Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays

As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 127; no. 12
Main Authors Li, Xinjia, Li, Yuzhi, Ma, Qingyu, Guo, Gepu, Tu, Juan, Zhang, Dong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 31.03.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded channel capacity. Theoretical analyses and experimental measurements for the OAM communication of AV beams based on single-ring transceiver arrays are studied in air. Coaxial multi-OAM AV beams are generated with multiple topological charges encoded by the binary ASCII codes of various letters. The OAM modes of the AV beams are decoded with limited acoustic pressures detected by the single-ring receiver array around the vortex center based on the orthogonal property. It is proven that the channel capacity of the communication system can be increased effectively by the OAM modes of AVs, which are beneficial to data encryption and transmission without mutual interference of AVs of different orders. The favorable results provide theoretical bases and technical support to data transmission and OAM decoding for the OAM communication of AV beams using simplified single-ring transceiver arrays.
AbstractList As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded channel capacity. Theoretical analyses and experimental measurements for the OAM communication of AV beams based on single-ring transceiver arrays are studied in air. Coaxial multi-OAM AV beams are generated with multiple topological charges encoded by the binary ASCII codes of various letters. The OAM modes of the AV beams are decoded with limited acoustic pressures detected by the single-ring receiver array around the vortex center based on the orthogonal property. It is proven that the channel capacity of the communication system can be increased effectively by the OAM modes of AVs, which are beneficial to data encryption and transmission without mutual interference of AVs of different orders. The favorable results provide theoretical bases and technical support to data transmission and OAM decoding for the OAM communication of AV beams using simplified single-ring transceiver arrays.
Author Li, Yuzhi
Li, Xinjia
Guo, Gepu
Zhang, Dong
Tu, Juan
Ma, Qingyu
Author_xml – sequence: 1
  givenname: Xinjia
  surname: Li
  fullname: Li, Xinjia
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 2
  givenname: Yuzhi
  surname: Li
  fullname: Li, Yuzhi
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 3
  givenname: Qingyu
  surname: Ma
  fullname: Ma, Qingyu
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 4
  givenname: Gepu
  surname: Guo
  fullname: Guo, Gepu
  organization: School of Physics and Technology, Nanjing Normal University
– sequence: 5
  givenname: Juan
  surname: Tu
  fullname: Tu, Juan
  organization: Institute of Acoustics, Nanjing University
– sequence: 6
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Institute of Acoustics, Nanjing University
BookMark eNp9kE1LxDAQhoMouH4c_AcBTwpdk6bpNkcRv0DQg57LNJ0sWdqkJq3o3R9ullUEUU9zmGfm5X32yLbzDgk54mzOWSnO-FxyIZXiW2TGWaWyhZRsm8wYy3lWqYXaJXsxrhjjvBJqRt4fgnXaDh1ScC0dMBgfenAaqTfUh8aO0KXVcuog0N736Mapp9r3_eSshtF6tyZB-ymOVtMXH0Z8pQ1CH2kDEVuaiGjdssMsZS3pGMBFjfYFA4UQ4C0ekB0DXcTDz7lPnq4uHy9usrv769uL87tMi3wxZqUqRClzaVRbos4bU7amZIopKcuiQlSQF00OvDFF6rfIJSBjWHBRNWUBYMQ-Od78HYJ_njCO9cpPwaXIOhcVrwqhRJGokw2lg48xoKmHYHsIbzVn9VpyzetPyYk9-8HqJGwtJbW03a8Xp5uL-EX--_5POHn-BuuhNeIDYJeeew
CODEN JAPIAU
CitedBy_id crossref_primary_10_1109_TUFFC_2020_3034240
crossref_primary_10_34133_research_0280
crossref_primary_10_1016_j_matdes_2021_110367
crossref_primary_10_1063_5_0145708
crossref_primary_10_1063_5_0058213
crossref_primary_10_1063_5_0170902
crossref_primary_10_1088_1742_6596_2822_1_012166
crossref_primary_10_1016_j_apacoust_2024_110121
crossref_primary_10_1016_j_scib_2022_04_009
crossref_primary_10_1016_j_apacoust_2024_110168
crossref_primary_10_1109_JOE_2023_3338925
crossref_primary_10_1364_OE_475888
crossref_primary_10_7498_aps_69_20200826
crossref_primary_10_1063_5_0050703
crossref_primary_10_1103_PhysRevE_110_065002
crossref_primary_10_1038_s41467_022_32778_z
crossref_primary_10_1063_5_0168356
crossref_primary_10_1063_5_0213089
crossref_primary_10_1109_TUFFC_2021_3120285
crossref_primary_10_1007_s11433_024_2551_3
crossref_primary_10_1121_10_0001697
crossref_primary_10_1103_PhysRevLett_125_074301
crossref_primary_10_1121_10_0025988
crossref_primary_10_1109_TUFFC_2023_3277854
crossref_primary_10_1121_10_0024768
crossref_primary_10_1063_5_0130015
crossref_primary_10_1088_1674_1056_ac686a
crossref_primary_10_1103_PhysRevApplied_22_054012
crossref_primary_10_1121_10_0035792
crossref_primary_10_1016_j_eng_2024_01_032
crossref_primary_10_1103_PhysRevResearch_3_013251
crossref_primary_10_1063_5_0068150
crossref_primary_10_1063_5_0107785
crossref_primary_10_1103_PhysRevB_109_184305
crossref_primary_10_1109_LSP_2024_3411510
Cites_doi 10.1038/nphoton.2012.138
10.1088/1367-2630/17/4/043040
10.1126/science.1225460
10.1063/1.4889860
10.1364/OE.26.008669
10.1103/PhysRevLett.99.087701
10.1109/MWC.2017.1700370
10.1364/AOP.3.000161
10.1088/1367-2630/14/11/118001
10.1109/ACCESS.2017.2763679
10.1109/CC.2018.8438279
10.1109/ICMMT.2016.7761689
10.1088/1367-2630/14/3/033001
10.1002/adma.201800257
10.1038/lsa.2015.30
10.1121/1.3384406
10.1073/pnas.1704450114
10.1103/PhysRevLett.117.034301
10.1103/PhysRevResearch.1.032014
10.1364/OPEX.12.005448
10.1121/1.428184
10.1121/1.428188
10.1121/1.4806353
10.1016/0030-4018(94)90638-6
10.3969/j.issn.1001-506X.2018.11.24
10.1103/PhysRevA.45.8185
10.1109/TAP.2011.2173142
10.1109/JPHOT.2017.2672642
10.1109/LMWC.2016.2597262
10.1063/1.5033971
10.1364/AO.47.002414
10.1109/ACCESS.2015.2503293
10.1109/LAWP.2017.2777439
10.1049/iet-map.2015.0839
10.1038/srep25418
10.1121/1.3248558
10.1029/2009RS004299
10.1063/1.4801894
10.1088/1674-1056/27/2/024301
10.3390/app8030362
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5135991
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_1_5135991
jap
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 11974187
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11604156
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China
  grantid: 11934009
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
53G
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-69436525f9d6ec2bf6df6090955648ee9a24b2a1bf4001725ae00e4138b64aaf3
ISSN 0021-8979
IngestDate Sun Jun 29 16:45:54 EDT 2025
Thu Apr 24 23:05:09 EDT 2025
Tue Jul 01 02:01:16 EDT 2025
Fri Jun 21 00:14:09 EDT 2024
Wed Nov 11 00:04:53 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License 0021-8979/2020/127(12)/124902/11/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-69436525f9d6ec2bf6df6090955648ee9a24b2a1bf4001725ae00e4138b64aaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5339-2218
PQID 2381843934
PQPubID 2050677
PageCount 11
ParticipantIDs scitation_primary_10_1063_1_5135991
crossref_citationtrail_10_1063_1_5135991
proquest_journals_2381843934
crossref_primary_10_1063_1_5135991
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200331
2020-03-31
PublicationDateYYYYMMDD 2020-03-31
PublicationDate_xml – month: 03
  year: 2020
  text: 20200331
  day: 31
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Marston, Marston (c26) 2010
Chang, Lin, Li (c9) 2018
Li, Li, Ma, Guo, Tu, Zhang (c33) 2018
Tamburini, Mari, Sponselli, Thidé, Bianchini, Romanato (c10) 2012
Li, Dai, Ma, Guo, Ding (c32) 2018
Anguita, Neifeld, Vasic (c34) 2008
Wang, Yang, Fazal, Ahmed, Yan, Huang (c3) 2012
Hefner, Marston (c22) 1999
Gibson, Courtial, Padgett, Vasnetsov, Pasko, Barnett, Franke-Amold (c7) 2004
Zhang, Zheng, Chen, Jin, Chi, Zhang (c42) 2016
Zhu, Jiang, Qu, Chen, Zhou (c44) 2015
Marston, Marston (c25) 2009
Willner, Wang, Huang (c5) 2012
Thide, Then, Sjoholm, Palmer, Bergman, Carozzi, Istomin, Ibragimov, Khamitova (c12) 2007
Kai, Huang, Shen, Zhou, Guo (c2) 2017
Mohammadi, Daidorff, Forozesh, Thide, Bergman, Isham, Carozzi (c20) 2010
Tamagnone, Craeye, Perruisseau-Carrier (c11) 2012
Wang, Zhu, Zhao, Li, Lv, Xu, Wang (c16) 2018
Andersson, Berglind, Björk (c49) 2015
Xu, Zheng, Zhang, Chen, Zhang (c15) 2016
Lei, Zhang, Li, Jia, Liu, Xu, Niu (c8) 2015
Shi, Dubois, Mang, Zhang (c24) 2017
Wang, Ge, Zi, Wang (c41) 2017
Fan, Zhou, Zhang (c47) 2019
Jiang, Li, Liang, Cheng, Zhang (c28) 2016
Beijersbergen, Coerwinkel, Kristensen, Woerdman (c6) 1994
Edfors, Johansson (c39) 2012
Zhao, Zhang, Cheng (c45) 2018
Bollen, Zartman, Marston, Marston (c27) 2013
Chen, Jiang, Sha (c19) 2018
Yao, Padgett (c4) 2011
Hu, Zheng, Zhang, Chi, Jin, Zhang (c17) 2016
Hefner, Marston (c23) 1999
Yang, Ma, Tu, Zhang (c31) 2013
Jiang, Liang, Cheng, Qiu (c29) 2018
Allen, Beijersbergen, Spreeuw, Woerdman (c1) 1992
Chen, Jiang, Sha (c18) 2018
Cheng, Zhang, Jing, Gao, Zhang (c46) 2019
Gao, Zheng, Ma, Tu, Zhang (c35) 2014
(2024031517530306300_c27) 2013; 133
(2024031517530306300_c1) 1992; 45
(2024031517530306300_c18) 2018; 17
(2024031517530306300_c6) 1994; 112
(2024031517530306300_c48) 2015
2024031517530306300_c40
(2024031517530306300_c21) 2016
(2024031517530306300_c37) 2006
(2024031517530306300_c47) 2019; 1
(2024031517530306300_c45) 2018; 15
2024031517530306300_c30
(2024031517530306300_c9) 2018; 40
(2024031517530306300_c39) 2012; 60
(2024031517530306300_c44) 2015; 3
(2024031517530306300_c20) 2010; 45
(2024031517530306300_c2) 2017; 9
(2024031517530306300_c15) 2016; 26
(2024031517530306300_c3) 2012; 6
(2024031517530306300_c46) 2019; 26
(2024031517530306300_c34) 2008; 47
(2024031517530306300_c4) 2011; 3
(2024031517530306300_c8) 2015; 4
(2024031517530306300_c12) 2007; 99
(2024031517530306300_c17) 2016; 10
(2024031517530306300_c23) 1999; 106
(2024031517530306300_c49) 2015; 17
(2024031517530306300_c25) 2009; 126
(2024031517530306300_c43) 2014
(2024031517530306300_c29) 2018; 30
(2024031517530306300_c22) 1999; 106
(2024031517530306300_c7) 2004; 12
(2024031517530306300_c11) 2012; 14
(2024031517530306300_c33) 2018; 124
(2024031517530306300_c42) 2016; 6
(2024031517530306300_c19) 2018; 8
(2024031517530306300_c36) 2015
(2024031517530306300_c35) 2014; 116
(2024031517530306300_c13) 2016
(2024031517530306300_c41) 2017; 5
(2024031517530306300_c14) 2014
(2024031517530306300_c24) 2017; 114
(2024031517530306300_c16) 2018; 26
(2024031517530306300_c10) 2012; 14
(2024031517530306300_c38) 2009
(2024031517530306300_c31) 2013; 113
(2024031517530306300_c28) 2016; 117
(2024031517530306300_c32) 2018; 27
(2024031517530306300_c26) 2010; 127
(2024031517530306300_c5) 2012; 337
References_xml – start-page: e257
  year: 2015
  ident: c8
  publication-title: Light Sci. Appl.
– start-page: 3313
  year: 1999
  ident: c23
  publication-title: J. Acoust. Soc. Am.
– start-page: 3340
  year: 1999
  ident: c22
  publication-title: J. Acoust. Soc. Am.
– start-page: 655
  year: 2012
  ident: c5
  publication-title: Science
– start-page: 23069
  year: 2017
  ident: c41
  publication-title: IEEE Access
– start-page: 161
  year: 2011
  ident: c4
  publication-title: Adv. Opt. Photonics
– start-page: 1043
  year: 2016
  ident: c17
  publication-title: IET Microw. Antenn. Propag.
– start-page: 2414
  year: 2008
  ident: c34
  publication-title: Appl. Opt.
– start-page: 087701
  year: 2007
  ident: c12
  publication-title: Phys. Rev. Lett.
– start-page: 1856
  year: 2010
  ident: c26
  publication-title: J. Acoust. Soc. Am.
– start-page: 024905
  year: 2014
  ident: c35
  publication-title: J. Appl. Phys.
– start-page: 3528
  year: 2013
  ident: c27
  publication-title: J. Acoust. Soc. Am.
– start-page: 2187
  year: 2009
  ident: c25
  publication-title: J. Acoust. Soc. Am.
– start-page: 024301
  year: 2018
  ident: c32
  publication-title: Chin. Phys. B
– start-page: 738
  year: 2016
  ident: c15
  publication-title: IEEE Microw. Wirel. Compon. Lett.
– start-page: 118001
  year: 2012
  ident: c11
  publication-title: New J. Phys.
– start-page: 362
  year: 2018
  ident: c19
  publication-title: Appl. Sci.
– start-page: 5448
  year: 2004
  ident: c7
  publication-title: Opt. Exp.
– start-page: 8669
  year: 2018
  ident: c16
  publication-title: Opt. Exp.
– start-page: 033001
  year: 2012
  ident: c10
  publication-title: New J. Phys.
– start-page: 034301
  year: 2016
  ident: c28
  publication-title: Phys. Rev. Lett.
– start-page: 043040
  year: 2015
  ident: c49
  publication-title: New J. Phys.
– start-page: 1126
  year: 2012
  ident: c39
  publication-title: IEEE Trans. Antennas Propag.
– start-page: 7902510
  year: 2017
  ident: c2
  publication-title: IEEE Photonics J.
– start-page: 1800257
  year: 2018
  ident: c29
  publication-title: Adv. Mater.
– start-page: 154904
  year: 2013
  ident: c31
  publication-title: J. Appl. Phys.
– start-page: 167
  year: 2018
  ident: c9
  publication-title: Syst. Eng. Electron.
– start-page: 25418
  year: 2016
  ident: c42
  publication-title: Sci. Rep.
– start-page: RS4007
  year: 2010
  ident: c20
  publication-title: Radio Sci.
– start-page: 7250
  year: 2017
  ident: c24
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– start-page: 032014
  year: 2019
  ident: c47
  publication-title: Phys. Rev. Res.
– start-page: 100
  year: 2019
  ident: c46
  publication-title: IEEE Wirel. Commun.
– start-page: 496
  year: 2012
  ident: c3
  publication-title: Nat. Photonics
– start-page: 2456
  year: 2015
  ident: c44
  publication-title: IEEE Access
– start-page: 321
  year: 1994
  ident: c6
  publication-title: Opt. Commun.
– start-page: 126
  year: 2018
  ident: c45
  publication-title: Chin. Commun.
– start-page: 114901
  year: 2018
  ident: c33
  publication-title: J. Appl. Phys.
– start-page: 110
  year: 2018
  ident: c18
  publication-title: IEEE Antenn. Wirel. Propag. Lett.
– start-page: 8185
  year: 1992
  ident: c1
  publication-title: Phys. Rev. A
– volume: 6
  start-page: 496
  year: 2012
  ident: 2024031517530306300_c3
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2012.138
– volume: 17
  start-page: 043040
  year: 2015
  ident: 2024031517530306300_c49
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/17/4/043040
– volume: 337
  start-page: 655
  year: 2012
  ident: 2024031517530306300_c5
  publication-title: Science
  doi: 10.1126/science.1225460
– volume: 116
  start-page: 024905
  year: 2014
  ident: 2024031517530306300_c35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4889860
– volume: 26
  start-page: 8669
  year: 2018
  ident: 2024031517530306300_c16
  publication-title: Opt. Exp.
