Fecal Microbiome and Urine Metabolome Profiling of Type 2 Diabetes
Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus h...
Saved in:
Published in | Journal of microbiology and biotechnology Vol. 35; pp. e2411071 - 9 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Korea (South)
한국미생물·생명공학회
11.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 1017-7825 1738-8872 |
DOI | 10.4014/jmb.2411.11071 |
Cover
Abstract | Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as
-
showed positive correlation with type 2 diabetes, while
demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy. |
---|---|
AbstractList | Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol.
In the fecal microbiome, genera such as Escherichia-Shigella showed positive correlation with type 2 diabetes, while Lacticaseibacillus demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy KCI Citation Count: 0 Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive elucidation of its pathophysiological mechanisms. We compared fecal microbiome and urine metabolome profiles in type 2 diabetes patients versus healthy controls to evaluate their respective diagnostic potential. Using a cohort of 94 subjects (48 diabetics, 46 controls), this study employed 16S rRNA amplicon sequencing for fecal microbiome analysis and GC-MS for urinary metabolomics. While fecal microbiome alpha diversity showed no significant differences between groups, urinary metabolomics demonstrated distinct structural patterns and higher evenness in type 2 diabetes patients. The study identified several diabetes-associated urinary metabolites, including elevated levels of glucose and inositol, along with decreased levels of 6 urine metabolites including glycolic acid, hippurate, and 2-aminoethanol. In the fecal microbiome, genera such as - showed positive correlation with type 2 diabetes, while demonstrated negative correlation. Receiver operating characteristic curve analyses revealed that urinary metabolites exhibited superior diagnostic potential compared to fecal microbiome features, with an area under the curve of 0.90 for the combined metabolite model versus 0.82 for the integrated bacterial taxa model. These findings suggest that urinary metabolomics may offer a more reliable approach for type 2 diabetes diagnosis compared to fecal 16S metabarcoding, while highlighting the potential of multi-marker panels for enhanced diagnostic accuracy. |
ArticleNumber | e2411071 |
Author | Lee, Mee-Hyun Kwak, Suryang Hwang, Sun-Young Kim, Mi-Ri Park, Eun-Young Kim, Ji-Hyun Son, Hong-Seok Won, Seok Pak, Juhan Park, Seong-Eun Yi, Hye-Min |
Author_xml | – sequence: 1 givenname: Hye-Min surname: Yi fullname: Yi, Hye-Min organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea, Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea – sequence: 2 givenname: Seok surname: Won fullname: Won, Seok organization: Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea – sequence: 3 givenname: Juhan surname: Pak fullname: Pak, Juhan organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 4 givenname: Seong-Eun surname: Park fullname: Park, Seong-Eun organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 5 givenname: Mi-Ri surname: Kim fullname: Kim, Mi-Ri organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea – sequence: 6 givenname: Ji-Hyun surname: Kim fullname: Kim, Ji-Hyun organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea – sequence: 7 givenname: Eun-Young surname: Park fullname: Park, Eun-Young organization: Dangbom Korean Medicine Clinic, Seoul 03192, Republic of Korea – sequence: 8 givenname: Sun-Young surname: Hwang fullname: Hwang, Sun-Young organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea – sequence: 9 givenname: Mee-Hyun surname: Lee fullname: Lee, Mee-Hyun organization: College of Korean Medicine, Dongshin University, Naju 58245, Republic of Korea – sequence: 10 givenname: Hong-Seok surname: Son fullname: Son, Hong-Seok organization: Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea – sequence: 11 givenname: Suryang surname: Kwak fullname: Kwak, Suryang organization: Department of Bio and Fermentation Convergence Technology, College of Science and Technology, Kookmin University, Seoul 02707, Republic of Korea |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40147938$$D View this record in MEDLINE/PubMed https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNo9kD1PwzAYhC1URD9gZUSekRL8FdsZS6FQqRUItbPlOHblNokrpwz99yQtMN3p1XOvdDcGgyY0FoB7jFKGMHva1UVKGMYpxkjgKzDCgspESkEGnUdYJEKSbAjGbbtDiGMi-Q0Y9lGRUzkCz3NrdAVX3sRQ-FBbqJsSbqJvLFzZoy5C1R8_Y3C-8s0WBgfXp4OFBL54XdijbW_BtdNVa-9-dQI289f17D1ZfrwtZtNlYigRx0SQjLBMSE65ttQ6RrmRzCEsy4JpZnPKSWkIZ4QJbSTvHHIZpdJIwXFJ6QQ8Xv420am98Spof9ZtUPuopl_rhcKI5znNcAc_XODDd1HbUh2ir3U8qb_mHZBegK5420br_hGMzpTqplX9tOo8Lf0BDmtoBA |
Cites_doi | 10.3390/diabetology5010004 10.1371/journal.pcbi.1009442 10.1016/j.biopha.2023.114703 10.2337/dc16-0351 10.1007/s00726-017-2508-0 10.4239/wjd.v13.i9.717 10.2337/diabetes.26.3.215 10.1038/s41598-017-01735-y 10.1016/j.jff.2023.105805 10.1093/bioinformatics/btg412 10.1128/AEM.66.4.1654-1661.2000 10.1016/j.ebiom.2019.11.051 10.2337/dci24-0052 10.1007/s13668-020-00307-3 10.1038/srep21924 10.3389/fmicb.2023.1184734 10.3389/fcimb.2023.1218326 10.1007/s11255-022-03326-x 10.23876/j.krcp.22.152 10.3389/fimmu.2020.00906 10.1093/nar/gks1219 10.1007/978-3-319-24277-4_9 10.1515/jbcpp-2019-0105 10.3346/jkms.2017.32.6.985 10.3389/fendo.2021.636175 10.1039/C7MB00167C 10.1186/s13293-022-00440-4 10.1079/BJN19870088 10.1111/j.1348-0421.2000.tb01242.x 10.1038/s41467-019-13036-1 10.1371/journal.pone.0183228 10.3390/nu11030524 10.1021/pr300900b 10.1080/21655979.2021.2009752 10.1016/j.scib.2023.12.053 10.1186/s12889-021-10450-3 10.1038/ki.2013.328 10.4137/BMI.S7513 10.1007/s11306-018-1380-6 10.2337/dci23-0085 10.7759/cureus.56674 10.3390/ijms24076828 10.1078/0723-2020-00096 10.1186/1471-2105-12-77 10.1186/gb-2011-12-6-r60 10.1016/j.xkme.2022.100522 10.1093/ije/dyad162 10.1186/s12864-024-10621-7 10.1038/nmeth.3869 10.21037/atm.2020.01.42 10.3389/fnut.2022.1081778 10.1136/gutjnl-2020-322753 10.3390/foods11020231 10.1038/s41598-021-82726-y 10.2337/db22-0168 10.1002/hsr2.2004 10.3390/metabo11090614 10.1016/j.diabres.2019.107843 10.7759/cureus.45835 10.2337/dc21-1705 10.1038/ki.2010.509 |
ContentType | Journal Article |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM ACYCR |
DOI | 10.4014/jmb.2411.11071 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Korean Citation Index |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1738-8872 |
EndPage | 9 |
ExternalDocumentID | oai_kci_go_kr_ARTI_10699351 40147938 10_4014_jmb_2411_11071 |
Genre | Journal Article |
GroupedDBID | --- 29L 53G 5GY 9ZL AAYXX ACYCR ADBBV AENEX ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK DU5 F5P FRP GX1 HZB JDI OK1 P2P RPM SDH TR2 CGR CUY CVF ECM EIF NPM MZR ZZE |
ID | FETCH-LOGICAL-c327t-72524578636ae3ef436c84f018db4a4e9362dc264247ac862640f5338c8761d33 |
ISSN | 1017-7825 |
IngestDate | Sat Apr 05 03:22:47 EDT 2025 Fri May 16 03:53:05 EDT 2025 Tue Jul 01 04:56:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Type 2 diabetes biomarker fecal microbiome urine metabolome |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-72524578636ae3ef436c84f018db4a4e9362dc264247ac862640f5338c8761d33 |
OpenAccessLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470 |
PMID | 40147938 |
PageCount | 9 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_10699351 pubmed_primary_40147938 crossref_primary_10_4014_jmb_2411_11071 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-Mar-11 |
PublicationDateYYYYMMDD | 2025-03-11 |
PublicationDate_xml | – month: 03 year: 2025 text: 2025-Mar-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | Korea (South) |
PublicationPlace_xml | – name: Korea (South) |
PublicationTitle | Journal of microbiology and biotechnology |
PublicationTitleAlternate | J Microbiol Biotechnol |
PublicationYear | 2025 |
Publisher | 한국미생물·생명공학회 |
Publisher_xml | – name: 한국미생물·생명공학회 |
References | ref13 ref57 ref12 ref56 ref15 ref59 ref14 ref58 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref64 ref63 ref22 ref21 ref28 ref27 ref29 ref60 ref62 ref61 |
References_xml | – ident: ref8 doi: 10.3390/diabetology5010004 – ident: ref20 doi: 10.1371/journal.pcbi.1009442 – ident: ref29 doi: 10.1016/j.biopha.2023.114703 – ident: ref12 doi: 10.2337/dc16-0351 – ident: ref43 doi: 10.1007/s00726-017-2508-0 – ident: ref5 – ident: ref59 doi: 10.4239/wjd.v13.i9.717 – ident: ref35 doi: 10.2337/diabetes.26.3.215 – ident: ref28 doi: 10.1038/s41598-017-01735-y – ident: ref60 doi: 10.1016/j.jff.2023.105805 – ident: ref19 doi: 10.1093/bioinformatics/btg412 – ident: ref53 doi: 10.1128/AEM.66.4.1654-1661.2000 – ident: ref56 doi: 10.1016/j.ebiom.2019.11.051 – ident: ref13 doi: 10.2337/dci24-0052 – ident: ref55 doi: 10.1007/s13668-020-00307-3 – ident: ref50 doi: 10.1038/srep21924 – ident: ref62 doi: 10.3389/fmicb.2023.1184734 – ident: ref24 doi: 10.3389/fcimb.2023.1218326 – ident: ref10 doi: 10.1007/s11255-022-03326-x – ident: ref36 doi: 10.23876/j.krcp.22.152 – ident: ref54 doi: 10.3389/fimmu.2020.00906 – ident: ref17 doi: 10.1093/nar/gks1219 – ident: ref23 doi: 10.1007/978-3-319-24277-4_9 – ident: ref7 doi: 10.1515/jbcpp-2019-0105 – ident: ref33 doi: 10.3346/jkms.2017.32.6.985 – ident: ref46 doi: 10.3389/fendo.2021.636175 – ident: ref37 doi: 10.1039/C7MB00167C – ident: ref32 doi: 10.1186/s13293-022-00440-4 – ident: ref42 doi: 10.1079/BJN19870088 – ident: ref52 doi: 10.1111/j.1348-0421.2000.tb01242.x – ident: ref25 doi: 10.1038/s41467-019-13036-1 – ident: ref16 – ident: ref31 doi: 10.1371/journal.pone.0183228 – ident: ref49 doi: 10.3390/nu11030524 – ident: ref45 doi: 10.1021/pr300900b – ident: ref61 doi: 10.1080/21655979.2021.2009752 – ident: ref48 doi: 10.1016/j.scib.2023.12.053 – ident: ref2 doi: 10.1186/s12889-021-10450-3 – ident: ref40 doi: 10.1038/ki.2013.328 – ident: ref64 doi: 10.4137/BMI.S7513 – ident: ref38 doi: 10.1007/s11306-018-1380-6 – ident: ref4 doi: 10.2337/dci23-0085 – ident: ref9 doi: 10.7759/cureus.56674 – ident: ref39 doi: 10.3390/ijms24076828 – ident: ref51 doi: 10.1078/0723-2020-00096 – ident: ref22 doi: 10.1186/1471-2105-12-77 – ident: ref21 doi: 10.1186/gb-2011-12-6-r60 – ident: ref41 doi: 10.1016/j.xkme.2022.100522 – ident: ref44 doi: 10.1093/ije/dyad162 – ident: ref27 doi: 10.1186/s12864-024-10621-7 – ident: ref15 doi: 10.1038/nmeth.3869 – ident: ref30 doi: 10.21037/atm.2020.01.42 – ident: ref63 doi: 10.3389/fnut.2022.1081778 – ident: ref57 doi: 10.1136/gutjnl-2020-322753 – ident: ref58 doi: 10.3390/foods11020231 – ident: ref26 doi: 10.1038/s41598-021-82726-y – ident: ref14 doi: 10.2337/db22-0168 – ident: ref1 doi: 10.1002/hsr2.2004 – ident: ref18 – ident: ref47 doi: 10.3390/metabo11090614 – ident: ref3 doi: 10.1016/j.diabres.2019.107843 – ident: ref6 doi: 10.7759/cureus.45835 – ident: ref11 doi: 10.2337/dc21-1705 – ident: ref34 doi: 10.1038/ki.2010.509 |
SSID | ssj0061286 |
Score | 2.386707 |
Snippet | Type 2 diabetes is a prevalent metabolic disorder with serious health consequences, necessitating both enhanced diagnostic methodologies and comprehensive... |
SourceID | nrf pubmed crossref |
SourceType | Open Website Index Database |
StartPage | e2411071 |
SubjectTerms | Adult Aged Bacteria - classification Bacteria - genetics Bacteria - isolation & purification Biomarkers - urine Diabetes Mellitus, Type 2 - diagnosis Diabetes Mellitus, Type 2 - metabolism Diabetes Mellitus, Type 2 - microbiology Diabetes Mellitus, Type 2 - urine Feces - microbiology Female Gas Chromatography-Mass Spectrometry Gastrointestinal Microbiome Humans Male Metabolome Metabolomics - methods Microbiota Middle Aged RNA, Ribosomal, 16S - genetics Urine - chemistry 생물학 |
Title | Fecal Microbiome and Urine Metabolome Profiling of Type 2 Diabetes |
URI | https://www.ncbi.nlm.nih.gov/pubmed/40147938 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART003191470 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Journal of Microbiology and Biotechnology, 2025, 35(0), , pp.1-9 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELboEBIviN-MH5MlkHhAGY3tONkjoE0DKVMlWjGerNixt2o0RSV7GH89n-0soWVIg5c0smIn8nc9f3f23RHyqq4BqoaZ6hz-bkKPq6TiElbrmGleSXAC6_0d5ZE8nIlPx9nxUN4qRJe0etf8vDKu5H9QRRtw9VGy_4BsPygacA98cQXCuF4L4wPrZ7icx2RKi7gTMPPxfG9K2wLeb75xEspyd6ebp9Hl2h2E-fEXbrqYb-Rnwn37hxP-a6x4fWGTct7L2Je4jf_ZLvsYILDUGAByOojipDujjeeak2T_vPnd_cAyf_6qU49RY_plDjQjbk3b2JZDi0J7ranZmJVkU2PDvBNeYy_0LrhE6qMSYkmW9dTYG0tWf5AQJowfQaG_8v1V6D8iN1meh1374LyJCzO4XCj82X9xzOHp-79df_8aRxk1K7dhcwTuMb1L7nTA0HdRAu6RG7a5T27FMqIXD8j7IAd0kAMKyGiQAzrIAe3lgC4d9XJAGb2Ug4dkdrA__XCYdLUxEsNZ3iY5y5iAtpVcVpZbJ7g0hXDjtKi1qITdAzGpDdguE3llvNkqxg7UvjBY_tKa80dkq1k29gmheaa51M7WsL1FxYrCGJcaaU1aZXKP19vk9eVsqO8xBYq6et63yUtMljozc-Wzlvvfk6U6WynYZh_RR4IMZ3jqcZzMfjQ_FNaJ4um13_SM3B6E8TnZalfn9gXYYat3yOhoUu4E5H8BwatfjA |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fecal+Microbiome+and+Urine+Metabolome+Profiling+of+Type+2+Diabetes&rft.jtitle=Journal+of+microbiology+and+biotechnology&rft.au=Yi%2C+Hye-Min&rft.au=Won%2C+Seok&rft.au=Pak%2C+Juhan&rft.au=Park%2C+Seong-Eun&rft.date=2025-03-11&rft.issn=1017-7825&rft.eissn=1738-8872&rft.volume=35&rft_id=info:doi/10.4014%2Fjmb.2411.11071&rft.externalDBID=n%2Fa&rft.externalDocID=10_4014_jmb_2411_11071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1017-7825&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1017-7825&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1017-7825&client=summon |