Fecal Microbiome and Urine Metabolome Profiling of Type 2 Diabetes

Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus h...

Full description

Saved in:
Bibliographic Details
Published inJournal of microbiology and biotechnology Vol. 35; pp. e2411071 - 9
Main Authors Yi, Hye-Min, Won, Seok, Pak, Juhan, Park, Seong-Eun, Kim, Mi-Ri, Kim, Ji-Hyun, Park, Eun-Young, Hwang, Sun-Young, Lee, Mee-Hyun, Son, Hong-Seok, Kwak, Suryang
Format Journal Article
LanguageEnglish
Published Korea (South) 한국미생물·생명공학회 11.03.2025
Subjects
Online AccessGet full text
ISSN1017-7825
1738-8872
DOI10.4014/jmb.2411.11071

Cover

Abstract Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as - showed positive correlation with type 2 diabetes, while demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy.
AbstractList Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as Escherichia-Shigella showed positive correlation with type 2 diabetes, while Lacticaseibacillus demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy KCI Citation Count: 0
Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as - showed positive correlation with type 2 diabetes, while demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy.
ArticleNumber e2411071
Author Lee, Mee-Hyun
Kwak, Suryang
Hwang, Sun-Young
Kim, Mi-Ri
Park, Eun-Young
Kim, Ji-Hyun
Son, Hong-Seok
Won, Seok
Pak, Juhan
Park, Seong-Eun
Yi, Hye-Min
Author_xml – sequence: 1
  givenname: Hye-Min
  surname: Yi
  fullname: Yi, Hye-Min
  organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea, Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea
– sequence: 2
  givenname: Seok
  surname: Won
  fullname: Won, Seok
  organization: Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
– sequence: 3
  givenname: Juhan
  surname: Pak
  fullname: Pak, Juhan
  organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
– sequence: 4
  givenname: Seong-Eun
  surname: Park
  fullname: Park, Seong-Eun
  organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
– sequence: 5
  givenname: Mi-Ri
  surname: Kim
  fullname: Kim, Mi-Ri
  organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea
– sequence: 6
  givenname: Ji-Hyun
  surname: Kim
  fullname: Kim, Ji-Hyun
  organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea
– sequence: 7
  givenname: Eun-Young
  surname: Park
  fullname: Park, Eun-Young
  organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea
– sequence: 8
  givenname: Sun-Young
  surname: Hwang
  fullname: Hwang, Sun-Young
  organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
– sequence: 9
  givenname: Mee-Hyun
  surname: Lee
  fullname: Lee, Mee-Hyun
  organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea
– sequence: 10
  givenname: Hong-Seok
  surname: Son
  fullname: Son, Hong-Seok
  organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
– sequence: 11
  givenname: Suryang
  surname: Kwak
  fullname: Kwak, Suryang
  organization: Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40147938$$D View this record in MEDLINE/PubMed
