Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing

Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine le...

Full description

Saved in:
Bibliographic Details
Published inFood science & technology Vol. 224; p. 117860
Main Authors Victor Lin, Hong-Ting, Yang, Tien-Wei, Lu, Wen-Jung, Chiang, Hong-Jhen, Hsu, Pang-Hung
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.05.2025
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production. •Developed MALDI-TOF MS machine learning approach for antibiotic-resistant E. coli detection.•Found high antimicrobial resistance rates in poultry facility bacterial isolates.•Optimized random forest classifier achieved best resistance prediction performance.•Validated 87–100 % detection accuracy on food-sourced E. coli isolates.•Created rapid detection method compatible with current food safety protocols.
AbstractList Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production.
Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed an innovative approach combining matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) with machine learning for rapid detection of antibiotic-resistant E. coli in food processing environments. Analysis of 69 E. coli isolates from food processing facilities revealed high resistance rates, ranging from 0 % for carbapenems to 100 % for antibiotics like streptomycin and sulfamethoxazole-trimethoprim. These findings highlight serious food safety concerns and emphasize the need for rapid detection methods. Among machine learning models trained on MALDI-TOF MS data, the optimized random forest model demonstrated superior performance, achieving cross-validation accuracies within 67–97 % across different antibiotics. Validation using 28 food-sourced samples confirmed its high predictive accuracy for multiple antibiotic classes, including penicillin, chloramphenicol, sulfonamide, tetracycline, and aminoglycoside. This approach provides a rapid, accurate tool for antibiotic resistance detection, offering significant advantages for food safety monitoring in high-throughput processing environments. Future improvements should focus on enhancing (fluoro)quinolones prediction accuracy to enable comprehensive antimicrobial resistance surveillance in food production. •Developed MALDI-TOF MS machine learning approach for antibiotic-resistant E. coli detection.•Found high antimicrobial resistance rates in poultry facility bacterial isolates.•Optimized random forest classifier achieved best resistance prediction performance.•Validated 87–100 % detection accuracy on food-sourced E. coli isolates.•Created rapid detection method compatible with current food safety protocols.
ArticleNumber 117860
Author Lu, Wen-Jung
Chiang, Hong-Jhen
Victor Lin, Hong-Ting
Yang, Tien-Wei
Hsu, Pang-Hung
Author_xml – sequence: 1
  givenname: Hong-Ting
  surname: Victor Lin
  fullname: Victor Lin, Hong-Ting
  organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC
– sequence: 2
  givenname: Tien-Wei
  surname: Yang
  fullname: Yang, Tien-Wei
  organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC
– sequence: 3
  givenname: Wen-Jung
  surname: Lu
  fullname: Lu, Wen-Jung
  organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC
– sequence: 4
  givenname: Hong-Jhen
  surname: Chiang
  fullname: Chiang, Hong-Jhen
  organization: Department of Food Science, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC
– sequence: 5
  givenname: Pang-Hung
  orcidid: 0000-0001-6873-6434
  surname: Hsu
  fullname: Hsu, Pang-Hung
  email: phsu@ntou.edu.tw
  organization: Center of Excellence for the Oceans, National Taiwan Ocean University, No. 2, Beining Road, Keelung, 202301, Taiwan, ROC
BookMark eNp9kE1PAjEQhnvAREB_gLcevezaj_0ingiCkkA4iOem285KydJCWzT-e0vw7FwmmbzPTOYZoYF1FhB6oCSnhFZP-7z_jjkjrMwprZuKDNCQEMazquDNLRqFsCepCtYM0Wkt1c5YwD1Ib439zMDupFWg8Xq6ellm280Cr99x5zz2IPssmgNgDRFUNM5i12Fpo2mNi0ZlHoIJMQ3wPMfK9QYbm1Cn8dE7BSGkA3foppN9gPu_PkYfi_l29patNq_L2XSVKc7qmFVKFrwF2ZSyYlWhVVnztm24nJRcylrpqim07giltOVt0_GilIwXDYDUatJyPkaP173p9OkMIYqDCQr6Xlpw5yA4KxgpKS9JitJrVHkXgodOHL05SP8jKBEXpWIvklJxUSquShPzfGUg_fBlwIugDFzEGZ_cCO3MP_Qv2HyDHw
Cites_doi 10.1002/widm.1301
10.1093/ps/83.7.1093
10.1016/j.jhin.2019.02.019
10.3390/app10093211
10.3389/fcimb.2020.572909
10.3390/su15129421
10.1016/j.cmi.2017.10.016
10.1093/nar/gkw699
10.1214/09-SS054
10.3389/fmicb.2015.00791
10.1016/j.csbj.2021.11.004
10.1038/s41598-020-78367-2
10.1016/j.cmi.2020.03.014
10.1186/s13099-017-0206-9
10.1007/978-1-59745-246-5_18
10.2471/BLT.15.030415
10.1016/S0140-6736(17)32152-9
10.1038/s41591-021-01619-9
10.3390/antibiotics10080982
10.3390/microorganisms9112210
10.3390/diagnostics13172825
10.1371/journal.pone.0031676
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.lwt.2025.117860
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
Public Health
ExternalDocumentID 10_1016_j_lwt_2025_117860
S0023643825005444
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AATTM
AAXKI
AAXUO
ABFNM
ABGRD
ABMAC
ACDAQ
ACRLP
ACVFH
ADCNI
ADEZE
ADQTV
ADVLN
AEBSH
AEIPS
AEKER
AENEX
AEQOU
AEUPX
AEXQZ
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGRNS
AGUBO
AGYEJ
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BKOJK
BLXMC
BNPGV
CS3
DM4
DU5
EBS
EFBJH
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GROUPED_DOAJ
HLV
IHE
J1W
KOM
LG5
LW8
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SEW
SPCBC
SSA
SSH
SSZ
T5K
Y6R
ZU3
~G-
~KM
29H
53G
AALCJ
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ADFGL
ADHUB
ADMUD
ADNMO
AGQPQ
AHHHB
CAG
CITATION
COF
EJD
FEDTE
FGOYB
HVGLF
HZ~
R2-
UHS
WUQ
XPP
7S9
EFKBS
L.6
ID FETCH-LOGICAL-c327t-6ca43bea85a6264dc573bb83a953aa7cd684ddf0111b3b8f345a2348eeadc9b33
IEDL.DBID .~1
ISSN 0023-6438
IngestDate Fri Aug 22 20:21:33 EDT 2025
Sun Jul 06 05:07:41 EDT 2025
Sat Jun 21 16:54:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords MALDI-TOF MS
Food safety
Antimicrobial resistance
Rapid detection
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-6ca43bea85a6264dc573bb83a953aa7cd684ddf0111b3b8f345a2348eeadc9b33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-6873-6434
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0023643825005444
PQID 3242051350
PQPubID 24069
ParticipantIDs proquest_miscellaneous_3242051350
crossref_primary_10_1016_j_lwt_2025_117860
elsevier_sciencedirect_doi_10_1016_j_lwt_2025_117860
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Food science & technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References (bib5) 2024
Kempf, Bakour, Flaudrops, Berrazeg, Brunel, Drissi, Rolain (bib15) 2012; 7
Courtenay, Castro-Sanchez, Fitzpatrick, Gallagher, Lim, Morris (bib6) 2019; 101
Amit-Romach, Sklan, Uni (bib2) 2004; 83
Douthwaite, Jensen, Kirpekar (bib7) 2008; 142
Moawad, Hotzel, Awad, Tomaso, Neubauer, Hafez (bib16) 2017; 9
Yoon, Joeong (bib29) 2021; 10
Xexaki, Papadopoulos, Alvanou, Giantsis, Papageorgiou, Delis, Petridou (bib28) 2023; 15
Jeon, Oh (bib14) 2020; 10
(bib27) 2021
Weis, Cuenod, Rieck, Dubuis, Graf, Lang, Egli (bib23) 2022; 28
Weis, Jutzeler, Borgwardt (bib24) 2020; 26
Alibrahim, Ludwig (bib1) 2021
(bib25) 2015
Florio, Baldeschi, Rizzato, Tavanti, Ghelardi, Lupetti (bib11) 2020; 10
(bib26) 2015; 93
Stojkovic, Noda-Garcia, Tawfik, Fujimori (bib22) 2016; 44
Calderaro, Buttrini, Farina, Montecchini, Martinelli, Crocamo, De Conto (bib4) 2021; 9
Rahman, Husna, Elshabrawy, Alam, Runa, Badruzzaman, Ashour (bib20) 2020; 10
Probst, Wright, Boulesteix (bib19) 2019; 9
Mortier, Wieme, Vandamme, Waegeman (bib17) 2021; 19
Idelevich, Sparbier, Kostrzewa, Becker (bib13) 2018; 24
(bib9) 2000
Singhal, Kumar, Kanaujia, Virdi (bib21) 2015; 6
Arlot, Celisse (bib3) 2010; 4
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Duchesnay (bib18) 2011; 12
(bib12) 2017; 390
(bib10) 2023
Elbehiry, Marzouk, Moussa, Anagreyyah, Alghamdi, Alqarni, Speeckaert (bib8) 2023; 13
Douthwaite (10.1016/j.lwt.2025.117860_bib7) 2008; 142
(10.1016/j.lwt.2025.117860_bib25) 2015
Kempf (10.1016/j.lwt.2025.117860_bib15) 2012; 7
Pedregosa (10.1016/j.lwt.2025.117860_bib18) 2011; 12
(10.1016/j.lwt.2025.117860_bib12) 2017; 390
Alibrahim (10.1016/j.lwt.2025.117860_bib1) 2021
Florio (10.1016/j.lwt.2025.117860_bib11) 2020; 10
(10.1016/j.lwt.2025.117860_bib26) 2015; 93
Probst (10.1016/j.lwt.2025.117860_bib19) 2019; 9
Elbehiry (10.1016/j.lwt.2025.117860_bib8) 2023; 13
Arlot (10.1016/j.lwt.2025.117860_bib3) 2010; 4
Mortier (10.1016/j.lwt.2025.117860_bib17) 2021; 19
Courtenay (10.1016/j.lwt.2025.117860_bib6) 2019; 101
Weis (10.1016/j.lwt.2025.117860_bib23) 2022; 28
Calderaro (10.1016/j.lwt.2025.117860_bib4) 2021; 9
(10.1016/j.lwt.2025.117860_bib9) 2000
Weis (10.1016/j.lwt.2025.117860_bib24) 2020; 26
(10.1016/j.lwt.2025.117860_bib5) 2024
Rahman (10.1016/j.lwt.2025.117860_bib20) 2020; 10
Idelevich (10.1016/j.lwt.2025.117860_bib13) 2018; 24
Xexaki (10.1016/j.lwt.2025.117860_bib28) 2023; 15
Yoon (10.1016/j.lwt.2025.117860_bib29) 2021; 10
Singhal (10.1016/j.lwt.2025.117860_bib21) 2015; 6
Jeon (10.1016/j.lwt.2025.117860_bib14) 2020; 10
Stojkovic (10.1016/j.lwt.2025.117860_bib22) 2016; 44
Amit-Romach (10.1016/j.lwt.2025.117860_bib2) 2004; 83
Moawad (10.1016/j.lwt.2025.117860_bib16) 2017; 9
References_xml – volume: 44
  start-page: 8897
  year: 2016
  end-page: 8907
  ident: bib22
  article-title: Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme
  publication-title: Nucleic Acids Research
– volume: 10
  start-page: 3211
  year: 2020
  ident: bib14
  article-title: Hybrid-recursive feature elimination for efficient feature selection
  publication-title: Applied Sciences-Basel
– start-page: 1551
  year: 2021
  end-page: 1559
  ident: bib1
  article-title: Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 390
  start-page: 1151
  year: 2017
  end-page: 1210
  ident: bib12
  article-title: 1980-2016: A sys0tematic analysis for the global burden of disease study 2016
  publication-title: Lancet
– volume: 10
  year: 2020
  ident: bib11
  article-title: Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: An expanding area
  publication-title: Frontiers in Cellular and Infection Microbiology
– volume: 10
  year: 2020
  ident: bib20
  article-title: Isolation and molecular characterization of multidrug-resistant
  publication-title: Scientific Reports
– volume: 83
  start-page: 1093
  year: 2004
  end-page: 1098
  ident: bib2
  article-title: Microflora ecology of the chicken intestine using 16S ribosomal DNA primers
  publication-title: Poultry Science
– volume: 4
  start-page: 40
  year: 2010
  end-page: 79
  ident: bib3
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Statistics Surveys
– volume: 13
  start-page: 2825
  year: 2023
  ident: bib8
  article-title: Using protein fingerprinting for identifying and discriminating methicillin resistant
  publication-title: Diagnostics
– volume: 9
  start-page: 57
  year: 2017
  ident: bib16
  article-title: Occurrence of
  publication-title: Gut Pathogens
– volume: 6
  start-page: 791
  year: 2015
  ident: bib21
  article-title: MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis
  publication-title: Frontiers in Microbiology
– volume: 101
  start-page: 426
  year: 2019
  end-page: 427
  ident: bib6
  article-title: Tackling antimicrobial resistance 2019-2024 - the UK's five-year national action plan
  publication-title: Journal of Hospital Infection
– volume: 19
  start-page: 6157
  year: 2021
  end-page: 6168
  ident: bib17
  article-title: Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study
  publication-title: Computational and Structural Biotechnology Journal
– volume: 7
  year: 2012
  ident: bib15
  article-title: Rapid detection of carbapenem resistance in
  publication-title: PLoS One
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: bib18
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 142
  start-page: 223
  year: 2008
  end-page: 237
  ident: bib7
  article-title: The activity of rRNA resistance methyltransferases assessed by MALDI mass spectrometry
  publication-title: Methods in Molecular Medicine
– volume: 15
  start-page: 9421
  year: 2023
  ident: bib28
  article-title: Prevalence of antibiotic resistant E. coli strains isolated from farmed broilers and hens in Greece, based on phenotypic and molecular analyses
  publication-title: Sustainability
– volume: 28
  start-page: 164
  year: 2022
  end-page: 174
  ident: bib23
  article-title: Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning
  publication-title: Nature Medicine
– volume: 93
  start-page: 217
  year: 2015
  end-page: 218
  ident: bib26
  article-title: What to do about resistant bacteria in the food-chain?
  publication-title: Bulletin of the World Health Organization
– year: 2000
  ident: bib9
  article-title: Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents
– year: 2015
  ident: bib25
  article-title: Global action plan on antimicrobial resistance
– volume: 9
  start-page: 2210
  year: 2021
  ident: bib4
  article-title: Rapid identification of
  publication-title: Microorganisms
– volume: 24
  start-page: 738
  year: 2018
  end-page: 743
  ident: bib13
  article-title: Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay
  publication-title: Clinical Microbiology and Infections
– volume: 9
  year: 2019
  ident: bib19
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
– year: 2023
  ident: bib10
  article-title: Breakpoint tables for interpretation of MICs and zone diameters
– volume: 10
  start-page: 982
  year: 2021
  ident: bib29
  article-title: MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria
  publication-title: Antibiotics (Basel)
– year: 2021
  ident: bib27
  article-title: What accelerates the emergence and spread of antimicrobial resistance?
– volume: 26
  start-page: 1310
  year: 2020
  end-page: 1317
  ident: bib24
  article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review
  publication-title: Clinical Microbiology and Infections
– year: 2024
  ident: bib5
  publication-title: Performance standards for antimicrobial susceptibility testing
– volume: 9
  issue: 3
  year: 2019
  ident: 10.1016/j.lwt.2025.117860_bib19
  article-title: Hyperparameters and tuning strategies for random forest
  publication-title: Wiley Interdisciplinary Reviews-Data Mining and Knowledge Discovery
  doi: 10.1002/widm.1301
– volume: 83
  start-page: 1093
  issue: 7
  year: 2004
  ident: 10.1016/j.lwt.2025.117860_bib2
  article-title: Microflora ecology of the chicken intestine using 16S ribosomal DNA primers
  publication-title: Poultry Science
  doi: 10.1093/ps/83.7.1093
– volume: 101
  start-page: 426
  issue: 4
  year: 2019
  ident: 10.1016/j.lwt.2025.117860_bib6
  article-title: Tackling antimicrobial resistance 2019-2024 - the UK's five-year national action plan
  publication-title: Journal of Hospital Infection
  doi: 10.1016/j.jhin.2019.02.019
– year: 2024
  ident: 10.1016/j.lwt.2025.117860_bib5
– volume: 10
  start-page: 3211
  issue: 9
  year: 2020
  ident: 10.1016/j.lwt.2025.117860_bib14
  article-title: Hybrid-recursive feature elimination for efficient feature selection
  publication-title: Applied Sciences-Basel
  doi: 10.3390/app10093211
– year: 2015
  ident: 10.1016/j.lwt.2025.117860_bib25
– volume: 10
  year: 2020
  ident: 10.1016/j.lwt.2025.117860_bib11
  article-title: Detection of antibiotic-resistance by MALDI-TOF mass spectrometry: An expanding area
  publication-title: Frontiers in Cellular and Infection Microbiology
  doi: 10.3389/fcimb.2020.572909
– volume: 15
  start-page: 9421
  issue: 12
  year: 2023
  ident: 10.1016/j.lwt.2025.117860_bib28
  article-title: Prevalence of antibiotic resistant E. coli strains isolated from farmed broilers and hens in Greece, based on phenotypic and molecular analyses
  publication-title: Sustainability
  doi: 10.3390/su15129421
– volume: 24
  start-page: 738
  issue: 7
  year: 2018
  ident: 10.1016/j.lwt.2025.117860_bib13
  article-title: Rapid detection of antibiotic resistance by MALDI-TOF mass spectrometry using a novel direct-on-target microdroplet growth assay
  publication-title: Clinical Microbiology and Infections
  doi: 10.1016/j.cmi.2017.10.016
– volume: 44
  start-page: 8897
  issue: 18
  year: 2016
  ident: 10.1016/j.lwt.2025.117860_bib22
  article-title: Antibiotic resistance evolved via inactivation of a ribosomal RNA methylating enzyme
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkw699
– volume: 4
  start-page: 40
  year: 2010
  ident: 10.1016/j.lwt.2025.117860_bib3
  article-title: A survey of cross-validation procedures for model selection
  publication-title: Statistics Surveys
  doi: 10.1214/09-SS054
– volume: 6
  start-page: 791
  year: 2015
  ident: 10.1016/j.lwt.2025.117860_bib21
  article-title: MALDI-TOF mass spectrometry: An emerging technology for microbial identification and diagnosis
  publication-title: Frontiers in Microbiology
  doi: 10.3389/fmicb.2015.00791
– volume: 19
  start-page: 6157
  year: 2021
  ident: 10.1016/j.lwt.2025.117860_bib17
  article-title: Bacterial species identification using MALDI-TOF mass spectrometry and machine learning techniques: A large-scale benchmarking study
  publication-title: Computational and Structural Biotechnology Journal
  doi: 10.1016/j.csbj.2021.11.004
– volume: 10
  issue: 1
  year: 2020
  ident: 10.1016/j.lwt.2025.117860_bib20
  article-title: Isolation and molecular characterization of multidrug-resistant Escherichia coli from chicken meat
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-78367-2
– volume: 26
  start-page: 1310
  issue: 10
  year: 2020
  ident: 10.1016/j.lwt.2025.117860_bib24
  article-title: Machine learning for microbial identification and antimicrobial susceptibility testing on MALDI-TOF mass spectra: A systematic review
  publication-title: Clinical Microbiology and Infections
  doi: 10.1016/j.cmi.2020.03.014
– volume: 9
  start-page: 57
  year: 2017
  ident: 10.1016/j.lwt.2025.117860_bib16
  article-title: Occurrence of Salmonella enterica and Escherichia coli in raw chicken and beef meat in northern Egypt and dissemination of their antibiotic resistance markers
  publication-title: Gut Pathogens
  doi: 10.1186/s13099-017-0206-9
– start-page: 1551
  year: 2021
  ident: 10.1016/j.lwt.2025.117860_bib1
  article-title: Hyperparameter optimization: Comparing genetic algorithm against grid search and bayesian optimization
  publication-title: IEEE Congress on Evolutionary Computation
– volume: 142
  start-page: 223
  year: 2008
  ident: 10.1016/j.lwt.2025.117860_bib7
  article-title: The activity of rRNA resistance methyltransferases assessed by MALDI mass spectrometry
  publication-title: Methods in Molecular Medicine
  doi: 10.1007/978-1-59745-246-5_18
– volume: 12
  start-page: 2825
  issue: null
  year: 2011
  ident: 10.1016/j.lwt.2025.117860_bib18
  article-title: Scikit-learn: Machine learning in Python
  publication-title: Journal of Machine Learning Research
– volume: 93
  start-page: 217
  year: 2015
  ident: 10.1016/j.lwt.2025.117860_bib26
  article-title: What to do about resistant bacteria in the food-chain?
  publication-title: Bulletin of the World Health Organization
  doi: 10.2471/BLT.15.030415
– year: 2000
  ident: 10.1016/j.lwt.2025.117860_bib9
– volume: 390
  start-page: 1151
  issue: 10100
  year: 2017
  ident: 10.1016/j.lwt.2025.117860_bib12
  article-title: 1980-2016: A sys0tematic analysis for the global burden of disease study 2016
  publication-title: Lancet
  doi: 10.1016/S0140-6736(17)32152-9
– volume: 28
  start-page: 164
  issue: 1
  year: 2022
  ident: 10.1016/j.lwt.2025.117860_bib23
  article-title: Direct antimicrobial resistance prediction from clinical MALDI-TOF mass spectra using machine learning
  publication-title: Nature Medicine
  doi: 10.1038/s41591-021-01619-9
– volume: 10
  start-page: 982
  year: 2021
  ident: 10.1016/j.lwt.2025.117860_bib29
  article-title: MALDI-TOF mass spectrometry technology as a tool for the rapid diagnosis of antimicrobial resistance in bacteria
  publication-title: Antibiotics (Basel)
  doi: 10.3390/antibiotics10080982
– volume: 9
  start-page: 2210
  issue: 11
  year: 2021
  ident: 10.1016/j.lwt.2025.117860_bib4
  article-title: Rapid identification of Escherichia coli colistin-resistant strains by MALDI-TOF mass spectrometry
  publication-title: Microorganisms
  doi: 10.3390/microorganisms9112210
– volume: 13
  start-page: 2825
  issue: 17
  year: 2023
  ident: 10.1016/j.lwt.2025.117860_bib8
  article-title: Using protein fingerprinting for identifying and discriminating methicillin resistant Staphylococcus aureus isolates from inpatient and outpatient clinics
  publication-title: Diagnostics
  doi: 10.3390/diagnostics13172825
– volume: 7
  issue: 2
  year: 2012
  ident: 10.1016/j.lwt.2025.117860_bib15
  article-title: Rapid detection of carbapenem resistance in Acinetobacter baumannii using matrix-assisted laser desorption ionization-time of flight mass spectrometry
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0031676
SSID ssj0000428
Score 2.4482865
Snippet Antibiotic-resistant Escherichia coli in food processing poses a significant risk to public health, necessitating rapid detection methods. This study developed...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 117860
SubjectTerms algorithms
antibiotic resistance
Antimicrobial resistance
carbapenems
chloramphenicol
desorption
Escherichia coli
food production
Food safety
Machine learning
MALDI-TOF MS
mass spectrometry
monitoring
penicillins
prediction
public health
quinolones
Rapid detection
rapid methods
risk
streptomycin
tetracycline
Title Machine learning-enhanced MALDI-TOF MS for real-time detection of antibiotic-resistant E. coli in food processing
URI https://dx.doi.org/10.1016/j.lwt.2025.117860
https://www.proquest.com/docview/3242051350
Volume 224
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5F5QA9IAiglkK0SD0hbdJ4dv04RiFRCqQ90Eq9rfZlalTZoXXFjd_OzNoWDyEOHG15vdbMePYbzTczjB0DgmIHxorMoRqkzwpRlEkpbFp4hxblZEeQPUs3l_L9lboaseVQC0O0yt73dz49euv-zqyX5mxXVVTjS83PAUMcwh2SeoJKmZGVT7__pHlQTNDRPEDQ00NmM3K8br4RnTJRlLrMY5fKv55Nf3jpePSsn7DHPWbki-6znrJRqMfs4VBSfDdm-790FXzGvm4jQTLwfiLEZxHq65jo59vFx3en4uJ8zbefOMJVjpDxRtB8ee5DG1lZNW9KjuKubNXgfgLDcYKYdctXU45WU_GqxqWN57uuxgA3eM4u16uL5Ub0kxWEgyRrReqMBBtMrgwGNNI7lYG1OZhCgTGZ82kuvS9pDr0Fm5cglUlA5gHtzhUW4AXbq5s6HDCuIIXMzWVZqiCVdEXuQ3pSJjZDsAHz5JC9HWSqd10DDT0wy75oVIAmBehOAYdMDlLXv1mBRgf_r2VvBg1p_Dso5WHq0NzfaYKL6HZAnbz8v1cfsUd0RXyBuXrF9trb-_AaYUhrJ9HOJuzB4vTD5mwSg_kf10vcVw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6V9FA4IAggAqUsEiekpY1n149j1DZKyIMDqdTbal8Go8oOxFX_fmf9EFChHnq1tV5rZvz5W803MwAfkUixRW14YskNwiUZz_Io5ybOnKWIsqIVyK7j2YX4cikv9-C0r4UJssoO-1tMb9C6u3LcWfN4WxShxjc0P0c64gTeIcQj2A_dqeQA9ifzxWz9B5BF1AJyhDws6JObjczr6iYoKiMZspdp06jyv7-nO0Dd_H2mz-BpRxvZpH2z57DnyyEc9FXFuyE8-aux4Av4tWo0kp51QyG-c1_-aHL9bDVZns355uuUrb4xYqyMWOMVDyPmmfN1I8wqWZUzsnhhior243QiDyyzrNn5Z0aBU7CipKWVY9u2zIA2eAkX0_PN6Yx3wxW4xSipeWy1QON1KjWdaYSzMkFjUtSZRK0T6-JUOJeHUfQGTZqjkDpCkXoKPZsZxFcwKKvSvwYmMcbEjkWeS08esFnqfHySRyYhvoHjaASfepuqbdtDQ_Xisp-KHKCCA1TrgBGI3urqn0BQhPH3LfvQe0jRBxKyHrr01fVOBcZIyIPy5M3DHv0eDmab1VIt5-vFW3gc7gT5wFgewqD-fe3fESupzVEXdbdCj94T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning-enhanced+MALDI-TOF+MS+for+real-time+detection+of+antibiotic-resistant+E.+coli+in+food+processing&rft.jtitle=Food+science+%26+technology&rft.au=Victor+Lin%2C+Hong-Ting&rft.au=Yang%2C+Tien-Wei&rft.au=Lu%2C+Wen-Jung&rft.au=Chiang%2C+Hong-Jhen&rft.date=2025-05-15&rft.pub=Elsevier+Ltd&rft.issn=0023-6438&rft.volume=224&rft_id=info:doi/10.1016%2Fj.lwt.2025.117860&rft.externalDocID=S0023643825005444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0023-6438&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0023-6438&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0023-6438&client=summon