Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing
Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine le...
Saved in:
Published in | Food science & technology Vol. 224; p. 117860 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
15.05.2025
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.
•Developed MALDI-TOF MS machine learning approach for antibiotic-resistant E. coli detection.•Found high antimicrobial resistance rates in poultry facility bacterial isolates.•Optimized random forest classifier achieved best resistance prediction performance.•Validated 87–100 % detection accuracy on food-sourced E. coli isolates.•Created rapid detection method compatible with current food safety protocols. |
---|---|
AbstractList | Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production. Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production. •Developed MALDI-TOF MS machine learning approach for antibiotic-resistant E. coli detection.•Found high antimicrobial resistance rates in poultry facility bacterial isolates.•Optimized random forest classifier achieved best resistance prediction performance.•Validated 87–100 % detection accuracy on food-sourced E. coli isolates.•Created rapid detection method compatible with current food safety protocols. |
ArticleNumber | 117860 |
Author | Lu, Wen-Jung Chiang, Hong-Jhen Victor Lin, Hong-Ting Yang, Tien-Wei Hsu, Pang-Hung |
Author_xml | – sequence: 1 givenname: Hong-Ting surname: Victor Lin fullname: Victor Lin, Hong-Ting organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC – sequence: 2 givenname: Tien-Wei surname: Yang fullname: Yang, Tien-Wei organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC – sequence: 3 givenname: Wen-Jung surname: Lu fullname: Lu, Wen-Jung organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC – sequence: 4 givenname: Hong-Jhen surname: Chiang fullname: Chiang, Hong-Jhen organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC – sequence: 5 givenname: Pang-Hung orcidid: 0000-0001-6873-6434 surname: Hsu fullname: Hsu, Pang-Hung email: phsu@ntou.edu.tw organization: Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC |
BookMark | eNp9kE1PAjEQhnvAREB_gLcevezaj_0ingiCkkA4iOem285KydJCWzT-e0vw7FwmmbzPTOYZoYF1FhB6oCSnhFZP-7z_jjkjrMwprZuKDNCQEMazquDNLRqFsCepCtYM0Wkt1c5YwD1Ib439zMDupFWg8Xq6ellm280Cr99x5zz2IPssmgNgDRFUNM5i12Fpo2mNi0ZlHoIJMQ3wPMfK9QYbm1Cn8dE7BSGkA3foppN9gPu_PkYfi_l29patNq_L2XSVKc7qmFVKFrwF2ZSyYlWhVVnztm24nJRcylrpqim07giltOVt0_GilIwXDYDUatJyPkaP173p9OkMIYqDCQr6Xlpw5yA4KxgpKS9JitJrVHkXgodOHL05SP8jKBEXpWIvklJxUSquShPzfGUg_fBlwIugDFzEGZ_cCO3MP_Qv2HyDHw |
Cites_doi | 10.1002/widm.1301 10.1093/ps/83.7.1093 10.1016/j.jhin.2019.02.019 10.3390/app10093211 10.3389/fcimb.2020.572909 10.3390/su15129421 10.1016/j.cmi.2017.10.016 10.1093/nar/gkw699 10.1214/09-SS054 10.3389/fmicb.2015.00791 10.1016/j.csbj.2021.11.004 10.1038/s41598-020-78367-2 10.1016/j.cmi.2020.03.014 10.1186/s13099-017-0206-9 10.1007/978-1-59745-246-5_18 10.2471/BLT.15.030415 10.1016/S0140-6736(17)32152-9 10.1038/s41591-021-01619-9 10.3390/antibiotics10080982 10.3390/microorganisms9112210 10.3390/diagnostics13172825 10.1371/journal.pone.0031676 |
ContentType | Journal Article |
Copyright | 2025 |
Copyright_xml | – notice: 2025 |
DBID | 6I. AAFTH AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.lwt.2025.117860 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering Public Health |
ExternalDocumentID | 10_1016_j_lwt_2025_117860 S0023643825005444 |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AATLK AATTM AAXKI AAXUO ABFNM ABGRD ABMAC ACDAQ ACRLP ACVFH ADCNI ADEZE ADQTV ADVLN AEBSH AEIPS AEKER AENEX AEQOU AEUPX AEXQZ AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GROUPED_DOAJ HLV IHE J1W KOM LG5 LW8 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG ROL RPZ SAB SDF SDG SDP SES SEW SPCBC SSA SSH SSZ T5K Y6R ZU3 ~G- ~KM 29H 53G AALCJ AAQXK AAYWO AAYXX ABWVN ABXDB ACRPL ADFGL ADHUB ADMUD ADNMO AGQPQ AHHHB CAG CITATION COF EJD FEDTE FGOYB HVGLF HZ~ R2- UHS WUQ XPP 7S9 EFKBS L.6 |
ID | FETCH-LOGICAL-c327t-6ca43bea85a6264dc573bb83a953aa7cd684ddf0111b3b8f345a2348eeadc9b33 |
IEDL.DBID | .~1 |
ISSN | 0023-6438 |
IngestDate | Fri Aug 22 20:21:33 EDT 2025 Sun Jul 06 05:07:41 EDT 2025 Sat Jun 21 16:54:35 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | MALDI-TOF MS Food safety Antimicrobial resistance Rapid detection Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-6ca43bea85a6264dc573bb83a953aa7cd684ddf0111b3b8f345a2348eeadc9b33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-6873-6434 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0023643825005444 |
PQID | 3242051350 |
PQPubID | 24069 |
ParticipantIDs | proquest_miscellaneous_3242051350 crossref_primary_10_1016_j_lwt_2025_117860 elsevier_sciencedirect_doi_10_1016_j_lwt_2025_117860 |
PublicationCentury | 2000 |
PublicationDate | 2025-05-15 |
PublicationDateYYYYMMDD | 2025-05-15 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
PublicationDecade | 2020 |
PublicationTitle | Food science & technology |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | (bib5) 2024 Kempf, Bakour, Flaudrops, Berrazeg, Brunel, Drissi, Rolain (bib15) 2012; 7 Courtenay, Castro-Sanchez, Fitzpatrick, Gallagher, Lim, Morris (bib6) 2019; 101 Amit-Romach, Sklan, Uni (bib2) 2004; 83 Douthwaite, Jensen, Kirpekar (bib7) 2008; 142 Moawad, Hotzel, Awad, Tomaso, Neubauer, Hafez (bib16) 2017; 9 Yoon, Joeong (bib29) 2021; 10 Xexaki, Papadopoulos, Alvanou, Giantsis, Papageorgiou, Delis, Petridou (bib28) 2023; 15 Jeon, Oh (bib14) 2020; 10 (bib27) 2021 Weis, Cuenod, Rieck, Dubuis, Graf, Lang, Egli (bib23) 2022; 28 Weis, Jutzeler, Borgwardt (bib24) 2020; 26 Alibrahim, Ludwig (bib1) 2021 (bib25) 2015 Florio, Baldeschi, Rizzato, Tavanti, Ghelardi, Lupetti (bib11) 2020; 10 (bib26) 2015; 93 Stojkovic, Noda-Garcia, Tawfik, Fujimori (bib22) 2016; 44 Calderaro, Buttrini, Farina, Montecchini, Martinelli, Crocamo, De Conto (bib4) 2021; 9 Rahman, Husna, Elshabrawy, Alam, Runa, Badruzzaman, Ashour (bib20) 2020; 10 Probst, Wright, Boulesteix (bib19) 2019; 9 Mortier, Wieme, Vandamme, Waegeman (bib17) 2021; 19 Idelevich, Sparbier, Kostrzewa, Becker (bib13) 2018; 24 (bib9) 2000 Singhal, Kumar, Kanaujia, Virdi (bib21) 2015; 6 Arlot, Celisse (bib3) 2010; 4 Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib18) 2011; 12 (bib12) 2017; 390 (bib10) 2023 Elbehiry, Marzouk, Moussa, Anagreyyah, Alghamdi, Alqarni, Speeckaert (bib8) 2023; 13 Douthwaite (10.1016/j.lwt.2025.117860_bib7) 2008; 142 (10.1016/j.lwt.2025.117860_bib25) 2015 Kempf (10.1016/j.lwt.2025.117860_bib15) 2012; 7 Pedregosa (10.1016/j.lwt.2025.117860_bib18) 2011; 12 (10.1016/j.lwt.2025.117860_bib12) 2017; 390 Alibrahim (10.1016/j.lwt.2025.117860_bib1) 2021 Florio (10.1016/j.lwt.2025.117860_bib11) 2020; 10 (10.1016/j.lwt.2025.117860_bib26) 2015; 93 Probst (10.1016/j.lwt.2025.117860_bib19) 2019; 9 Elbehiry (10.1016/j.lwt.2025.117860_bib8) 2023; 13 Arlot (10.1016/j.lwt.2025.117860_bib3) 2010; 4 Mortier (10.1016/j.lwt.2025.117860_bib17) 2021; 19 Courtenay (10.1016/j.lwt.2025.117860_bib6) 2019; 101 Weis (10.1016/j.lwt.2025.117860_bib23) 2022; 28 Calderaro (10.1016/j.lwt.2025.117860_bib4) 2021; 9 (10.1016/j.lwt.2025.117860_bib9) 2000 Weis (10.1016/j.lwt.2025.117860_bib24) 2020; 26 (10.1016/j.lwt.2025.117860_bib5) 2024 Rahman (10.1016/j.lwt.2025.117860_bib20) 2020; 10 Idelevich (10.1016/j.lwt.2025.117860_bib13) 2018; 24 Xexaki (10.1016/j.lwt.2025.117860_bib28) 2023; 15 Yoon (10.1016/j.lwt.2025.117860_bib29) 2021; 10 Singhal (10.1016/j.lwt.2025.117860_bib21) 2015; 6 Jeon (10.1016/j.lwt.2025.117860_bib14) 2020; 10 Stojkovic (10.1016/j.lwt.2025.117860_bib22) 2016; 44 Amit-Romach (10.1016/j.lwt.2025.117860_bib2) 2004; 83 Moawad (10.1016/j.lwt.2025.117860_bib16) 2017; 9 |
References_xml | – volume: 44 start-page: 8897 year: 2016 end-page: 8907 ident: bib22 article-title: Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme publication-title: Nucleic Acids Research – volume: 10 start-page: 3211 year: 2020 ident: bib14 article-title: Hybrid-recursive feature elimination for efficient feature selection publication-title: Applied Sciences-Basel – start-page: 1551 year: 2021 end-page: 1559 ident: bib1 article-title: Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization publication-title: IEEE Congress on Evolutionary Computation – volume: 390 start-page: 1151 year: 2017 end-page: 1210 ident: bib12 article-title: 1980-2016: A sys0tematic analysis for the global burden of disease study 2016 publication-title: Lancet – volume: 10 year: 2020 ident: bib11 article-title: Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: An expanding area publication-title: Frontiers in Cellular and Infection Microbiology – volume: 10 year: 2020 ident: bib20 article-title: Isolation and molecular characterization of multidrug-resistant publication-title: Scientific Reports – volume: 83 start-page: 1093 year: 2004 end-page: 1098 ident: bib2 article-title: Microflora ecology of the chicken intestine using 16S ribosomal DNA primers publication-title: Poultry Science – volume: 4 start-page: 40 year: 2010 end-page: 79 ident: bib3 article-title: A survey of cross-validation procedures for model selection publication-title: Statistics Surveys – volume: 13 start-page: 2825 year: 2023 ident: bib8 article-title: Using protein fingerprinting for identifying and discriminating methicillin resistant publication-title: Diagnostics – volume: 9 start-page: 57 year: 2017 ident: bib16 article-title: Occurrence of publication-title: Gut Pathogens – volume: 6 start-page: 791 year: 2015 ident: bib21 article-title: MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis publication-title: Frontiers in Microbiology – volume: 101 start-page: 426 year: 2019 end-page: 427 ident: bib6 article-title: Tackling antimicrobial resistance 2019-2024 - the UK's five-year national action plan publication-title: Journal of Hospital Infection – volume: 19 start-page: 6157 year: 2021 end-page: 6168 ident: bib17 article-title: Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study publication-title: Computational and Structural Biotechnology Journal – volume: 7 year: 2012 ident: bib15 article-title: Rapid detection of carbapenem resistance in publication-title: PLoS One – volume: 12 start-page: 2825 year: 2011 end-page: 2830 ident: bib18 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 142 start-page: 223 year: 2008 end-page: 237 ident: bib7 article-title: The activity of rRNA resistance methyltransferases assessed by MALDI mass spectrometry publication-title: Methods in Molecular Medicine – volume: 15 start-page: 9421 year: 2023 ident: bib28 article-title: Prevalence of antibiotic resistant E. coli strains isolated from farmed broilers and hens in Greece, based on phenotypic and molecular analyses publication-title: Sustainability – volume: 28 start-page: 164 year: 2022 end-page: 174 ident: bib23 article-title: Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning publication-title: Nature Medicine – volume: 93 start-page: 217 year: 2015 end-page: 218 ident: bib26 article-title: What to do about resistant bacteria in the food-chain? publication-title: Bulletin of the World Health Organization – year: 2000 ident: bib9 article-title: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents – year: 2015 ident: bib25 article-title: Global action plan on antimicrobial resistance – volume: 9 start-page: 2210 year: 2021 ident: bib4 article-title: Rapid identification of publication-title: Microorganisms – volume: 24 start-page: 738 year: 2018 end-page: 743 ident: bib13 article-title: Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay publication-title: Clinical Microbiology and Infections – volume: 9 year: 2019 ident: bib19 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery – year: 2023 ident: bib10 article-title: Breakpoint tables for interpretation of MICs and zone diameters – volume: 10 start-page: 982 year: 2021 ident: bib29 article-title: MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria publication-title: Antibiotics (Basel) – year: 2021 ident: bib27 article-title: What accelerates the emergence and spread of antimicrobial resistance? – volume: 26 start-page: 1310 year: 2020 end-page: 1317 ident: bib24 article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review publication-title: Clinical Microbiology and Infections – year: 2024 ident: bib5 publication-title: Performance standards for antimicrobial susceptibility testing – volume: 9 issue: 3 year: 2019 ident: 10.1016/j.lwt.2025.117860_bib19 article-title: Hyperparameters and tuning strategies for random forest publication-title: Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery doi: 10.1002/widm.1301 – volume: 83 start-page: 1093 issue: 7 year: 2004 ident: 10.1016/j.lwt.2025.117860_bib2 article-title: Microflora ecology of the chicken intestine using 16S ribosomal DNA primers publication-title: Poultry Science doi: 10.1093/ps/83.7.1093 – volume: 101 start-page: 426 issue: 4 year: 2019 ident: 10.1016/j.lwt.2025.117860_bib6 article-title: Tackling antimicrobial resistance 2019-2024 - the UK's five-year national action plan publication-title: Journal of Hospital Infection doi: 10.1016/j.jhin.2019.02.019 – year: 2024 ident: 10.1016/j.lwt.2025.117860_bib5 – volume: 10 start-page: 3211 issue: 9 year: 2020 ident: 10.1016/j.lwt.2025.117860_bib14 article-title: Hybrid-recursive feature elimination for efficient feature selection publication-title: Applied Sciences-Basel doi: 10.3390/app10093211 – year: 2015 ident: 10.1016/j.lwt.2025.117860_bib25 – volume: 10 year: 2020 ident: 10.1016/j.lwt.2025.117860_bib11 article-title: Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: An expanding area publication-title: Frontiers in Cellular and Infection Microbiology doi: 10.3389/fcimb.2020.572909 – volume: 15 start-page: 9421 issue: 12 year: 2023 ident: 10.1016/j.lwt.2025.117860_bib28 article-title: Prevalence of antibiotic resistant E. coli strains isolated from farmed broilers and hens in Greece, based on phenotypic and molecular analyses publication-title: Sustainability doi: 10.3390/su15129421 – volume: 24 start-page: 738 issue: 7 year: 2018 ident: 10.1016/j.lwt.2025.117860_bib13 article-title: Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay publication-title: Clinical Microbiology and Infections doi: 10.1016/j.cmi.2017.10.016 – volume: 44 start-page: 8897 issue: 18 year: 2016 ident: 10.1016/j.lwt.2025.117860_bib22 article-title: Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme publication-title: Nucleic Acids Research doi: 10.1093/nar/gkw699 – volume: 4 start-page: 40 year: 2010 ident: 10.1016/j.lwt.2025.117860_bib3 article-title: A survey of cross-validation procedures for model selection publication-title: Statistics Surveys doi: 10.1214/09-SS054 – volume: 6 start-page: 791 year: 2015 ident: 10.1016/j.lwt.2025.117860_bib21 article-title: MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis publication-title: Frontiers in Microbiology doi: 10.3389/fmicb.2015.00791 – volume: 19 start-page: 6157 year: 2021 ident: 10.1016/j.lwt.2025.117860_bib17 article-title: Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study publication-title: Computational and Structural Biotechnology Journal doi: 10.1016/j.csbj.2021.11.004 – volume: 10 issue: 1 year: 2020 ident: 10.1016/j.lwt.2025.117860_bib20 article-title: Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat publication-title: Scientific Reports doi: 10.1038/s41598-020-78367-2 – volume: 26 start-page: 1310 issue: 10 year: 2020 ident: 10.1016/j.lwt.2025.117860_bib24 article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review publication-title: Clinical Microbiology and Infections doi: 10.1016/j.cmi.2020.03.014 – volume: 9 start-page: 57 year: 2017 ident: 10.1016/j.lwt.2025.117860_bib16 article-title: Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers publication-title: Gut Pathogens doi: 10.1186/s13099-017-0206-9 – start-page: 1551 year: 2021 ident: 10.1016/j.lwt.2025.117860_bib1 article-title: Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization publication-title: IEEE Congress on Evolutionary Computation – volume: 142 start-page: 223 year: 2008 ident: 10.1016/j.lwt.2025.117860_bib7 article-title: The activity of rRNA resistance methyltransferases assessed by MALDI mass spectrometry publication-title: Methods in Molecular Medicine doi: 10.1007/978-1-59745-246-5_18 – volume: 12 start-page: 2825 issue: null year: 2011 ident: 10.1016/j.lwt.2025.117860_bib18 article-title: Scikit-learn: Machine learning in Python publication-title: Journal of Machine Learning Research – volume: 93 start-page: 217 year: 2015 ident: 10.1016/j.lwt.2025.117860_bib26 article-title: What to do about resistant bacteria in the food-chain? publication-title: Bulletin of the World Health Organization doi: 10.2471/BLT.15.030415 – year: 2000 ident: 10.1016/j.lwt.2025.117860_bib9 – volume: 390 start-page: 1151 issue: 10100 year: 2017 ident: 10.1016/j.lwt.2025.117860_bib12 article-title: 1980-2016: A sys0tematic analysis for the global burden of disease study 2016 publication-title: Lancet doi: 10.1016/S0140-6736(17)32152-9 – volume: 28 start-page: 164 issue: 1 year: 2022 ident: 10.1016/j.lwt.2025.117860_bib23 article-title: Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning publication-title: Nature Medicine doi: 10.1038/s41591-021-01619-9 – volume: 10 start-page: 982 year: 2021 ident: 10.1016/j.lwt.2025.117860_bib29 article-title: MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria publication-title: Antibiotics (Basel) doi: 10.3390/antibiotics10080982 – volume: 9 start-page: 2210 issue: 11 year: 2021 ident: 10.1016/j.lwt.2025.117860_bib4 article-title: Rapid identification of Escherichia coli colistin-resistant strains by MALDI-TOF mass spectrometry publication-title: Microorganisms doi: 10.3390/microorganisms9112210 – volume: 13 start-page: 2825 issue: 17 year: 2023 ident: 10.1016/j.lwt.2025.117860_bib8 article-title: Using protein fingerprinting for identifying and discriminating methicillin resistant Staphylococcus aureus isolates from inpatient and outpatient clinics publication-title: Diagnostics doi: 10.3390/diagnostics13172825 – volume: 7 issue: 2 year: 2012 ident: 10.1016/j.lwt.2025.117860_bib15 article-title: Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry publication-title: PLoS One doi: 10.1371/journal.pone.0031676 |
SSID | ssj0000428 |
Score | 2.4482865 |
Snippet | Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 117860 |
SubjectTerms | algorithms antibiotic resistance Antimicrobial resistance carbapenems chloramphenicol desorption Escherichia coli food production Food safety Machine learning MALDI-TOF MS mass spectrometry monitoring penicillins prediction public health quinolones Rapid detection rapid methods risk streptomycin tetracycline |
Title | Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing |
URI | https://dx.doi.org/10.1016/j.lwt.2025.117860 https://www.proquest.com/docview/3242051350 |
Volume | 224 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F5QA9IAiglkK0SD0hbdJ4dv04RiFRCqQ90Eq9rfZlalTZoXXFjd_OzNoWDyEOHG15vdbMePYbzTczjB0DgmIHxorMoRqkzwpRlEkpbFp4hxblZEeQPUs3l_L9lboaseVQC0O0yt73dz49euv-zqyX5mxXVVTjS83PAUMcwh2SeoJKmZGVT7__pHlQTNDRPEDQ00NmM3K8br4RnTJRlLrMY5fKv55Nf3jpePSsn7DHPWbki-6znrJRqMfs4VBSfDdm-790FXzGvm4jQTLwfiLEZxHq65jo59vFx3en4uJ8zbefOMJVjpDxRtB8ee5DG1lZNW9KjuKubNXgfgLDcYKYdctXU45WU_GqxqWN57uuxgA3eM4u16uL5Ub0kxWEgyRrReqMBBtMrgwGNNI7lYG1OZhCgTGZ82kuvS9pDr0Fm5cglUlA5gHtzhUW4AXbq5s6HDCuIIXMzWVZqiCVdEXuQ3pSJjZDsAHz5JC9HWSqd10DDT0wy75oVIAmBehOAYdMDlLXv1mBRgf_r2VvBg1p_Dso5WHq0NzfaYKL6HZAnbz8v1cfsUd0RXyBuXrF9trb-_AaYUhrJ9HOJuzB4vTD5mwSg_kf10vcVw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4IAggAqUsEiekpY1n149j1DZKyIMDqdTbal8Go8oOxFX_fmf9EFChHnq1tV5rZvz5W803MwAfkUixRW14YskNwiUZz_Io5ybOnKWIsqIVyK7j2YX4cikv9-C0r4UJssoO-1tMb9C6u3LcWfN4WxShxjc0P0c64gTeIcQj2A_dqeQA9ifzxWz9B5BF1AJyhDws6JObjczr6iYoKiMZspdp06jyv7-nO0Dd_H2mz-BpRxvZpH2z57DnyyEc9FXFuyE8-aux4Av4tWo0kp51QyG-c1_-aHL9bDVZns355uuUrb4xYqyMWOMVDyPmmfN1I8wqWZUzsnhhior243QiDyyzrNn5Z0aBU7CipKWVY9u2zIA2eAkX0_PN6Yx3wxW4xSipeWy1QON1KjWdaYSzMkFjUtSZRK0T6-JUOJeHUfQGTZqjkDpCkXoKPZsZxFcwKKvSvwYmMcbEjkWeS08esFnqfHySRyYhvoHjaASfepuqbdtDQ_Xisp-KHKCCA1TrgBGI3urqn0BQhPH3LfvQe0jRBxKyHrr01fVOBcZIyIPy5M3DHv0eDmab1VIt5-vFW3gc7gT5wFgewqD-fe3fESupzVEXdbdCj94T |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-enhanced+MALDI-TOF+MS+for+real-time+detection+of+antibiotic-resistant+E.+coli+in+food+processing&rft.jtitle=Food+science+%26+technology&rft.au=Victor+Lin%2C+Hong-Ting&rft.au=Yang%2C+Tien-Wei&rft.au=Lu%2C+Wen-Jung&rft.au=Chiang%2C+Hong-Jhen&rft.date=2025-05-15&rft.pub=Elsevier+Ltd&rft.issn=0023-6438&rft.volume=224&rft_id=info:doi/10.1016%2Fj.lwt.2025.117860&rft.externalDocID=S0023643825005444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0023-6438&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0023-6438&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0023-6438&client=summon |