhanabalan, Vasuhi, Chandramohan, Mantha (c25) 2015 Cui, Gibson (c18) 2010 Fujimoto, Oku, Akiyama (c20) 2013 Zang, Nakamura, Temmyo (c13) 2013 Kronik, Burstein, Leibovitch, Shapira, Gal, Moons, Klenk (c2) 1995 Chatterjee, Saha, Pal (c4) 2016 Poulston, Parlett, Stone, Bowker (c24) 1996 Figueiredo, Elangovan, Goncalves, Barquinha, Pereira, Franco, Alves, Martins, Fortunato (c7) 2008 de Quilettes, Vorpahl, Stranks, Nagaoka, Eperon, Ziffer, Snaith, Ginger (c26) 2015 Niu, Zhou, Ye, Zhu (c15) 2016 Deo, Shinde, Yengantiwar, Jog, Hannoyer, Sauvage, More, Ogale (c27) 2012 Sun (c28) 2015 Zang, Tang (c17) 2015 Zang, Nakamura, Temmyo (c12) 2013 Hameş, San (c16) 2004 Minami, Nishi, Miyata, Nomoto (c21) 2011 Cai, Su, Ye, Wang, Tian, Zhang, Fan, Luo, Zheng, Liang, Roy (c10) 2015 Witte, Abou-Ras, Hariskos (c3) 2013 Williams, Taylor, Mendis, Phillips, Bowen, Major, Durose (c1) 2014 Kang, Hong, Choi, Kim, Hwang, Byun, Kim, Kim, Park (c9) 2010 Mittiga, Salza, Sarto, Tucci, Vasanthi (c22) 2006 Wei, Zang, Zhang, Wang, Du, Tang (c23) 2017 Pham, Rao, Andreasson, Peng, Wang, Jinesh (c11) 2013 Musselman, Wisnet, Iza, Hesse, Scheu, MacManus-Driscoll (c19) 2010 Jeong, Aydil (c8) 2009 Michele, Sven, Adam, Keller, Barad, Sberna, Nunes, Martins, Anderson, Zaban, Fortunato (c14) 2015 Jeong, Mittiga, Salza, Masci, Passerini (c5) 2008 (2023061722470891900_c13) 2013; 92 (2023061722470891900_c15) 2016; 144 (2023061722470891900_c21) 2011; 4 (2023061722470891900_c4) 2016; 147 (2023061722470891900_c14) 2015; 132 (2023061722470891900_c26) 2015; 348 (2023061722470891900_c10) 2015; 107 (2023061722470891900_c11) 2013; 102 (2023061722470891900_c18) 2010; 114 (2023061722470891900_c7) 2008; 254 (2023061722470891900_c19) 2010; 22 (2023061722470891900_c6) 1998; 51 (2023061722470891900_c17) 2015; 619 (2023061722470891900_c9) 2010; 107 (2023061722470891900_c22) 2006; 88 (2023061722470891900_c5) 2008; 53 (2023061722470891900_c23) 2017; 42 (2023061722470891900_c16) 2004; 77 (2023061722470891900_c24) 1996; 24 (2023061722470891900_c8) 2009; 311 (2023061722470891900_c27) 2012; 22 (2023061722470891900_c3) 2013; 102 (2023061722470891900_c28) 2015; 7 (2023061722470891900_c2) 1995; 67 (2023061722470891900_c20) 2013; 6 (2023061722470891900_c12) 2013; 21 (2023061722470891900_c25) 2015; 14 (2023061722470891900_c1) 2014; 104 |
References_xml | – start-page: 305 year: 1998 ident: c6 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 98 year: 2015 ident: c17 publication-title: J. Alloy. Compd. – start-page: 11448 year: 2013 ident: c12 publication-title: Opt. Express – start-page: 10850 year: 2015 ident: c28 publication-title: Nanoscale – start-page: 811 year: 1996 ident: c24 publication-title: Surf. Interface Anal. – start-page: 108 year: 2015 ident: c25 publication-title: IEEE Trans. Nanotechnol. – start-page: 1405 year: 1995 ident: c2 publication-title: Appl. Phys. Lett. – start-page: 911 year: 2017 ident: c23 publication-title: Opt. Lett. – start-page: 6408 year: 2010 ident: c18 publication-title: J. Phys. Chem. C – start-page: 086503 year: 2013 ident: c20 publication-title: Appl. Phys. Express – start-page: 053907 year: 2014 ident: c1 publication-title: Appl. Phys. Lett. – start-page: 051607 year: 2013 ident: c3 publication-title: Appl. Phys. Lett. – start-page: E254 year: 2010 ident: c19 publication-title: Adv. Mater. – start-page: 053704 year: 2010 ident: c9 publication-title: J. Appl. Phys. – start-page: 4188 year: 2009 ident: c8 publication-title: J. Cryst. Growth – start-page: 062301 year: 2011 ident: c21 publication-title: Appl. Phys. Express – start-page: 083901 year: 2015 ident: c10 publication-title: Appl. Phys. Lett. – start-page: 683 year: 2015 ident: c26 publication-title: Science – start-page: 17 year: 2016 ident: c4 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 2226 year: 2008 ident: c5 publication-title: Electrochim. Acta – start-page: 549 year: 2015 ident: c14 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 163502 year: 2006 ident: c22 publication-title: Appl. Phys. Lett. – start-page: 3949 year: 2008 ident: c7 publication-title: Appl. Surf. Sci. – start-page: 17055 year: 2012 ident: c27 publication-title: J. Mater. Chem. – start-page: 188 year: 2013 ident: c13 publication-title: Mater. Lett. – start-page: 717 year: 2016 ident: c15 publication-title: Sol. Energy Mater. Sol. Cells – start-page: 032101 year: 2013 ident: c11 publication-title: Appl. Phys. Lett. – start-page: 291 year: 2004 ident: c16 publication-title: Sol. Energy – volume: 107 start-page: 083901 year: 2015 ident: 2023061722470891900_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4928527 – volume: 92 start-page: 188 year: 2013 ident: 2023061722470891900_c13 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2012.10.083 – volume: 22 start-page: E254 year: 2010 ident: 2023061722470891900_c19 publication-title: Adv. Mater. doi: 10.1002/adma.201001455 – volume: 42 start-page: 911 year: 2017 ident: 2023061722470891900_c23 publication-title: Opt. Lett. doi: 10.1364/OL.42.000911 – volume: 104 start-page: 053907 year: 2014 ident: 2023061722470891900_c1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4863826 – volume: 67 start-page: 1405 issue: 10 year: 1995 ident: 2023061722470891900_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.114508 – volume: 102 start-page: 032101 year: 2013 ident: 2023061722470891900_c11 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788680 – volume: 619 start-page: 98 year: 2015 ident: 2023061722470891900_c17 publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2014.09.072 – volume: 51 start-page: 305 issue: 3–4 year: 1998 ident: 2023061722470891900_c6 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/S0927-0248(97)00233-X – volume: 88 start-page: 163502 year: 2006 ident: 2023061722470891900_c22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2194315 – volume: 21 start-page: 11448 year: 2013 ident: 2023061722470891900_c12 publication-title: Opt. Express doi: 10.1364/OE.21.011448 – volume: 132 start-page: 549 year: 2015 ident: 2023061722470891900_c14 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2014.10.005 – volume: 77 start-page: 291 year: 2004 ident: 2023061722470891900_c16 publication-title: Sol. Energy doi: 10.1016/j.solener.2004.05.014 – volume: 348 start-page: 683 year: 2015 ident: 2023061722470891900_c26 publication-title: Science doi: 10.1126/science.aaa5333 – volume: 4 start-page: 062301 year: 2011 ident: 2023061722470891900_c21 publication-title: Appl. Phys. Express doi: 10.1143/APEX.4.062301 – volume: 254 start-page: 3949 issue: 13 year: 2008 ident: 2023061722470891900_c7 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2007.12.019 – volume: 102 start-page: 051607 year: 2013 ident: 2023061722470891900_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4788717 – volume: 311 start-page: 4188 issue: 17 year: 2009 ident: 2023061722470891900_c8 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.07.020 – volume: 22 start-page: 17055 year: 2012 ident: 2023061722470891900_c27 publication-title: J. Mater. Chem. doi: 10.1039/c2jm32660d – volume: 7 start-page: 10850 year: 2015 ident: 2023061722470891900_c28 publication-title: Nanoscale doi: 10.1039/C5NR02178B – volume: 6 start-page: 086503 year: 2013 ident: 2023061722470891900_c20 publication-title: Appl. Phys. Express doi: 10.7567/APEX.6.086503 – volume: 114 start-page: 6408 year: 2010 ident: 2023061722470891900_c18 publication-title: J. Phys. Chem. C doi: 10.1021/jp1004314 – volume: 144 start-page: 717 year: 2016 ident: 2023061722470891900_c15 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.10.013 – volume: 14 start-page: 108 year: 2015 ident: 2023061722470891900_c25 publication-title: IEEE Trans. Nanotechnol. doi: 10.1109/TNANO.2014.2369438 – volume: 147 start-page: 17 year: 2016 ident: 2023061722470891900_c4 publication-title: Sol. Energy Mater. Sol. Cells doi: 10.1016/j.solmat.2015.11.045 – volume: 107 start-page: 053704 issue: 5 year: 2010 ident: 2023061722470891900_c9 publication-title: J. Appl. Phys. doi: 10.1063/1.3310805 – volume: 24 start-page: 811 year: 1996 ident: 2023061722470891900_c24 publication-title: Surf. Interface Anal. doi: 10.1002/(SICI)1096-9918(199611)24:12<811::AID-SIA191>3.0.CO;2-Z – volume: 53 start-page: 2226 year: 2008 ident: 2023061722470891900_c5 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2007.09.030 |
SSID | ssj0005233 |
Score | 2.6606839 |
Snippet | Cu2O is one of the attractive photovoltaic materials for solar cells because of its low cost, nontoxicity, and good mobility. In this paper, an obvious... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Copper oxides Crystal structure Energy conversion efficiency Foils Optical properties Oxidation Photovoltaic cells Rapid quenching (metallurgy) Solar cells Zinc oxide |
Title | Efficiency enhancement of ZnO/Cu2O solar cells with well oriented and micrometer grain sized Cu2O films |
URI | http://dx.doi.org/10.1063/1.5017002 https://www.proquest.com/docview/2115812826 |
Volume | 112 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3faxQxEMeDtoj6ULRaelolqA_Csm022Z-PpVaKWCvYQrmXJclmrwfXvaN39aF_vTPZZHcLh1RfliNkw5FPdvab2ZkJIZ-UZlzLqggN0yaM05qFhY7z0HDQpqyoc2MzvE9_pCcX8bfL5LI_QtFml6zUvr5bm1fyP1ShDbhiluw_kO0GhQb4DXzhCoTh-iDGx7b-g02eNM0V8vOf9sfNGVa-veVnwRI3rwE66F0mm3XXzbG-MapNdJxf26g8DIwJJnhkRLCc3qHnF2-vpzNX0NzXqnW6tfWJLIOZTQjqpPnYOaDHV9OJdK9F51WIMKAt5PyepRRhWrhisKY1jixDn6azl956RnywTOK1VhlkEDoI9hMs1sN4_-rpAgLlYvaYbHKQ-mCrNg-_nH7_NQjUEcKfe4j_yNeHSsVBN-R9VdFvFZ6CjmhDGgaq4fwF2XJynx627F6SR6bZJs8HRSC3yZOf7US-IpOeJx3wpPOaAs8DxEEtTWppUqRJkSb1NCnQpD1NamlSS5Pa2y3N1-Ti6_H50UnoDsIIteDZKsyUgo18lclYVjlXmQINVuQsg1ZmEnieDCDkqZAmiyqutI4UNzWTSSETDr3EDtlo5o3ZJZSrWKZY861IVcxyqSoNe-YsqZjQusrEiHz2E1n6qcPDSmaljVZIRRmVbs5H5EPXddGWRlnXac_TKN2Tsyw5bENAWMLOdkQ-doT-NsiaXr_nN32PclHVbx401lvyrF_ve2RjdXNr3oGuXKn3buH9AZQPd8A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficiency+enhancement+of+ZnO%2FCu2O+solar+cells+with+well+oriented+and+micrometer+grain+sized+Cu2O+films&rft.jtitle=Applied+physics+letters&rft.au=Zang%2C+Zhigang&rft.date=2018-01-22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=4&rft_id=info:doi/10.1063%2F1.5017002&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |