Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays
As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded...
Saved in:
Published in | Journal of applied physics Vol. 127; no. 12 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
31.03.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded channel capacity. Theoretical analyses and experimental measurements for the OAM communication of AV beams based on single-ring transceiver arrays are studied in air. Coaxial multi-OAM AV beams are generated with multiple topological charges encoded by the binary ASCII codes of various letters. The OAM modes of the AV beams are decoded with limited acoustic pressures detected by the single-ring receiver array around the vortex center based on the orthogonal property. It is proven that the channel capacity of the communication system can be increased effectively by the OAM modes of AVs, which are beneficial to data encryption and transmission without mutual interference of AVs of different orders. The favorable results provide theoretical bases and technical support to data transmission and OAM decoding for the OAM communication of AV beams using simplified single-ring transceiver arrays. |
---|---|
AbstractList | As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The orbital angular momentum (OAM) based acoustic communication of acoustic vortex (AV) provides a new dimension to data transmission with an expanded channel capacity. Theoretical analyses and experimental measurements for the OAM communication of AV beams based on single-ring transceiver arrays are studied in air. Coaxial multi-OAM AV beams are generated with multiple topological charges encoded by the binary ASCII codes of various letters. The OAM modes of the AV beams are decoded with limited acoustic pressures detected by the single-ring receiver array around the vortex center based on the orthogonal property. It is proven that the channel capacity of the communication system can be increased effectively by the OAM modes of AVs, which are beneficial to data encryption and transmission without mutual interference of AVs of different orders. The favorable results provide theoretical bases and technical support to data transmission and OAM decoding for the OAM communication of AV beams using simplified single-ring transceiver arrays. |
Author | Li, Yuzhi Li, Xinjia Guo, Gepu Zhang, Dong Tu, Juan Ma, Qingyu |
Author_xml | – sequence: 1 givenname: Xinjia surname: Li fullname: Li, Xinjia organization: School of Physics and Technology, Nanjing Normal University – sequence: 2 givenname: Yuzhi surname: Li fullname: Li, Yuzhi organization: School of Physics and Technology, Nanjing Normal University – sequence: 3 givenname: Qingyu surname: Ma fullname: Ma, Qingyu organization: School of Physics and Technology, Nanjing Normal University – sequence: 4 givenname: Gepu surname: Guo fullname: Guo, Gepu organization: School of Physics and Technology, Nanjing Normal University – sequence: 5 givenname: Juan surname: Tu fullname: Tu, Juan organization: Institute of Acoustics, Nanjing University – sequence: 6 givenname: Dong surname: Zhang fullname: Zhang, Dong organization: Institute of Acoustics, Nanjing University |
BookMark | eNp9kE1LxDAQhoMouH4c_AcBTwpdk6bpNkcRv0DQg57LNJ0sWdqkJq3o3R9ullUEUU9zmGfm5X32yLbzDgk54mzOWSnO-FxyIZXiW2TGWaWyhZRsm8wYy3lWqYXaJXsxrhjjvBJqRt4fgnXaDh1ScC0dMBgfenAaqTfUh8aO0KXVcuog0N736Mapp9r3_eSshtF6tyZB-ymOVtMXH0Z8pQ1CH2kDEVuaiGjdssMsZS3pGMBFjfYFA4UQ4C0ekB0DXcTDz7lPnq4uHy9usrv769uL87tMi3wxZqUqRClzaVRbos4bU7amZIopKcuiQlSQF00OvDFF6rfIJSBjWHBRNWUBYMQ-Od78HYJ_njCO9cpPwaXIOhcVrwqhRJGokw2lg48xoKmHYHsIbzVn9VpyzetPyYk9-8HqJGwtJbW03a8Xp5uL-EX--_5POHn-BuuhNeIDYJeeew |
CODEN | JAPIAU |
CitedBy_id | crossref_primary_10_1109_TUFFC_2020_3034240 crossref_primary_10_34133_research_0280 crossref_primary_10_1016_j_matdes_2021_110367 crossref_primary_10_1063_5_0145708 crossref_primary_10_1063_5_0058213 crossref_primary_10_1063_5_0170902 crossref_primary_10_1088_1742_6596_2822_1_012166 crossref_primary_10_1016_j_apacoust_2024_110121 crossref_primary_10_1016_j_scib_2022_04_009 crossref_primary_10_1016_j_apacoust_2024_110168 crossref_primary_10_1109_JOE_2023_3338925 crossref_primary_10_1364_OE_475888 crossref_primary_10_7498_aps_69_20200826 crossref_primary_10_1063_5_0050703 crossref_primary_10_1103_PhysRevE_110_065002 crossref_primary_10_1038_s41467_022_32778_z crossref_primary_10_1063_5_0168356 crossref_primary_10_1063_5_0213089 crossref_primary_10_1109_TUFFC_2021_3120285 crossref_primary_10_1007_s11433_024_2551_3 crossref_primary_10_1121_10_0001697 crossref_primary_10_1103_PhysRevLett_125_074301 crossref_primary_10_1121_10_0025988 crossref_primary_10_1109_TUFFC_2023_3277854 crossref_primary_10_1121_10_0024768 crossref_primary_10_1063_5_0130015 crossref_primary_10_1088_1674_1056_ac686a crossref_primary_10_1103_PhysRevApplied_22_054012 crossref_primary_10_1121_10_0035792 crossref_primary_10_1016_j_eng_2024_01_032 crossref_primary_10_1103_PhysRevResearch_3_013251 crossref_primary_10_1063_5_0068150 crossref_primary_10_1063_5_0107785 crossref_primary_10_1103_PhysRevB_109_184305 crossref_primary_10_1109_LSP_2024_3411510 |
Cites_doi | 10.1038/nphoton.2012.138 10.1088/1367-2630/17/4/043040 10.1126/science.1225460 10.1063/1.4889860 10.1364/OE.26.008669 10.1103/PhysRevLett.99.087701 10.1109/MWC.2017.1700370 10.1364/AOP.3.000161 10.1088/1367-2630/14/11/118001 10.1109/ACCESS.2017.2763679 10.1109/CC.2018.8438279 10.1109/ICMMT.2016.7761689 10.1088/1367-2630/14/3/033001 10.1002/adma.201800257 10.1038/lsa.2015.30 10.1121/1.3384406 10.1073/pnas.1704450114 10.1103/PhysRevLett.117.034301 10.1103/PhysRevResearch.1.032014 10.1364/OPEX.12.005448 10.1121/1.428184 10.1121/1.428188 10.1121/1.4806353 10.1016/0030-4018(94)90638-6 10.3969/j.issn.1001-506X.2018.11.24 10.1103/PhysRevA.45.8185 10.1109/TAP.2011.2173142 10.1109/JPHOT.2017.2672642 10.1109/LMWC.2016.2597262 10.1063/1.5033971 10.1364/AO.47.002414 10.1109/ACCESS.2015.2503293 10.1109/LAWP.2017.2777439 10.1049/iet-map.2015.0839 10.1038/srep25418 10.1121/1.3248558 10.1029/2009RS004299 10.1063/1.4801894 10.1088/1674-1056/27/2/024301 10.3390/app8030362 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.5135991 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1089-7550 |
ExternalDocumentID | 10_1063_1_5135991 jap |
GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 11974187 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11604156 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China grantid: 11934009 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 29J 4.4 53G 5GY 5VS 85S AAAAW AABDS AAEUA AAIKC AAMNW AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L DU5 EBS ESX F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS RXW SC5 TAE TN5 TWZ UCJ UHB UPT WH7 XSW YQT YZZ ZCA ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-69436525f9d6ec2bf6df6090955648ee9a24b2a1bf4001725ae00e4138b64aaf3 |
ISSN | 0021-8979 |
IngestDate | Sun Jun 29 16:45:54 EDT 2025 Thu Apr 24 23:05:09 EDT 2025 Tue Jul 01 02:01:16 EDT 2025 Fri Jun 21 00:14:09 EDT 2024 Wed Nov 11 00:04:53 EST 2020 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 0021-8979/2020/127(12)/124902/11/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-69436525f9d6ec2bf6df6090955648ee9a24b2a1bf4001725ae00e4138b64aaf3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5339-2218 |
PQID | 2381843934 |
PQPubID | 2050677 |
PageCount | 11 |
ParticipantIDs | scitation_primary_10_1063_1_5135991 crossref_citationtrail_10_1063_1_5135991 proquest_journals_2381843934 crossref_primary_10_1063_1_5135991 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200331 2020-03-31 |
PublicationDateYYYYMMDD | 2020-03-31 |
PublicationDate_xml | – month: 03 year: 2020 text: 20200331 day: 31 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Journal of applied physics |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Marston, Marston (c26) 2010 Chang, Lin, Li (c9) 2018 Li, Li, Ma, Guo, Tu, Zhang (c33) 2018 Tamburini, Mari, Sponselli, Thidé, Bianchini, Romanato (c10) 2012 Li, Dai, Ma, Guo, Ding (c32) 2018 Anguita, Neifeld, Vasic (c34) 2008 Wang, Yang, Fazal, Ahmed, Yan, Huang (c3) 2012 Hefner, Marston (c22) 1999 Gibson, Courtial, Padgett, Vasnetsov, Pasko, Barnett, Franke-Amold (c7) 2004 Zhang, Zheng, Chen, Jin, Chi, Zhang (c42) 2016 Zhu, Jiang, Qu, Chen, Zhou (c44) 2015 Marston, Marston (c25) 2009 Willner, Wang, Huang (c5) 2012 Thide, Then, Sjoholm, Palmer, Bergman, Carozzi, Istomin, Ibragimov, Khamitova (c12) 2007 Kai, Huang, Shen, Zhou, Guo (c2) 2017 Mohammadi, Daidorff, Forozesh, Thide, Bergman, Isham, Carozzi (c20) 2010 Tamagnone, Craeye, Perruisseau-Carrier (c11) 2012 Wang, Zhu, Zhao, Li, Lv, Xu, Wang (c16) 2018 Andersson, Berglind, Björk (c49) 2015 Xu, Zheng, Zhang, Chen, Zhang (c15) 2016 Lei, Zhang, Li, Jia, Liu, Xu, Niu (c8) 2015 Shi, Dubois, Mang, Zhang (c24) 2017 Wang, Ge, Zi, Wang (c41) 2017 Fan, Zhou, Zhang (c47) 2019 Jiang, Li, Liang, Cheng, Zhang (c28) 2016 Beijersbergen, Coerwinkel, Kristensen, Woerdman (c6) 1994 Edfors, Johansson (c39) 2012 Zhao, Zhang, Cheng (c45) 2018 Bollen, Zartman, Marston, Marston (c27) 2013 Chen, Jiang, Sha (c19) 2018 Yao, Padgett (c4) 2011 Hu, Zheng, Zhang, Chi, Jin, Zhang (c17) 2016 Hefner, Marston (c23) 1999 Yang, Ma, Tu, Zhang (c31) 2013 Jiang, Liang, Cheng, Qiu (c29) 2018 Allen, Beijersbergen, Spreeuw, Woerdman (c1) 1992 Chen, Jiang, Sha (c18) 2018 Cheng, Zhang, Jing, Gao, Zhang (c46) 2019 Gao, Zheng, Ma, Tu, Zhang (c35) 2014 (2024031517530306300_c27) 2013; 133 (2024031517530306300_c1) 1992; 45 (2024031517530306300_c18) 2018; 17 (2024031517530306300_c6) 1994; 112 (2024031517530306300_c48) 2015 2024031517530306300_c40 (2024031517530306300_c21) 2016 (2024031517530306300_c37) 2006 (2024031517530306300_c47) 2019; 1 (2024031517530306300_c45) 2018; 15 2024031517530306300_c30 (2024031517530306300_c9) 2018; 40 (2024031517530306300_c39) 2012; 60 (2024031517530306300_c44) 2015; 3 (2024031517530306300_c20) 2010; 45 (2024031517530306300_c2) 2017; 9 (2024031517530306300_c15) 2016; 26 (2024031517530306300_c3) 2012; 6 (2024031517530306300_c46) 2019; 26 (2024031517530306300_c34) 2008; 47 (2024031517530306300_c4) 2011; 3 (2024031517530306300_c8) 2015; 4 (2024031517530306300_c12) 2007; 99 (2024031517530306300_c17) 2016; 10 (2024031517530306300_c23) 1999; 106 (2024031517530306300_c49) 2015; 17 (2024031517530306300_c25) 2009; 126 (2024031517530306300_c43) 2014 (2024031517530306300_c29) 2018; 30 (2024031517530306300_c22) 1999; 106 (2024031517530306300_c7) 2004; 12 (2024031517530306300_c11) 2012; 14 (2024031517530306300_c33) 2018; 124 (2024031517530306300_c42) 2016; 6 (2024031517530306300_c19) 2018; 8 (2024031517530306300_c36) 2015 (2024031517530306300_c35) 2014; 116 (2024031517530306300_c13) 2016 (2024031517530306300_c41) 2017; 5 (2024031517530306300_c14) 2014 (2024031517530306300_c24) 2017; 114 (2024031517530306300_c16) 2018; 26 (2024031517530306300_c10) 2012; 14 (2024031517530306300_c38) 2009 (2024031517530306300_c31) 2013; 113 (2024031517530306300_c28) 2016; 117 (2024031517530306300_c32) 2018; 27 (2024031517530306300_c26) 2010; 127 (2024031517530306300_c5) 2012; 337 |
References_xml | – start-page: e257 year: 2015 ident: c8 publication-title: Light Sci. Appl. – start-page: 3313 year: 1999 ident: c23 publication-title: J. Acoust. Soc. Am. – start-page: 3340 year: 1999 ident: c22 publication-title: J. Acoust. Soc. Am. – start-page: 655 year: 2012 ident: c5 publication-title: Science – start-page: 23069 year: 2017 ident: c41 publication-title: IEEE Access – start-page: 161 year: 2011 ident: c4 publication-title: Adv. Opt. Photonics – start-page: 1043 year: 2016 ident: c17 publication-title: IET Microw. Antenn. Propag. – start-page: 2414 year: 2008 ident: c34 publication-title: Appl. Opt. – start-page: 087701 year: 2007 ident: c12 publication-title: Phys. Rev. Lett. – start-page: 1856 year: 2010 ident: c26 publication-title: J. Acoust. Soc. Am. – start-page: 024905 year: 2014 ident: c35 publication-title: J. Appl. Phys. – start-page: 3528 year: 2013 ident: c27 publication-title: J. Acoust. Soc. Am. – start-page: 2187 year: 2009 ident: c25 publication-title: J. Acoust. Soc. Am. – start-page: 024301 year: 2018 ident: c32 publication-title: Chin. Phys. B – start-page: 738 year: 2016 ident: c15 publication-title: IEEE Microw. Wirel. Compon. Lett. – start-page: 118001 year: 2012 ident: c11 publication-title: New J. Phys. – start-page: 362 year: 2018 ident: c19 publication-title: Appl. Sci. – start-page: 5448 year: 2004 ident: c7 publication-title: Opt. Exp. – start-page: 8669 year: 2018 ident: c16 publication-title: Opt. Exp. – start-page: 033001 year: 2012 ident: c10 publication-title: New J. Phys. – start-page: 034301 year: 2016 ident: c28 publication-title: Phys. Rev. Lett. – start-page: 043040 year: 2015 ident: c49 publication-title: New J. Phys. – start-page: 1126 year: 2012 ident: c39 publication-title: IEEE Trans. Antennas Propag. – start-page: 7902510 year: 2017 ident: c2 publication-title: IEEE Photonics J. – start-page: 1800257 year: 2018 ident: c29 publication-title: Adv. Mater. – start-page: 154904 year: 2013 ident: c31 publication-title: J. Appl. Phys. – start-page: 167 year: 2018 ident: c9 publication-title: Syst. Eng. Electron. – start-page: 25418 year: 2016 ident: c42 publication-title: Sci. Rep. – start-page: RS4007 year: 2010 ident: c20 publication-title: Radio Sci. – start-page: 7250 year: 2017 ident: c24 publication-title: Proc. Natl. Acad. Sci. U.S.A. – start-page: 032014 year: 2019 ident: c47 publication-title: Phys. Rev. Res. – start-page: 100 year: 2019 ident: c46 publication-title: IEEE Wirel. Commun. – start-page: 496 year: 2012 ident: c3 publication-title: Nat. Photonics – start-page: 2456 year: 2015 ident: c44 publication-title: IEEE Access – start-page: 321 year: 1994 ident: c6 publication-title: Opt. Commun. – start-page: 126 year: 2018 ident: c45 publication-title: Chin. Commun. – start-page: 114901 year: 2018 ident: c33 publication-title: J. Appl. Phys. – start-page: 110 year: 2018 ident: c18 publication-title: IEEE Antenn. Wirel. Propag. Lett. – start-page: 8185 year: 1992 ident: c1 publication-title: Phys. Rev. A – volume: 6 start-page: 496 year: 2012 ident: 2024031517530306300_c3 publication-title: Nat. Photonics doi: 10.1038/nphoton.2012.138 – volume: 17 start-page: 043040 year: 2015 ident: 2024031517530306300_c49 publication-title: New J. Phys. doi: 10.1088/1367-2630/17/4/043040 – volume: 337 start-page: 655 year: 2012 ident: 2024031517530306300_c5 publication-title: Science doi: 10.1126/science.1225460 – volume: 116 start-page: 024905 year: 2014 ident: 2024031517530306300_c35 publication-title: J. Appl. Phys. doi: 10.1063/1.4889860 – volume: 26 start-page: 8669 year: 2018 ident: 2024031517530306300_c16 publication-title: Opt. Exp. doi: 10.1364/OE.26.008669 – volume: 99 start-page: 087701 year: 2007 ident: 2024031517530306300_c12 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.087701 – volume: 26 start-page: 100 year: 2019 ident: 2024031517530306300_c46 publication-title: IEEE Wirel. Commun. doi: 10.1109/MWC.2017.1700370 – volume: 3 start-page: 161 year: 2011 ident: 2024031517530306300_c4 publication-title: Adv. Opt. Photonics doi: 10.1364/AOP.3.000161 – volume: 14 start-page: 118001 year: 2012 ident: 2024031517530306300_c11 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/11/118001 – volume-title: Research on Capacity and Detection Technology of MIMO System year: 2006 ident: 2024031517530306300_c37 – volume: 5 start-page: 23069 year: 2017 ident: 2024031517530306300_c41 publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2763679 – volume: 15 start-page: 126 year: 2018 ident: 2024031517530306300_c45 publication-title: Chin. Commun. doi: 10.1109/CC.2018.8438279 – year: 2016 ident: 2024031517530306300_c21 doi: 10.1109/ICMMT.2016.7761689 – volume: 14 start-page: 033001 year: 2012 ident: 2024031517530306300_c10 publication-title: New J. Phys. doi: 10.1088/1367-2630/14/3/033001 – volume: 30 start-page: 1800257 year: 2018 ident: 2024031517530306300_c29 publication-title: Adv. Mater. doi: 10.1002/adma.201800257 – ident: 2024031517530306300_c40 – volume: 4 start-page: e257 year: 2015 ident: 2024031517530306300_c8 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2015.30 – volume: 127 start-page: 1856 year: 2010 ident: 2024031517530306300_c26 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3384406 – volume: 114 start-page: 7250 year: 2017 ident: 2024031517530306300_c24 publication-title: Proc. Natl. Acad. Sci. U.S.A. doi: 10.1073/pnas.1704450114 – volume: 117 start-page: 034301 year: 2016 ident: 2024031517530306300_c28 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.034301 – ident: 2024031517530306300_c30 – volume: 1 start-page: 032014 year: 2019 ident: 2024031517530306300_c47 publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.1.032014 – volume: 12 start-page: 5448 year: 2004 ident: 2024031517530306300_c7 publication-title: Opt. Exp. doi: 10.1364/OPEX.12.005448 – volume: 106 start-page: 3313 year: 1999 ident: 2024031517530306300_c23 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.428184 – start-page: 517 year: 2016 ident: 2024031517530306300_c13 – volume: 106 start-page: 3340 year: 1999 ident: 2024031517530306300_c22 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.428188 – volume: 133 start-page: 3528 year: 2013 ident: 2024031517530306300_c27 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.4806353 – start-page: 1 year: 2015 ident: 2024031517530306300_c48 – start-page: 2814 year: 2014 ident: 2024031517530306300_c14 – volume: 112 start-page: 321 year: 1994 ident: 2024031517530306300_c6 publication-title: Opt. Commun. doi: 10.1016/0030-4018(94)90638-6 – volume: 40 start-page: 167 year: 2018 ident: 2024031517530306300_c9 publication-title: Syst. Eng. Electron. doi: 10.3969/j.issn.1001-506X.2018.11.24 – volume-title: MIMO Multi-Antenna Wireless Communication System year: 2009 ident: 2024031517530306300_c38 – volume: 45 start-page: 8185 year: 1992 ident: 2024031517530306300_c1 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.45.8185 – volume: 60 start-page: 1126 year: 2012 ident: 2024031517530306300_c39 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2011.2173142 – volume: 9 start-page: 7902510 year: 2017 ident: 2024031517530306300_c2 publication-title: IEEE Photonics J. doi: 10.1109/JPHOT.2017.2672642 – volume-title: Principles of Communications year: 2015 ident: 2024031517530306300_c36 – volume: 26 start-page: 738 year: 2016 ident: 2024031517530306300_c15 publication-title: IEEE Microw. Wirel. Compon. Lett. doi: 10.1109/LMWC.2016.2597262 – volume: 124 start-page: 114901 year: 2018 ident: 2024031517530306300_c33 publication-title: J. Appl. Phys. doi: 10.1063/1.5033971 – volume: 47 start-page: 2414 year: 2008 ident: 2024031517530306300_c34 publication-title: Appl. Opt. doi: 10.1364/AO.47.002414 – volume: 3 start-page: 2456 year: 2015 ident: 2024031517530306300_c44 publication-title: IEEE Access doi: 10.1109/ACCESS.2015.2503293 – volume: 17 start-page: 110 issue: 1 year: 2018 ident: 2024031517530306300_c18 publication-title: IEEE Antenn. Wirel. Propag. Lett. doi: 10.1109/LAWP.2017.2777439 – volume: 10 start-page: 1043 year: 2016 ident: 2024031517530306300_c17 publication-title: IET Microw. Antenn. Propag. doi: 10.1049/iet-map.2015.0839 – volume: 6 start-page: 25418 year: 2016 ident: 2024031517530306300_c42 publication-title: Sci. Rep. doi: 10.1038/srep25418 – volume: 126 start-page: 2187 year: 2009 ident: 2024031517530306300_c25 publication-title: J. Acoust. Soc. Am. doi: 10.1121/1.3248558 – volume: 45 start-page: RS4007 year: 2010 ident: 2024031517530306300_c20 publication-title: Radio Sci. doi: 10.1029/2009RS004299 – volume: 113 start-page: 154904 year: 2013 ident: 2024031517530306300_c31 publication-title: J. Appl. Phys. doi: 10.1063/1.4801894 – volume: 27 start-page: 024301 year: 2018 ident: 2024031517530306300_c32 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/27/2/024301 – start-page: 144 year: 2014 ident: 2024031517530306300_c43 – volume: 8 start-page: 362 year: 2018 ident: 2024031517530306300_c19 publication-title: Appl. Sci. doi: 10.3390/app8030362 |
SSID | ssj0011839 |
Score | 2.4877365 |
Snippet | As the main way of underwater data transmission, acoustic communication is still limited by the low-level signal-to-noise ratio and channel capacity. The... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acoustic noise Acoustics Aerodynamics Angular momentum Applied physics Arrays Binary codes Channel capacity Communication Communications systems Data encryption Data transmission Decoding Electron beams Encryption Signal to noise ratio Technical services Transceivers Underwater acoustics Underwater communication Vortices |
Title | Principle and performance of orbital angular momentum communication of acoustic vortex beams based on single-ring transceiver arrays |
URI | http://dx.doi.org/10.1063/1.5135991 https://www.proquest.com/docview/2381843934 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgFQIOCAqIloIs4IC0yjZxbG98rPhQhVpURCstp8hOHLFVu1llk4r2zA9nJs7XogUVLtHKspyV59l-nryZIeQNs1yEmQq8iCnucS2Mp_ww81KdwXHP8cjCAOejz_LglH-aimkva66jS0ozTq7XxpX8j1WhDeyKUbL_YNluUGiA32BfeIKF4XkjGx-3nnIX7j-IAQAKmBcGC4KM0CGJUtMLzLVQVheoIu9jQmodQJLXNb1Gl6i8_TEyFtM04PmW4rcE9CacW69oKkrMl4lFMcdIF4W-Wv6B3eqG3TrPSUfcD2vxwHQ2P5vp1bZv1fX3We8fx6Yv8MarqlMIVblz4i-qoasC7qVN7F6__TIAhXLVY8bW7bh-pLyJcNlnuy3Z5QtoscfW7vVArtDtMBZBKJQr-fVb6uwzvbhNNhlcIGAH3Nx_f3T4tfvChMzQyX_cX2qzTslwrxtylav0F5C7wE6cUGLARU4ekgfNNNN9h4hH5Jadb5H7g9SSW-TOsZv4x-RnhxIKKKEDlNA8ow1KaIMS2qKErqAEe7YooQ4ltEYJrVFCoccAJXSAEupQ8oScfvxw8u7Aa2pveEnIJqUnFQ-lYCJTqbQJM5lMM-krTFgoeWSt0owbpgOT8dqNILT1fQuMKDKSa1joT8nGPJ_bZ4SmSCqTCVdaCZ4ZbrRGcbFmiWRRGvBt8rad5bidV6yPch7XAgkZxkHcGGSbvOq6Llw2lnWddltTxc1iXcY1MwXyHcLrXnfm-9sga3rB_PY94kWa7dxorOfkXr8adslGWVT2BVDZ0rxsUPkLDxmj3A |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Principle+and+performance+of+orbital+angular+momentum+communication+of+acoustic+vortex+beams+based+on+single-ring+transceiver+arrays&rft.jtitle=Journal+of+applied+physics&rft.au=Li%2C+Xinjia&rft.au=Li%2C+Yuzhi&rft.au=Ma%2C+Qingyu&rft.au=Guo%2C+Gepu&rft.date=2020-03-31&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=127&rft.issue=12&rft_id=info:doi/10.1063%2F1.5135991&rft.externalDocID=jap |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon |