Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study

Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-seg...

Full description

Saved in:
Bibliographic Details
Published inAdvances in medical sciences Vol. 53; no. 2; p. 182
Main Authors Herskovits, E, Bryan, R, Yang, F
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier Limited 2008
Subjects
Online AccessGet full text
ISSN1896-1126
1898-4002
DOI10.2478/v10039-008-0039-3

Cover

Abstract Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention. Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project. Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard. A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.
AbstractList Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention.PURPOSEAutomatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention.Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project.MATERIALS AND METHODSEach ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project.Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.RESULTSOur experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.CONCLUSIONSA Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.
Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention. Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project. Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard. A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.
Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study Purpose: Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention. Materials and Methods: Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project. Results: Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard. Conclusions: A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.
Author Herskovits, E
Bryan, R
Yang, F
Author_xml – sequence: 1
  givenname: E
  surname: Herskovits
  fullname: Herskovits, E
– sequence: 2
  givenname: R
  surname: Bryan
  fullname: Bryan, R
– sequence: 3
  givenname: F
  surname: Yang
  fullname: Yang, F
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18842559$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtr3DAUhUVIyav5Ad0UQaE7t1cPy_JyOukjMNNA05JdxR37ulGwrcSSA_Pvq86kFLLoSmfxnYv4zik7HMNIjL0S8E7qyr5_FACqLgBssQvqgJ0IW9tCA8jDXTaFENIcs9MY7wCMNABH7FhYq2VZ1ifs52JOYcBELf-AW4oeR35NvwYaEyYfRh46vvbNFB4xNnOPE7-59YmKNaZEE1_lRhgj9yNPt8QXy-XVt4tiffn1gl-nud2-ZC867COdP71n7Menj9-XX4rV1efL5WJVNEpWqTAaa2g2hFqVEggUdlSVRErWlQFZto3RuoNWVZvWltQKWyIKQEuIoMGqM_Z2f_d-Cg8zxeQGHxvqexwpzNGZuoZKGcjgm2fgXZinMf_NCSWzK1XrMlOvn6h5M1Dr7ic_4LR1f71lQOyBbCbGibp_CLg_27j9Ni5v43ZB5U71rNP4veQ0oe__0_wNmduRFQ
CitedBy_id crossref_primary_10_1016_j_nicl_2019_102151
crossref_primary_10_1016_j_neuroimage_2017_06_009
crossref_primary_10_1016_j_athoracsur_2010_04_016
crossref_primary_10_1136_bmjopen_2020_042660
crossref_primary_10_1109_TMI_2017_2693978
crossref_primary_10_1016_j_mri_2018_06_009
crossref_primary_10_1016_j_nicl_2019_101772
crossref_primary_10_1007_s10278_021_00470_1
crossref_primary_10_3390_app10061903
crossref_primary_10_1016_j_patrec_2010_01_025
crossref_primary_10_1016_j_neuroimage_2016_07_018
crossref_primary_10_1148_ryai_210187
crossref_primary_10_1016_j_neuroimage_2011_11_032
Cites_doi 10.1016/j.neuroimage.2004.08.018
10.1161/01.STR.29.2.388
10.1212/WNL.44.7.1246
10.1109/42.563664
10.1007/978-1-4757-4286-2
10.1109/TMI.2005.854305
10.1016/0010-468X(79)90051-5
10.1049/ip-smt:20000841
10.1002/hbm.10062
10.1109/42.906424
10.1109/42.414608
10.1109/42.938237
10.1016/j.amjcard.2007.03.029
10.1109/42.363096
10.1016/j.media.2004.06.007
10.1093/brain/awf077
10.1109/42.932750
10.1006/nimg.2002.1301
10.1001/jama.282.1.40
10.1016/j.neuroimage.2005.06.061
10.1016/j.media.2004.06.019
10.1109/42.640750
10.1109/TMI.2002.803111
10.1109/42.491417
10.1016/S0895-6111(98)00049-4
10.1001/archpsyc.57.11.1071
10.1109/TMI.2004.841228
ContentType Journal Article
Copyright Copyright Versita 2008
Copyright_xml – notice: Copyright Versita 2008
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8AO
8FI
8FJ
8FK
ABUWG
AFKRA
BENPR
BYOGL
CCPQU
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
DOI 10.2478/v10039-008-0039-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central
East Europe, Central Europe Database
ProQuest One Community College
Health Research Premium Collection (UHCL Subscription)
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
East Europe, Central Europe Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Pharma Collection
ProQuest Central China
ProQuest Hospital Collection (Alumni)
ProQuest Central
ProQuest Health & Medical Complete
Health Research Premium Collection
ProQuest Medical Library
ProQuest One Academic UKI Edition
Health and Medicine Complete (Alumni Edition)
Health & Medical Research Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Medical Library (Alumni)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
ProQuest One Academic Middle East (New)
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BYOGL
  name: East Europe, Central Europe Database
  url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/eastcentraleurope
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1898-4002
ExternalDocumentID 2929184531
18842559
10_2478_v10039_008_0039_3
Genre Research Support, U.S. Gov't, P.H.S
Evaluation Studies
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: N01-HC-95180
– fundername: NHLBI NIH HHS
  grantid: N01-HC-95182
– fundername: NIA NIH HHS
  grantid: R01 AG13743
– fundername: NHLBI NIH HHS
  grantid: IAA Y1-HC-9035
– fundername: NHLBI NIH HHS
  grantid: HC-99-16
– fundername: NHLBI NIH HHS
  grantid: N01-HC-95181
– fundername: NHLBI NIH HHS
  grantid: N01-HC95178
– fundername: NHLBI NIH HHS
  grantid: N01-HC-95183
– fundername: NHLBI NIH HHS
  grantid: IAA Y1-HC-1010
– fundername: NHLBI NIH HHS
  grantid: N01-HC-95179
GroupedDBID ---
.~1
23M
2WC
4.4
53G
5GY
7X7
88E
8AO
8FI
8FJ
8P~
9-L
AAOAW
AAYXX
ABDBF
ABJNI
ABMXE
ABUWG
ABXDB
ACGFS
ACRLP
ACRPL
ACUHS
ADBBV
ADNMO
ADUQZ
AENEX
AFKRA
AFSHE
AGCQF
AGGNV
AGQPQ
AGRNS
AGUBO
AHMBA
AIKHN
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ASPBG
AVWKF
AZFZN
BAWUL
BENPR
BLXMC
BPHCQ
BVXVI
BYOGL
C1A
CCPQU
CITATION
CS3
DIK
E3Z
EBS
EMOBN
ESX
F5P
FDB
FYUFA
HMCUK
KOM
LVMAB
M1P
MET
MK0
OAUVE
OVT
P-9
P2P
P6G
PC.
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
RNS
SPCBC
SV3
TR2
UKHRP
Y2W
~8M
~G-
~Z8
--M
0R~
1~.
457
4G.
7-5
AAAJQ
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYWO
ABMAC
ABMZM
ABUDA
ACDAQ
ACIEU
ACVFH
ADCNI
ADEZE
AEBSH
AEHWI
AEIPS
AEKER
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AIEXJ
AIGII
AIIUN
AITUG
AKBMS
AKRWK
AKYEP
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
BKOJK
BNPGV
CGR
CJTIS
CUY
CVF
E0C
ECM
EFJIC
EFKBS
EIF
EJD
FEDTE
FIRID
FYGXN
GBLVA
HVGLF
HZ~
M41
NPM
O9-
P-8
PJZUB
PPXIY
RIG
ROL
SA.
SLJYH
SSH
SSI
SSN
SSP
SSU
SSZ
T5K
3V.
7XB
8FK
K9.
PKEHL
PQEST
PQUKI
PRINS
7X8
PUEGO
ID FETCH-LOGICAL-c327t-64a90cbea43520e03afe75ee32976025dc644f0d37bd85ed185aa10a8eaa04083
IEDL.DBID 7X7
ISSN 1896-1126
IngestDate Fri Sep 05 09:51:15 EDT 2025
Fri Jul 25 02:40:52 EDT 2025
Mon Jul 21 06:02:34 EDT 2025
Tue Jul 01 03:03:10 EDT 2025
Thu Apr 24 23:09:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-64a90cbea43520e03afe75ee32976025dc644f0d37bd85ed185aa10a8eaa04083
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
content type line 23
PMID 18842559
PQID 1321123945
PQPubID 2016338
ParticipantIDs proquest_miscellaneous_69907360
proquest_journals_1321123945
pubmed_primary_18842559
crossref_primary_10_2478_v10039_008_0039_3
crossref_citationtrail_10_2478_v10039_008_0039_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-00-00
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 2008-00-00
PublicationDecade 2000
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Bialystok
PublicationTitle Advances in medical sciences
PublicationTitleAlternate Adv Med Sci
PublicationYear 2008
Publisher Elsevier Limited
Publisher_xml – name: Elsevier Limited
References M Tarter (28) 1979; 1
A Zijdenbos (7) 1994; 4
R Chen (23) 2005; 10
L Aït-Ali (26) 2005; 1
P Anbeek (15) 2004; 3
M Haan (2) 1999; 1
J Udupa (6) 1997; 5
M Kamber (10) 1995; 3
J Berger (29) 1985
S Hojjatoleslami (12) 2001; 7
F Admiraal-Behloul (14) 2005; 3
M Breteler (1) 1994; 7
F Maes (18) 1997; 2
L Kuller (5) 1998; 2
D Shen (17) 2003; 1
C Pachai (9) 1998; 5
D Shen (22) 2004; 2
N Kabani (21) 1998
F de Leeuw (3) 2002; 4
J de Groot (4) 2000; 11
J Williamson (8) 2007; 12A
Y Zhang (20) 2001; 1
B Johnston (11) 1996; 2
S Smith (19) 2002; 3
D Freedman (24) 2005; 3
D Shen (16) 2002; 11
M Prastawa (25) 2004; 3
S Roberts (27) 2000; 6
K van Leemput (13) 2001; 8
References_xml – year: 1998
  ident: 21
  article-title: A 3D atlas of the human brain
– volume: 2
  start-page: 648
  year: 2004
  ident: 22
  article-title: Automated morphometric study of brain variation in XXY males
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2004.08.018
– volume: 2
  start-page: 388
  year: 1998
  ident: 5
  article-title: Relationship between ApoE, MRI findings, and cognitive function in the Cardiovascular Health Study
  publication-title: Stroke
  doi: 10.1161/01.STR.29.2.388
– volume: 7
  start-page: 1246
  year: 1994
  ident: 1
  article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study
  publication-title: Neurology
  doi: 10.1212/WNL.44.7.1246
– volume: 2
  start-page: 187
  year: 1997
  ident: 18
  article-title: Multimodality image registration by maximization of mutual information
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.563664
– year: 1985
  ident: 29
  publication-title: Statistical Decision Theory and Bayesian Analysis
  doi: 10.1007/978-1-4757-4286-2
– volume: 10
  start-page: 1237
  year: 2005
  ident: 23
  article-title: Graphical-model-based morphometric analysis
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2005.854305
– volume: 1
  start-page: 55
  year: 1979
  ident: 28
  article-title: Density estimation applications for outlier detection
  publication-title: Comput Programs Biomed
  doi: 10.1016/0010-468X(79)90051-5
– volume: 6
  start-page: 363
  year: 2000
  ident: 27
  article-title: Extreme value statistics for novelty detection in biomedical data processing
  publication-title: IEE Proceedings of Science, Measurement & Technology
  doi: 10.1049/ip-smt:20000841
– volume: 3
  start-page: 143
  year: 2002
  ident: 19
  article-title: Fast robust automated brain extraction
  publication-title: Hum Brain Mapp
  doi: 10.1002/hbm.10062
– volume: 1
  start-page: 45
  year: 2001
  ident: 20
  article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.906424
– volume: 1
  start-page: 409
  year: 2005
  ident: 26
  article-title: STREM: A robust multidimensional parametric method to segment MS lesions in MRI
  publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv
– volume: 3
  start-page: 442
  year: 1995
  ident: 10
  article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.414608
– volume: 8
  start-page: 677
  year: 2001
  ident: 13
  article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.938237
– volume: 12A
  start-page: 112i
  year: 2007
  ident: 8
  article-title: ACCORD Study Group. The action to control cardiovascular risk in diabetes memory in diabetes study (ACCORD-MIND): rationale, design, and methods
  publication-title: Am J Cardiol
  doi: 10.1016/j.amjcard.2007.03.029
– volume: 4
  start-page: 716
  year: 1994
  ident: 7
  article-title: Morphometric analysis of white matter lesions in MR images: method and validation
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.363096
– volume: 3
  start-page: 275
  year: 2004
  ident: 25
  article-title: A brain tumor segmentation framework based on outlier detection
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.06.007
– volume: 4
  start-page: 765
  year: 2002
  ident: 3
  article-title: Hypertension and cerebral white matter lesions in a prospective cohort study
  publication-title: Brain
  doi: 10.1093/brain/awf077
– volume: 7
  start-page: 666
  year: 2001
  ident: 12
  article-title: Segmentation of large brain lesions
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.932750
– volume: 1
  start-page: 28
  year: 2003
  ident: 17
  article-title: Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration
  publication-title: Neuroimage
  doi: 10.1006/nimg.2002.1301
– volume: 1
  start-page: 40
  year: 1999
  ident: 2
  article-title: The role of APOE e4 in modulating effects of other risk factors for cognitive decline in elderly men
  publication-title: JAMA
  doi: 10.1001/jama.282.1.40
– volume: 3
  start-page: 607
  year: 2005
  ident: 14
  article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.06.061
– volume: 3
  start-page: 205
  year: 2004
  ident: 15
  article-title: Automatic segmentation of differentsized white matter lesions by voxel probability estimation
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2004.06.019
– volume: 5
  start-page: 598
  year: 1997
  ident: 6
  article-title: Multiple sclerosis lesion quantification using fuzzy-connectedness principles
  publication-title: IEEE Trans Medical Imaging
  doi: 10.1109/42.640750
– volume: 11
  start-page: 1421
  year: 2002
  ident: 16
  article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2002.803111
– volume: 2
  start-page: 154
  year: 1996
  ident: 11
  article-title: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/42.491417
– volume: 5
  start-page: 399
  year: 1998
  ident: 9
  article-title: A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI
  publication-title: Comput Med Imaging Graph
  doi: 10.1016/S0895-6111(98)00049-4
– volume: 11
  start-page: 1071
  year: 2000
  ident: 4
  article-title: Cerebral white matter lesions and depressive symptoms in elderly adults
  publication-title: Arch Gen Psychiatry
  doi: 10.1001/archpsyc.57.11.1071
– volume: 3
  start-page: 281
  year: 2005
  ident: 24
  article-title: Model-based segmentation of medical imagery by matching distributions
  publication-title: IEEE Trans Med Imaging
  doi: 10.1109/TMI.2004.841228
SSID ssj0062600
Score 1.8361969
Snippet Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in...
Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study Purpose: Automatic brain-lesion segmentation has the potential...
SourceID proquest
pubmed
crossref
SourceType Aggregation Database
Index Database
Enrichment Source
StartPage 182
SubjectTerms Adult
Algorithms
Bayes Theorem
Brain - diagnostic imaging
Brain - pathology
Brain Diseases - diagnostic imaging
Brain Diseases - pathology
Humans
Image Processing, Computer-Assisted
Magnetic Resonance Imaging
Models, Statistical
Pattern Recognition, Automated
Prospective Studies
Radiography
ROC Curve
Title Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study
URI https://www.ncbi.nlm.nih.gov/pubmed/18842559
https://www.proquest.com/docview/1321123945
https://www.proquest.com/docview/69907360
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKSIhLBS1tt7x86KmShTeOE-eElgUEiKyqFqQ9ETnxBFWCZNvdReLfM-N4F3GAm6U8NTP2fPNm7AepEJQFKeq0KtFAcZVAyzYWkGidlrZCDUgFzvkoOb-JL8d6HBxu05BWuTgT_UHt2op85IdoNSE0UFmsjyb_BE2NouhqGKGxwtZ86zKU53S8NLgIq_uCSJMlgkpluqhmFKfm8LFPVanCB_9poV7rpTfAplc6Z5vsY0CLfNCxd4t9gOYTW89DPPwzux3MZy1iTnD82D4BFUTyP3D3EAqKGt7WPKeUu0XCKfcD8UTuu2ryKyBf2ZT_bTjiQD4YDtEkFPnF6IRTfuHTNrs5O70enoswMUFUKkpnIoltJqsSLIKgSIJUtoZUA6gIaY7oxlUIf2rpVFo6o8Ghsra2L60Ba3E3G_WFrTZtA98YT8ragjQAoLM46ltrnCsj5Uw_0WWdyR6TC3oVVWgnTlMt7gs0K4jERUfiwo-5pIXqsZ_LRyZdL433bt5dMKEI22pavAhBjx0sL-OGoCiHbaCdT4sE9WuqEvzBrx3rXr5lKOaos-_vv3qHbXT19uRn2WWrs_9z2EPkMSv3vXjts7Xj09Gv38-TLNS1
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WCvUBLkhWvXGcOAeEtttWu3SzQtBKPRGceIKQICnsLmj_FL-RmTxacaC33iwlcazx2PONZz4PwEs2IaQLSpZxkZOD4gtJnm0oMTImzl1BFpAJzukimp6G787M2Rb86bkwnFbZ74nNRu3rgs_I98hrImigk9C8Pf8huWoUR1f7EhqtWhzj5je5bMs3swOa31dBcHR4MpnKrqqALHQQr2QUukQVOToCCoFCpV2JsUHUAY2LEIAvCCKUyus499agJ4Pm3Eg5i86RxltN_d6A7ZAZrQPY3j9cvP_Q7_3sHTQUTJtEksk5bRw1CGO792vEPFjZpBtwQ_9rCf8Dbxszd3QX7nT4VIxbhboHW1jdh5tpF4F_AJ_G61VNKBe92HcbZAqm-IhfvncUpkrUpUg5ya9PcRVNCT6ZNvd4ijny6dxSfK0EIU8xnkzICZXpbHEgOKNx8xBOr0Waj2BQ1RU-ARHlpUNlEdEkYTByznqfB9rbUWTyMlFDUL28sqK7wJzraHzLyJFhEWetiLOmsCY39BBeX3xy3t7ecdXLO_0kZN1CXmaXajeE3YvHtAQ5ruIqrNfLLCKLHuuIBvi4nbrLf1mOcprk6dVd78Kt6Uk6z-azxfEzuN2mpPApzw4MVj_X-Jxwzyp_0SmbgM_Xrd9_AdTlEXM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Bayesian+Segmentation+of+Microvascular+White-Matter+Lesions+in+the+ACCORD-MIND+Study&rft.jtitle=Advances+in+medical+sciences&rft.au=Herskovits%2C+E&rft.au=Bryan%2C+R&rft.au=Yang%2C+F&rft.date=2008&rft.pub=Elsevier+Limited&rft.issn=1896-1126&rft.eissn=1898-4002&rft.volume=53&rft.issue=2&rft.spage=182&rft_id=info:doi/10.2478%2Fv10039-008-0039-3&rft.externalDocID=2929184531
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1896-1126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1896-1126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1896-1126&client=summon