Theoretical study on the correlation of swelling peaks between neutron and heavy ion irradiated 15-15Ti stainless steel
Titanium-modified austenitic stainless steels (15-15TiSS) are currently used as the fuel cladding material of fast reactors, which are subject to higher radiation damage during their application. In this work, the radiation-induced swelling of 15-15TiSS under a fast reactor neutron and heavy ion irr...
Saved in:
Published in | Journal of applied physics Vol. 132; no. 22 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
14.12.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Titanium-modified austenitic stainless steels (15-15TiSS) are currently used as the fuel cladding material of fast reactors, which are subject to higher radiation damage during their application. In this work, the radiation-induced swelling of 15-15TiSS under a fast reactor neutron and heavy ion irradiation conditions was studied by the rate theory (RT). The simulated swelling properties of 15-15TiSS under fast neutron conditions were calculated initially. The swelling peak, swelling rates, and swelling-related microstructural properties are consistent with the neutron irradiation results, indicating that the selected RT model and material parameters are reasonable. Then, the swelling properties of 15-15TiSS under various damage rates were predicted by changing the radiation damage rates from 1 × 10−6 to 1 × 10−3 dpa/s. It shows that swelling peaks are strongly dependent on temperature and the swelling peaks shift ∼50 °C toward the higher temperature with each order of magnitude increase of defects generation rate. The swelling rates and swelling-related defect evolution at 1 × 10−3 dpa/s (with a swelling peak temperature of 590 °C) are consistent with that under neutron irradiation with 1 × 10−6 dpa/s (with a swelling peak temperature of 460 °C). At length, the RT-predicted heavy ions irradiation results were verified by the previous positron annihilation lifetime spectroscopy results of ions irradiated 15-15TiSS. It indicates that heavy ion irradiation can be used to study the radiation effect of materials under neutron irradiation and should be a feasible technique used in the further screening of radiation-resistant materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/5.0103468 |