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNo9kD1PwzAYhC1URD9gZUSekRL8FdsZS6FQqRUItbPlOHblNokrpwz99yQtMN3p1XOvdDcGgyY0FoB7jFKGMHva1UVKGMYpxkjgKzDCgspESkEGnUdYJEKSbAjGbbtDiGMi-Q0Y9lGRUzkCz3NrdAVX3sRQ-FBbqJsSbqJvLFzZoy5C1R8_Y3C-8s0WBgfXp4OFBL54XdijbW_BtdNVa-9-dQI289f17D1ZfrwtZtNlYigRx0SQjLBMSE65ttQ6RrmRzCEsy4JpZnPKSWkIZ4QJbSTvHHIZpdJIwXFJ6QQ8Xv420am98Spof9ZtUPuopl_rhcKI5znNcAc_XODDd1HbUh2ir3U8qb_mHZBegK5420br_hGMzpTqplX9tOo8Lf0BDmtoBA
Cites_doi 10.3390/diabetology5010004
10.1371/journal.pcbi.1009442
10.1016/j.biopha.2023.114703
10.2337/dc16-0351
10.1007/s00726-017-2508-0
10.4239/wjd.v13.i9.717
10.2337/diabetes.26.3.215
10.1038/s41598-017-01735-y
10.1016/j.jff.2023.105805
10.1093/bioinformatics/btg412
10.1128/AEM.66.4.1654-1661.2000
10.1016/j.ebiom.2019.11.051
10.2337/dci24-0052
10.1007/s13668-020-00307-3
10.1038/srep21924
10.3389/fmicb.2023.1184734
10.3389/fcimb.2023.1218326
10.1007/s11255-022-03326-x
10.23876/j.krcp.22.152
10.3389/fimmu.2020.00906
10.1093/nar/gks1219
10.1007/978-3-319-24277-4_9
10.1515/jbcpp-2019-0105
10.3346/jkms.2017.32.6.985
10.3389/fendo.2021.636175
10.1039/C7MB00167C
10.1186/s13293-022-00440-4
10.1079/BJN19870088
10.1111/j.1348-0421.2000.tb01242.x
10.1038/s41467-019-13036-1
10.1371/journal.pone.0183228
10.3390/nu11030524
10.1021/pr300900b
10.1080/21655979.2021.2009752
10.1016/j.scib.2023.12.053
10.1186/s12889-021-10450-3
10.1038/ki.2013.328
10.4137/BMI.S7513
10.1007/s11306-018-1380-6
10.2337/dci23-0085
10.7759/cureus.56674
10.3390/ijms24076828
10.1078/0723-2020-00096
10.1186/1471-2105-12-77
10.1186/gb-2011-12-6-r60
10.1016/j.xkme.2022.100522
10.1093/ije/dyad162
10.1186/s12864-024-10621-7
10.1038/nmeth.3869
10.21037/atm.2020.01.42
10.3389/fnut.2022.1081778
10.1136/gutjnl-2020-322753
10.3390/foods11020231
10.1038/s41598-021-82726-y
10.2337/db22-0168
10.1002/hsr2.2004
10.3390/metabo11090614
10.1016/j.diabres.2019.107843
10.7759/cureus.45835
10.2337/dc21-1705
10.1038/ki.2010.509
ContentType Journal Article
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
ACYCR
DOI 10.4014/jmb.2411.11071
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Korean Citation Index
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1738-8872
EndPage 9
ExternalDocumentID oai_kci_go_kr_ARTI_10699351
40147938
10_4014_jmb_2411_11071
Genre Journal Article
GroupedDBID ---
29L
53G
5GY
9ZL
AAYXX
ACYCR
ADBBV
AENEX
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
DU5
F5P
FRP
GX1
HZB
JDI
OK1
P2P
RPM
SDH
TR2
CGR
CUY
CVF
ECM
EIF
NPM
MZR
ZZE
ID FETCH-LOGICAL-c327t-72524578636ae3ef436c84f018db4a4e9362dc264247ac862640f5338c8761d33
ISSN 1017-7825
IngestDate Sat Apr 05 03:22:47 EDT 2025
Fri May 16 03:53:05 EDT 2025
Tue Jul 01 04:56:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Type 2 diabetes
biomarker
fecal microbiome
urine metabolome
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-72524578636ae3ef436c84f018db4a4e9362dc264247ac862640f5338c8761d33
OpenAccessLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470
PMID 40147938
PageCount 9
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_10699351
pubmed_primary_40147938
crossref_primary_10_4014_jmb_2411_11071
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-Mar-11
PublicationDateYYYYMMDD 2025-03-11
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-Mar-11
  day: 11
PublicationDecade 2020
PublicationPlace Korea (South)
PublicationPlace_xml – name: Korea (South)
PublicationTitle Journal of microbiology and biotechnology
PublicationTitleAlternate J Microbiol Biotechnol
PublicationYear 2025
Publisher 한국미생물·생명공학회
Publisher_xml – name: 한국미생물·생명공학회
References ref13
ref57
ref12
ref56
ref15
ref59
ref14
ref58
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref64
ref63
ref22
ref21
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref8
  doi: 10.3390/diabetology5010004
– ident: ref20
  doi: 10.1371/journal.pcbi.1009442
– ident: ref29
  doi: 10.1016/j.biopha.2023.114703
– ident: ref12
  doi: 10.2337/dc16-0351
– ident: ref43
  doi: 10.1007/s00726-017-2508-0
– ident: ref5
– ident: ref59
  doi: 10.4239/wjd.v13.i9.717
– ident: ref35
  doi: 10.2337/diabetes.26.3.215
– ident: ref28
  doi: 10.1038/s41598-017-01735-y
– ident: ref60
  doi: 10.1016/j.jff.2023.105805
– ident: ref19
  doi: 10.1093/bioinformatics/btg412
– ident: ref53
  doi: 10.1128/AEM.66.4.1654-1661.2000
– ident: ref56
  doi: 10.1016/j.ebiom.2019.11.051
– ident: ref13
  doi: 10.2337/dci24-0052
– ident: ref55
  doi: 10.1007/s13668-020-00307-3
– ident: ref50
  doi: 10.1038/srep21924
– ident: ref62
  doi: 10.3389/fmicb.2023.1184734
– ident: ref24
  doi: 10.3389/fcimb.2023.1218326
– ident: ref10
  doi: 10.1007/s11255-022-03326-x
– ident: ref36
  doi: 10.23876/j.krcp.22.152
– ident: ref54
  doi: 10.3389/fimmu.2020.00906
– ident: ref17
  doi: 10.1093/nar/gks1219
– ident: ref23
  doi: 10.1007/978-3-319-24277-4_9
– ident: ref7
  doi: 10.1515/jbcpp-2019-0105
– ident: ref33
  doi: 10.3346/jkms.2017.32.6.985
– ident: ref46
  doi: 10.3389/fendo.2021.636175
– ident: ref37
  doi: 10.1039/C7MB00167C
– ident: ref32
  doi: 10.1186/s13293-022-00440-4
– ident: ref42
  doi: 10.1079/BJN19870088
– ident: ref52
  doi: 10.1111/j.1348-0421.2000.tb01242.x
– ident: ref25
  doi: 10.1038/s41467-019-13036-1
– ident: ref16
– ident: ref31
  doi: 10.1371/journal.pone.0183228
– ident: ref49
  doi: 10.3390/nu11030524
– ident: ref45
  doi: 10.1021/pr300900b
– ident: ref61
  doi: 10.1080/21655979.2021.2009752
– ident: ref48
  doi: 10.1016/j.scib.2023.12.053
– ident: ref2
  doi: 10.1186/s12889-021-10450-3
– ident: ref40
  doi: 10.1038/ki.2013.328
– ident: ref64
  doi: 10.4137/BMI.S7513
– ident: ref38
  doi: 10.1007/s11306-018-1380-6
– ident: ref4
  doi: 10.2337/dci23-0085
– ident: ref9
  doi: 10.7759/cureus.56674
– ident: ref39
  doi: 10.3390/ijms24076828
– ident: ref51
  doi: 10.1078/0723-2020-00096
– ident: ref22
  doi: 10.1186/1471-2105-12-77
– ident: ref21
  doi: 10.1186/gb-2011-12-6-r60
– ident: ref41
  doi: 10.1016/j.xkme.2022.100522
– ident: ref44
  doi: 10.1093/ije/dyad162
– ident: ref27
  doi: 10.1186/s12864-024-10621-7
– ident: ref15
  doi: 10.1038/nmeth.3869
– ident: ref30
  doi: 10.21037/atm.2020.01.42
– ident: ref63
  doi: 10.3389/fnut.2022.1081778
– ident: ref57
  doi: 10.1136/gutjnl-2020-322753
– ident: ref58
  doi: 10.3390/foods11020231
– ident: ref26
  doi: 10.1038/s41598-021-82726-y
– ident: ref14
  doi: 10.2337/db22-0168
– ident: ref1
  doi: 10.1002/hsr2.2004
– ident: ref18
– ident: ref47
  doi: 10.3390/metabo11090614
– ident: ref3
  doi: 10.1016/j.diabres.2019.107843
– ident: ref6
  doi: 10.7759/cureus.45835
– ident: ref11
  doi: 10.2337/dc21-1705
– ident: ref34
  doi: 10.1038/ki.2010.509
SSID ssj0061286
Score 2.386707
Snippet Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive...
SourceID nrf
pubmed
crossref
SourceType Open Website
Index Database
StartPage e2411071
SubjectTerms Adult
Aged
Bacteria - classification
Bacteria - genetics
Bacteria - isolation & purification
Biomarkers - urine
Diabetes Mellitus, Type 2 - diagnosis
Diabetes Mellitus, Type 2 - metabolism
Diabetes Mellitus, Type 2 - microbiology
Diabetes Mellitus, Type 2 - urine
Feces - microbiology
Female
Gas Chromatography-Mass Spectrometry
Gastrointestinal Microbiome
Humans
Male
Metabolome
Metabolomics - methods
Microbiota
Middle Aged
RNA, Ribosomal, 16S - genetics
Urine - chemistry
생물학
Title Fecal Microbiome and Urine Metabolome Profiling of Type 2 Diabetes
URI https://www.ncbi.nlm.nih.gov/pubmed/40147938
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Microbiology and Biotechnology, 2025, 35(0), , pp.1-9
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELboEBIviN-MH5MlkHhAGY3tONkjoE0DKVMlWjGerNixt2o0RSV7GH89n-0soWVIg5c0smIn8nc9f3f23RHyqq4BqoaZ6hz-bkKPq6TiElbrmGleSXAC6_0d5ZE8nIlPx9nxUN4qRJe0etf8vDKu5H9QRRtw9VGy_4BsPygacA98cQXCuF4L4wPrZ7icx2RKi7gTMPPxfG9K2wLeb75xEspyd6ebp9Hl2h2E-fEXbrqYb-Rnwn37hxP-a6x4fWGTct7L2Je4jf_ZLvsYILDUGAByOojipDujjeeak2T_vPnd_cAyf_6qU49RY_plDjQjbk3b2JZDi0J7ranZmJVkU2PDvBNeYy_0LrhE6qMSYkmW9dTYG0tWf5AQJowfQaG_8v1V6D8iN1meh1374LyJCzO4XCj82X9xzOHp-79df_8aRxk1K7dhcwTuMb1L7nTA0HdRAu6RG7a5T27FMqIXD8j7IAd0kAMKyGiQAzrIAe3lgC4d9XJAGb2Ug4dkdrA__XCYdLUxEsNZ3iY5y5iAtpVcVpZbJ7g0hXDjtKi1qITdAzGpDdguE3llvNkqxg7UvjBY_tKa80dkq1k29gmheaa51M7WsL1FxYrCGJcaaU1aZXKP19vk9eVsqO8xBYq6et63yUtMljozc-Wzlvvfk6U6WynYZh_RR4IMZ3jqcZzMfjQ_FNaJ4um13_SM3B6E8TnZalfn9gXYYat3yOhoUu4E5H8BwatfjA
linkProvider National Library of Medicine
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+Microbiome+and+Urine+Metabolome+Profiling+of+Type+2+Diabetes&rft.jtitle=Journal+of+microbiology+and+biotechnology&rft.au=Yi%2C+Hye-Min&rft.au=Won%2C+Seok&rft.au=Pak%2C+Juhan&rft.au=Park%2C+Seong-Eun&rft.date=2025-03-11&rft.issn=1017-7825&rft.eissn=1738-8872&rft.volume=35&rft_id=info:doi/10.4014%2Fjmb.2411.11071&rft.externalDBID=n%2Fa&rft.externalDocID=10_4014_jmb_2411_11071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-7825&client=summon