  doi: 10.1364/OE.26.008669
– volume: 99
  start-page: 087701
  year: 2007
  ident: 2024031517530306300_c12
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.087701
– volume: 26
  start-page: 100
  year: 2019
  ident: 2024031517530306300_c46
  publication-title: IEEE Wirel. Commun.
  doi: 10.1109/MWC.2017.1700370
– volume: 3
  start-page: 161
  year: 2011
  ident: 2024031517530306300_c4
  publication-title: Adv. Opt. Photonics
  doi: 10.1364/AOP.3.000161
– volume: 14
  start-page: 118001
  year: 2012
  ident: 2024031517530306300_c11
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/11/118001
– volume-title: Research on Capacity and Detection Technology of MIMO System
  year: 2006
  ident: 2024031517530306300_c37
– volume: 5
  start-page: 23069
  year: 2017
  ident: 2024031517530306300_c41
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2763679
– volume: 15
  start-page: 126
  year: 2018
  ident: 2024031517530306300_c45
  publication-title: Chin. Commun.
  doi: 10.1109/CC.2018.8438279
– year: 2016
  ident: 2024031517530306300_c21
  doi: 10.1109/ICMMT.2016.7761689
– volume: 14
  start-page: 033001
  year: 2012
  ident: 2024031517530306300_c10
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/14/3/033001
– volume: 30
  start-page: 1800257
  year: 2018
  ident: 2024031517530306300_c29
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800257
– ident: 2024031517530306300_c40
– volume: 4
  start-page: e257
  year: 2015
  ident: 2024031517530306300_c8
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2015.30
– volume: 127
  start-page: 1856
  year: 2010
  ident: 2024031517530306300_c26
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3384406
– volume: 114
  start-page: 7250
  year: 2017
  ident: 2024031517530306300_c24
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1704450114
– volume: 117
  start-page: 034301
  year: 2016
  ident: 2024031517530306300_c28
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.034301
– ident: 2024031517530306300_c30
– volume: 1
  start-page: 032014
  year: 2019
  ident: 2024031517530306300_c47
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.1.032014
– volume: 12
  start-page: 5448
  year: 2004
  ident: 2024031517530306300_c7
  publication-title: Opt. Exp.
  doi: 10.1364/OPEX.12.005448
– volume: 106
  start-page: 3313
  year: 1999
  ident: 2024031517530306300_c23
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428184
– start-page: 517
  year: 2016
  ident: 2024031517530306300_c13
– volume: 106
  start-page: 3340
  year: 1999
  ident: 2024031517530306300_c22
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.428188
– volume: 133
  start-page: 3528
  year: 2013
  ident: 2024031517530306300_c27
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4806353
– start-page: 1
  year: 2015
  ident: 2024031517530306300_c48
– start-page: 2814
  year: 2014
  ident: 2024031517530306300_c14
– volume: 112
  start-page: 321
  year: 1994
  ident: 2024031517530306300_c6
  publication-title: Opt. Commun.
  doi: 10.1016/0030-4018(94)90638-6
– volume: 40
  start-page: 167
  year: 2018
  ident: 2024031517530306300_c9
  publication-title: Syst. Eng. Electron.
  doi: 10.3969/j.issn.1001-506X.2018.11.24
– volume-title: MIMO Multi-Antenna Wireless Communication System
  year: 2009
  ident: 2024031517530306300_c38
– volume: 45
  start-page: 8185
  year: 1992
  ident: 2024031517530306300_c1
  publication-title: Phys. Rev. A
  doi: 10.1103/PhysRevA.45.8185
– volume: 60
  start-page: 1126
  year: 2012
  ident: 2024031517530306300_c39
  publication-title: IEEE Trans. Antennas Propag.
  doi: 10.1109/TAP.2011.2173142
– volume: 9
  start-page: 7902510
  year: 2017
  ident: 2024031517530306300_c2
  publication-title: IEEE Photonics J.
  doi: 10.1109/JPHOT.2017.2672642
– volume-title: Principles of Communications
  year: 2015
  ident: 2024031517530306300_c36
– volume: 26
  start-page: 738
  year: 2016
  ident: 2024031517530306300_c15
  publication-title: IEEE Microw. Wirel. Compon. Lett.
  doi: 10.1109/LMWC.2016.2597262
– volume: 124
  start-page: 114901
  year: 2018
  ident: 2024031517530306300_c33
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5033971
– volume: 47
  start-page: 2414
  year: 2008
  ident: 2024031517530306300_c34
  publication-title: Appl. Opt.
  doi: 10.1364/AO.47.002414
– volume: 3
  start-page: 2456
  year: 2015
  ident: 2024031517530306300_c44
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2503293
– volume: 17
  start-page: 110
  issue: 1
  year: 2018
  ident: 2024031517530306300_c18
  publication-title: IEEE Antenn. Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2017.2777439
– volume: 10
  start-page: 1043
  year: 2016
  ident: 2024031517530306300_c17
  publication-title: IET Microw. Antenn. Propag.
  doi: 10.1049/iet-map.2015.0839
– volume: 6
  start-page: 25418
  year: 2016
  ident: 2024031517530306300_c42
  publication-title: Sci. Rep.
  doi: 10.1038/srep25418
– volume: 126
  start-page: 2187
  year: 2009
  ident: 2024031517530306300_c25
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3248558
– volume: 45
  start-page: RS4007
  year: 2010
  ident: 2024031517530306300_c20
  publication-title: Radio Sci.
  doi: 10.1029/2009RS004299
– volume: 113
  start-page: 154904
  year: 2013
  ident: 2024031517530306300_c31
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801894
– volume: 27
  start-page: 024301
  year: 2018
  ident: 2024031517530306300_c32
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/27/2/024301
– start-page: 144
  year: 2014
  ident: 2024031517530306300_c43
– volume: 8
  start-page: 362
  year: 2018
  ident: 2024031517530306300_c19
  publication-title: Appl. Sci.
  doi: 10.3390/app8030362
SSID ssj0011839
Score 2.4877365
Snippet As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustic noise
Acoustics
Aerodynamics
Angular momentum
Applied physics
Arrays
Binary codes
Channel capacity
Communication
Communications systems
Data encryption
Data transmission
Decoding
Electron beams
Encryption
Signal to noise ratio
Technical services
Transceivers
Underwater acoustics
Underwater communication
Vortices
Title Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays
URI http://dx.doi.org/10.1063/1.5135991
https://www.proquest.com/docview/2381843934
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFQIOCAqIloIs4IC0yjZxbG98rPhQhVpURCstp8hOHLFVu1llk4r2zA9nJs7XogUVLtHKspyV59l-nryZIeQNs1yEmQq8iCnucS2Mp_ww81KdwXHP8cjCAOejz_LglH-aimkva66jS0ozTq7XxpX8j1WhDeyKUbL_YNluUGiA32BfeIKF4XkjGx-3nnIX7j-IAQAKmBcGC4KM0CGJUtMLzLVQVheoIu9jQmodQJLXNb1Gl6i8_TEyFtM04PmW4rcE9CacW69oKkrMl4lFMcdIF4W-Wv6B3eqG3TrPSUfcD2vxwHQ2P5vp1bZv1fX3We8fx6Yv8MarqlMIVblz4i-qoasC7qVN7F6__TIAhXLVY8bW7bh-pLyJcNlnuy3Z5QtoscfW7vVArtDtMBZBKJQr-fVb6uwzvbhNNhlcIGAH3Nx_f3T4tfvChMzQyX_cX2qzTslwrxtylav0F5C7wE6cUGLARU4ekgfNNNN9h4hH5Jadb5H7g9SSW-TOsZv4x-RnhxIKKKEDlNA8ow1KaIMS2qKErqAEe7YooQ4ltEYJrVFCoccAJXSAEupQ8oScfvxw8u7Aa2pveEnIJqUnFQ-lYCJTqbQJM5lMM-krTFgoeWSt0owbpgOT8dqNILT1fQuMKDKSa1joT8nGPJ_bZ4SmSCqTCVdaCZ4ZbrRGcbFmiWRRGvBt8rad5bidV6yPch7XAgkZxkHcGGSbvOq6Llw2lnWddltTxc1iXcY1MwXyHcLrXnfm-9sga3rB_PY94kWa7dxorOfkXr8adslGWVT2BVDZ0rxsUPkLDxmj3A
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principle+and+performance+of+orbital+angular+momentum+communication+of+acoustic+vortex+beams+based+on+single-ring+transceiver+arrays&rft.jtitle=Journal+of+applied+physics&rft.au=Li%2C+Xinjia&rft.au=Li%2C+Yuzhi&rft.au=Ma%2C+Qingyu&rft.au=Guo%2C+Gepu&rft.date=2020-03-31&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=127&rft.issue=12&rft_id=info:doi/10.1063%2F1.5135991&rft.externalDocID=jap
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon