Contractivity of Transport Distances for the Kinetic Kuramoto Equation
We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all m...
Saved in:
Published in | Journal of statistical physics Vol. 156; no. 2; pp. 395 - 415 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Boston
Springer US
01.07.2014
Springer |
Subjects | |
Online Access | Get full text |
ISSN | 0022-4715 1572-9613 |
DOI | 10.1007/s10955-014-1005-z |
Cover
Abstract | We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein
p
-distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous
L
1
-contraction properties of the Kuramoto phase model. |
---|---|
AbstractList | We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein p-distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous [L.sup.1]-contraction properties of the Kuramoto phase model. Keywords Kuramoto model * Complete synchronization * Wasserstein distance * Contraction Mathematics Subject Classification 92D25 * 74A25 * 76N10 We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein p -distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous L 1 -contraction properties of the Kuramoto phase model. |
Audience | Academic |
Author | Kim, Yongduck Carrillo, José A. Choi, Young-Pil Ha, Seung-Yeal Kang, Moon-Jin |
Author_xml | – sequence: 1 givenname: José A. surname: Carrillo fullname: Carrillo, José A. organization: Department of Mathematics, Imperial College London – sequence: 2 givenname: Young-Pil surname: Choi fullname: Choi, Young-Pil email: youngpilc@gmail.com, youngpil.choi@imperial.ac.uk organization: Department of Mathematics, Imperial College London – sequence: 3 givenname: Seung-Yeal surname: Ha fullname: Ha, Seung-Yeal organization: Department of Mathematical Sciences and Research Institute of Mathematics, Seoul National University – sequence: 4 givenname: Moon-Jin surname: Kang fullname: Kang, Moon-Jin organization: Department of Mathematics, The University of Texas at Austin – sequence: 5 givenname: Yongduck surname: Kim fullname: Kim, Yongduck organization: Department of Mathematical Sciences, Seoul National University |
BookMark | eNp9kM1OAjEQgBuDiYA-gLe-QLE_2y09EgQ1kHjB86bbbbEEWmyLCTy9RTx5IHOYzCTf_HwD0PPBGwAeCR4RjMVTIlhyjjCpUKk5Ot2APuGCIlkT1gN9jClFlSD8DgxS2mCM5VjyPphPg89R6ey-XT7CYOEqKp_2IWb47FJWXpsEbYgwfxq4cN5kp-HiENUu5ABnXweVXfD34NaqbTIPf3kIPuaz1fQVLd9f3qaTJdKMioyE1GOFLaG0laJS3HQd52rMpGxxXam2IoKrzmJOlaWMCYMFl7xra60wo7xmQzC6zF2rrWmct-F8fInO7JwuSqwr_QkTrBKC1rIA5ALoGFKKxjb76HYqHhuCm7O55mKuKebONW9OhRH_GO3y75tlmdteJemFTGWLX5vYbMIh-mLkCvQDgk6FHA |
CitedBy_id | crossref_primary_10_1090_qam_1588 crossref_primary_10_1007_s00033_024_02406_5 crossref_primary_10_1080_03605302_2023_2300824 crossref_primary_10_1007_s00033_018_0984_z crossref_primary_10_1142_S0218202523500239 crossref_primary_10_1186_s13408_020_00086_9 crossref_primary_10_3934_krm_2022024 crossref_primary_10_3934_cpaa_2021013 crossref_primary_10_1007_s00023_015_0450_9 crossref_primary_10_1016_j_jcp_2018_09_049 crossref_primary_10_1016_j_jcp_2021_110275 crossref_primary_10_1016_j_physd_2019_132154 crossref_primary_10_1016_j_crma_2015_09_029 crossref_primary_10_1090_qam_1533 crossref_primary_10_1007_s00030_022_00796_x crossref_primary_10_1063_5_0029585 crossref_primary_10_1090_qam_1578 crossref_primary_10_1137_20M1368719 crossref_primary_10_1063_5_0199957 crossref_primary_10_1142_S0218202519500374 crossref_primary_10_1002_cpa_21741 crossref_primary_10_1007_s40324_024_00350_y crossref_primary_10_1007_s10955_015_1426_3 crossref_primary_10_1093_imanum_dry074 crossref_primary_10_1098_rspa_2018_0467 crossref_primary_10_1137_18M1173435 crossref_primary_10_1007_s10955_018_2169_8 crossref_primary_10_1007_s00526_023_02601_8 crossref_primary_10_1016_j_jde_2016_10_004 crossref_primary_10_1016_j_matpur_2015_11_001 |
Cites_doi | 10.1016/S0167-2789(98)00235-8 10.1017/CBO9780511755743 10.1109/TAC.2008.2007884 10.1103/RevModPhys.77.137 10.1016/j.physd.2011.11.011 10.1007/978-3-642-84371-6 10.1007/s00205-004-0307-8 10.1007/s00332-006-0806-x 10.1016/S0167-2789(00)00094-4 10.1137/090757290 10.1007/978-3-642-69689-3 10.1007/BF01029202 10.1016/0022-5193(67)90051-3 10.1142/S0218202511005131 10.4310/CMS.2013.v11.n2.a3 10.1007/s10955-004-8785-5 10.4310/CMS.2009.v7.n2.a2 10.1090/S0033-569X-2013-01302-0 10.1016/S0167-2789(00)00095-6 10.1080/00411450508951152 10.1016/j.physd.2010.05.003 10.1038/211562a0 10.1016/j.jde.2011.04.004 10.1051/m2an/1997310506151 10.23919/ACC.2004.1383983 10.1007/BFb0071878 10.1007/BFb0074532 |
ContentType | Journal Article |
Copyright | Springer Science+Business Media New York 2014 COPYRIGHT 2014 Springer |
Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: COPYRIGHT 2014 Springer |
DBID | AAYXX CITATION |
DOI | 10.1007/s10955-014-1005-z |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Physics |
EISSN | 1572-9613 |
EndPage | 415 |
ExternalDocumentID | A373477269 10_1007_s10955_014_1005_z |
GroupedDBID | -54 -5F -5G -BR -DZ -EM -Y2 -~C -~X .86 06D 0R~ 0VY 199 1N0 1SB 2.D 203 28- 29L 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAGAY AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBEA ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACREN ACUHS ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEGXH AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFFNX AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAGR AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. B0M BA0 BBWZM BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EAS EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GPTSA GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ H~9 I-F I09 IAO IGS IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW LAK LLZTM M4Y MA- MQGED N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9T PF- PT4 PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCLPG SDH SDM SGB SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC TUS U2A UG4 UOJIU UPT UTJUX UZXMN VC2 VFIZW VH1 VOH W23 W48 WH7 WK8 XOL YLTOR YQT YYP Z45 Z5O Z7R Z7S Z7U Z7W Z7X Z7Y Z7Z Z83 Z86 Z88 Z8M Z8Q Z8R Z8T Z8W Z92 ZMTXR ~8M ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACMFV ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP AMVHM ATHPR AYFIA CITATION AEIIB |
ID | FETCH-LOGICAL-c327t-79c8a0f122b974a5edd55a8399b064ab4175adf052af2337e07595db6ca032563 |
IEDL.DBID | AGYKE |
ISSN | 0022-4715 |
IngestDate | Tue Jun 10 20:43:27 EDT 2025 Thu Apr 24 22:51:02 EDT 2025 Tue Jul 01 02:18:19 EDT 2025 Fri Feb 21 02:36:29 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Complete synchronization Kuramoto model 92D25 74A25 Wasserstein distance Contraction 76N10 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-79c8a0f122b974a5edd55a8399b064ab4175adf052af2337e07595db6ca032563 |
PageCount | 21 |
ParticipantIDs | gale_infotracacademiconefile_A373477269 crossref_primary_10_1007_s10955_014_1005_z crossref_citationtrail_10_1007_s10955_014_1005_z springer_journals_10_1007_s10955_014_1005_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-07-01 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: 2014-07-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Boston |
PublicationPlace_xml | – name: Boston |
PublicationSubtitle | 1 |
PublicationTitle | Journal of statistical physics |
PublicationTitleAbbrev | J Stat Phys |
PublicationYear | 2014 |
Publisher | Springer US Springer |
Publisher_xml | – name: Springer US – name: Springer |
References | Mirollo, Strogatz (CR24) 2007; 17 Choi, Ha, Jung, Kim (CR10) 2012; 241 Choi, Ha, Kang, Kang (CR11) 2013; 11 Bisi, Carrillo, Toscani (CR4) 2005; 118 Benedetto, Caglioti, Pulvirenti (CR3) 1997; 31 Li, Toscani (CR22) 2004; 172 Spohn (CR28) 1991 CR19 CR18 Strogatz (CR29) 2000; 143 Ha, Kang (CR17) 2013; 71 Crawford, Davies (CR13) 1999; 125 Acebron, Bonilla, Pérez Vicente, Ritort, Spigler (CR1) 2005; 77 Balmforth, Sassi (CR2) 2000; 143 Carrillo, Fornasier, Rosado, Toscani (CR8) 2010; 42 Winfree (CR31) 1967; 16 Ha, Ha, Kim (CR15) 2010; 239 Pikovsky, Rosenblum, Kurths (CR26) 2001 Ha, Liu (CR14) 2009; 7 CR9 CR27 CR25 Ha, Slemrod (CR16) 2011; 251 Kuramoto (CR20) 1984 Cañizo, Carrillo, Rosado (CR6) 2011; 21 Villani (CR30) 2003 Buck, Buck (CR5) 1966; 211 Chopra, Spong (CR12) 2009; 54 Mirollo, Strogatz (CR23) 1991; 63 Carrillo, Toscani (CR7) 2004 Lancellotti (CR21) 2005; 34 H Li (1005_CR22) 2004; 172 J Buck (1005_CR5) 1966; 211 S-Y Ha (1005_CR16) 2011; 251 1005_CR9 NJ Balmforth (1005_CR2) 2000; 143 JA Acebron (1005_CR1) 2005; 77 D Benedetto (1005_CR3) 1997; 31 M Bisi (1005_CR4) 2005; 118 A Pikovsky (1005_CR26) 2001 JA Carrillo (1005_CR8) 2010; 42 1005_CR18 Y Kuramoto (1005_CR20) 1984 1005_CR19 R Mirollo (1005_CR24) 2007; 17 Y-P Choi (1005_CR11) 2013; 11 S-Y Ha (1005_CR14) 2009; 7 H Spohn (1005_CR28) 1991 AT Winfree (1005_CR31) 1967; 16 R Mirollo (1005_CR23) 1991; 63 1005_CR25 JA Carrillo (1005_CR7) 2004 1005_CR27 SH Strogatz (1005_CR29) 2000; 143 C Villani (1005_CR30) 2003 S-Y Ha (1005_CR17) 2013; 71 Y-P Choi (1005_CR10) 2012; 241 S-Y Ha (1005_CR15) 2010; 239 C Lancellotti (1005_CR21) 2005; 34 JD Crawford (1005_CR13) 1999; 125 JA Cañizo (1005_CR6) 2011; 21 N Chopra (1005_CR12) 2009; 54 |
References_xml | – volume: 125 start-page: 1 year: 1999 end-page: 46 ident: CR13 article-title: Synchronization of globally coupled phase oscillators: singularities and scaling for general couplings publication-title: Physica D doi: 10.1016/S0167-2789(98)00235-8 – ident: CR18 – year: 2001 ident: CR26 publication-title: Synchrnization: A Universal Concept in Nonlinear Sciences doi: 10.1017/CBO9780511755743 – volume: 54 start-page: 353 year: 2009 end-page: 357 ident: CR12 article-title: On exponential synchronization of Kuramoto oscillators publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2007884 – volume: 77 start-page: 137 year: 2005 end-page: 185 ident: CR1 article-title: The Kuramoto model: a simple paradigm for synchronization phenomena publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.137 – volume: 241 start-page: 735 year: 2012 end-page: 754 ident: CR10 article-title: Asymptotic formation and orbital stability of phase-locked states for the Kuramoto model publication-title: Physica D doi: 10.1016/j.physd.2011.11.011 – year: 1991 ident: CR28 publication-title: Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics doi: 10.1007/978-3-642-84371-6 – volume: 172 start-page: 407 year: 2004 end-page: 428 ident: CR22 article-title: Long-time asymptotics of kinetic models of granular flows publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-004-0307-8 – volume: 17 start-page: 309 year: 2007 end-page: 347 ident: CR24 article-title: The spectrum of the partially locked state for the Kuramoto model publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-006-0806-x – ident: CR25 – ident: CR27 – volume: 143 start-page: 1 year: 2000 ident: CR29 article-title: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators publication-title: Physica D doi: 10.1016/S0167-2789(00)00094-4 – volume: 42 start-page: 218 year: 2010 end-page: 236 ident: CR8 article-title: Asymptotic flocking dynamics for the kinetic Cucker–Smale model publication-title: SIAM J. Math. Anal. doi: 10.1137/090757290 – ident: CR19 – year: 1984 ident: CR20 publication-title: Chemical Oscillations, Waves and Turbulence doi: 10.1007/978-3-642-69689-3 – volume: 63 start-page: 613 year: 1991 end-page: 635 ident: CR23 article-title: Stability of incoherence in a population of coupled oscillators publication-title: J. Stat. Phys. doi: 10.1007/BF01029202 – volume: 16 start-page: 15 year: 1967 end-page: 42 ident: CR31 article-title: Biological rhythms and the behavior of populations of coupled oscillators publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(67)90051-3 – volume: 21 start-page: 515 year: 2011 end-page: 539 ident: CR6 article-title: A well-posedness theory in measures for some kinetic models of collective motion publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202511005131 – volume: 11 start-page: 385 year: 2013 end-page: 401 ident: CR11 article-title: Remarks on the synchronization of Kuramoto oscillators publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2013.v11.n2.a3 – volume: 31 start-page: 615 year: 1997 end-page: 641 ident: CR3 article-title: A kinetic equation for granular media publication-title: RAIRO Model. Math. Anal. Numer. – volume: 118 start-page: 301 year: 2005 end-page: 331 ident: CR4 article-title: Contractive metrics for a Boltzmann equation for granular gases: diffusive equilibria publication-title: J. Stat. Phys. doi: 10.1007/s10955-004-8785-5 – volume: 7 start-page: 297 year: 2009 end-page: 325 ident: CR14 article-title: A simple proof of Cucker–Smale flocking dynamics and mean field limit publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n2.a2 – volume: 71 start-page: 707 year: 2013 end-page: 728 ident: CR17 article-title: Emergence of bi-cluster configurations from the ensemble of Kuramoto oscillators publication-title: Q. Appl. Math. doi: 10.1090/S0033-569X-2013-01302-0 – ident: CR9 – volume: 143 start-page: 21 year: 2000 end-page: 55 ident: CR2 article-title: A shocking display of synchrony publication-title: Physica D doi: 10.1016/S0167-2789(00)00095-6 – volume: 34 start-page: 523 year: 2005 end-page: 535 ident: CR21 article-title: On the Vlasov limit for systems of nonlinearly coupled oscillators without noise publication-title: Transp. Theory Stat. Phys. doi: 10.1080/00411450508951152 – year: 2003 ident: CR30 publication-title: Topics in Optimal Transportation, Graduate Studies in Mathematics – year: 2004 ident: CR7 publication-title: Wasserstein Metric and Large-Time Asymptotics of Nonlinear Diffusion Equations in New Trends in Mathematical Physics – volume: 239 start-page: 1692 year: 2010 end-page: 1700 ident: CR15 article-title: On the complete synchronization for the globally coupled Kuramoto model publication-title: Physica D doi: 10.1016/j.physd.2010.05.003 – volume: 211 start-page: 562 year: 1966 ident: CR5 article-title: Biology of sychronous flashing of fireflies publication-title: Nature doi: 10.1038/211562a0 – volume: 251 start-page: 2685 year: 2011 end-page: 2695 ident: CR16 article-title: A fast-slow dynamical systems theory for the Kuramoto type phase model publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.04.004 – ident: 1005_CR19 – volume-title: Synchrnization: A Universal Concept in Nonlinear Sciences year: 2001 ident: 1005_CR26 doi: 10.1017/CBO9780511755743 – volume: 21 start-page: 515 year: 2011 ident: 1005_CR6 publication-title: Math. Models Methods Appl. Sci. doi: 10.1142/S0218202511005131 – volume-title: Wasserstein Metric and Large-Time Asymptotics of Nonlinear Diffusion Equations in New Trends in Mathematical Physics year: 2004 ident: 1005_CR7 – volume: 11 start-page: 385 year: 2013 ident: 1005_CR11 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2013.v11.n2.a3 – volume: 31 start-page: 615 year: 1997 ident: 1005_CR3 publication-title: RAIRO Model. Math. Anal. Numer. doi: 10.1051/m2an/1997310506151 – volume: 63 start-page: 613 year: 1991 ident: 1005_CR23 publication-title: J. Stat. Phys. doi: 10.1007/BF01029202 – volume-title: Topics in Optimal Transportation, Graduate Studies in Mathematics year: 2003 ident: 1005_CR30 – volume: 54 start-page: 353 year: 2009 ident: 1005_CR12 publication-title: IEEE Trans. Autom. Control doi: 10.1109/TAC.2008.2007884 – volume: 241 start-page: 735 year: 2012 ident: 1005_CR10 publication-title: Physica D doi: 10.1016/j.physd.2011.11.011 – ident: 1005_CR9 – ident: 1005_CR18 doi: 10.23919/ACC.2004.1383983 – volume: 239 start-page: 1692 year: 2010 ident: 1005_CR15 publication-title: Physica D doi: 10.1016/j.physd.2010.05.003 – volume: 172 start-page: 407 year: 2004 ident: 1005_CR22 publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-004-0307-8 – volume-title: Chemical Oscillations, Waves and Turbulence year: 1984 ident: 1005_CR20 doi: 10.1007/978-3-642-69689-3 – volume: 7 start-page: 297 year: 2009 ident: 1005_CR14 publication-title: Commun. Math. Sci. doi: 10.4310/CMS.2009.v7.n2.a2 – volume: 34 start-page: 523 year: 2005 ident: 1005_CR21 publication-title: Transp. Theory Stat. Phys. doi: 10.1080/00411450508951152 – volume: 143 start-page: 1 year: 2000 ident: 1005_CR29 publication-title: Physica D doi: 10.1016/S0167-2789(00)00094-4 – volume: 251 start-page: 2685 year: 2011 ident: 1005_CR16 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2011.04.004 – volume: 143 start-page: 21 year: 2000 ident: 1005_CR2 publication-title: Physica D doi: 10.1016/S0167-2789(00)00095-6 – ident: 1005_CR25 doi: 10.1007/BFb0071878 – ident: 1005_CR27 doi: 10.1007/BFb0074532 – volume: 17 start-page: 309 year: 2007 ident: 1005_CR24 publication-title: J. Nonlinear Sci. doi: 10.1007/s00332-006-0806-x – volume: 211 start-page: 562 year: 1966 ident: 1005_CR5 publication-title: Nature doi: 10.1038/211562a0 – volume: 125 start-page: 1 year: 1999 ident: 1005_CR13 publication-title: Physica D doi: 10.1016/S0167-2789(98)00235-8 – volume: 71 start-page: 707 year: 2013 ident: 1005_CR17 publication-title: Q. Appl. Math. doi: 10.1090/S0033-569X-2013-01302-0 – volume: 16 start-page: 15 year: 1967 ident: 1005_CR31 publication-title: J. Theor. Biol. doi: 10.1016/0022-5193(67)90051-3 – volume: 118 start-page: 301 year: 2005 ident: 1005_CR4 publication-title: J. Stat. Phys. doi: 10.1007/s10955-004-8785-5 – volume-title: Large Scale Dynamics of Interacting Particles, Texts and Monographs in Physics year: 1991 ident: 1005_CR28 doi: 10.1007/978-3-642-84371-6 – volume: 42 start-page: 218 year: 2010 ident: 1005_CR8 publication-title: SIAM J. Math. Anal. doi: 10.1137/090757290 – volume: 77 start-page: 137 year: 2005 ident: 1005_CR1 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.77.137 |
SSID | ssj0009895 |
Score | 2.3503532 |
Snippet | We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For... |
SourceID | gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 395 |
SubjectTerms | Mathematical and Computational Physics Physical Chemistry Physics Physics and Astronomy Quantum Physics Statistical Physics and Dynamical Systems Theoretical |
Title | Contractivity of Transport Distances for the Kinetic Kuramoto Equation |
URI | https://link.springer.com/article/10.1007/s10955-014-1005-z |
Volume | 156 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT8IwEL8IxIQXP1AjfpA-mJhoRsa6buvjUCaRyBMk-LR0XfeiAYXxwl_vdR8gRk14XNJeurvr9df07ncANypB1OrIjiFkTA2bKdMQgkUG-gqe_rGT8KzZxMvQ6Y_t5wmbFHXcizLbvXySzCL1t2I3znSimY2hw2TGqgI11vG4V4Wa__Q66G24dj3OSpJwjL2sfMz8TcjWcVQG5e0n0eykCQ5hVK4xTzB5ay_TqC1XP-gbd_yJIzgokCfxc1c5hj01bcB-lgEqFw2oa9iZszafQKBJq7L6Kd1agswSsiZBJ48acerka4J4lyB-JANEqjiPDJZzgZafkd5nTiB-CuOgN3roG0XHBUNSy00Nl0tPmEnHsiK8Zwim4pgxgRiKRwhdRGQj2BBxYjJLJBalrkLAwVkcOVKYFMETPYPqdDZV57oWnEdS2kpjJDsWiVAdMzFRJO56JRhtglkqPpQFHbnuivEeboiUta5C1JX-ZuGqCXfrKR85F8d_g2-1NUO9T7XCRFFugKvTjFehT11q49XC4U24L20VFht48bfci51GX0Ld0sbO8nuvoJrOl-oaUUwatdBrg2532Cq8twWVseV_AYTr6nE |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LSwMxEMeDVsReRKtifeYgCEog3Wx2m2PRlmofpxZ6C9lscpJW-7j00zuzj2pBBY8LSVgmyeQXMvMfQu6cB2qNbIMZmwoWSseZMTJhsFbg9E8jr7JiE4Nh1B2HrxM5KfK4F2W0e_kkmXnqb8luSmKgWQiug0u23iV7wAJNLFswDlpfSrtNJUuJcPC8snzK_GmIrcOodMnbD6LZOdM5IocFINJWPqPHZMdNa2Q_C9S0ixqpIh3m4sonpIPaUlmaE1aAoDNPN1rl9BnBEGOkKWApBcyjPQBK6Ed7q7mBCZrR9keu831Kxp326KnLisIIzIogXrJY2abhvhEECVwHjHRpKqUB1FEJEIZJQmACk3ouA-MDIWIHXKBkmkTWcAGMI85IZTqbunNM2VaJtaFDlAlT441rcM9hSNiczkhRJ7y0kLaFajgWr3jTX3rHaFQNRsVvqdd18rDp8p5LZvzV-B7NrnE7ocFMkRUAf4fCVLolYhHCDSBSdfJYzowu9tni93Ev_tX6lhx0R4O-7r8Me5ekGuAKyUJyr0hlOV-5awCPZXKTLbRPZz_N6Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3PS8MwFMeDTpRdRKfi_JmDIChlbdO0y3HoxnQ6PDjYLaRpcpJubt1lf73v9cfmQAWPhSSUl5fkE_Le9xFyYyxQa6g9R-mEOQE3rqMUjx3wFTj9k9CKvNjE6zDsj4LnMR-XdU7nVbR79SRZ5DSgSlOataaJbX1LfBMcg84C2EZc7iy3yQ7sxh46-sjvrFV324JXcuGwC_PqWfOnITYOpmp73nwczc-c3gHZL2GRdorZPSRbJm2Q3TxoU88bpI6kWAgtH5Ee6kzlKU9YDYJOLF3pltNHhESMl6aAqBSQjw4ALqEfHSxmCiZrQrufheb3MRn1uu8PfacskuBo5keZEwndVq71fD-Gq4HiJkk4V4A9IgbaUHEAfKAS63JfWZ-xyAAjCJ7EoVYuA95hJ6SWTlJziunbItY6MIg1QaKsMp5rXRgSFqpRnDWJW1lI6lJBHAtZfMi19jEaVYJR8ZvLZZPcrbpMC_mMvxrfotklLi00mCozBODvUKRKdljEArgNhKJJ7quZkeWam_8-7tm_Wl-TvbfHnnx5Gg7OSd1HB8mjcy9ILZstzCUwSBZf5X72BYNV0iU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Contractivity+of+Transport+Distances+for+the+Kinetic+Kuramoto+Equation&rft.jtitle=Journal+of+statistical+physics&rft.au=Carrillo%2C+Jos%C3%A9+A.&rft.au=Choi%2C+Young-Pil&rft.au=Ha%2C+Seung-Yeal&rft.au=Kang%2C+Moon-Jin&rft.date=2014-07-01&rft.issn=0022-4715&rft.eissn=1572-9613&rft.volume=156&rft.issue=2&rft.spage=395&rft.epage=415&rft_id=info:doi/10.1007%2Fs10955-014-1005-z&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10955_014_1005_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-4715&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-4715&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-4715&client=summon |