Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study
Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-seg...
Saved in:
Published in | Advances in medical sciences Vol. 53; no. 2; p. 182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Netherlands
Elsevier Limited
2008
|
Subjects | |
Online Access | Get full text |
ISSN | 1896-1126 1898-4002 |
DOI | 10.2478/v10039-008-0039-3 |
Cover
Abstract | Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention.
Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project.
Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.
A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training. |
---|---|
AbstractList | Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention.PURPOSEAutomatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention.Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project.MATERIALS AND METHODSEach ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project.Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.RESULTSOur experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard.A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training.CONCLUSIONSA Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training. Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention. Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project. Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard. A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training. Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study Purpose: Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in large-scale epidemiologic studies, such as the ACCORD-MIND study. In this manuscript we describe the design and evaluation of a Bayesian lesion-segmentation method, with the expectation that our approach would segment white-matter brain lesions in MR images without user intervention. Materials and Methods: Each ACCORD-MIND subject has T1-weighted, T2-weighted, spin-density-weighted, and FLAIR sequences. The training portion of our algorithm first registers training images to a standard coordinate space; then, it collects statistics that capture signal-intensity information, and residual spatial variability of normal structures and lesions. The classification portion of our algorithm then uses these statistics to segment lesions in images from new subjects, without the need for user intervention. We evaluated this algorithm using 42 subjects with primarily white-matter lesions from the ACCORD-MIND project. Results: Our experiments demonstrated high classification accuracy, using an expert neuroradiologist as a standard. Conclusions: A Bayesian lesion-segmentation algorithm that collects multi-channel signal-intensity and spatial information from MR images of the brain shows potential for accurately segmenting brain lesions in images obtained from subjects not used in training. |
Author | Herskovits, E Bryan, R Yang, F |
Author_xml | – sequence: 1 givenname: E surname: Herskovits fullname: Herskovits, E – sequence: 2 givenname: R surname: Bryan fullname: Bryan, R – sequence: 3 givenname: F surname: Yang fullname: Yang, F |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18842559$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtr3DAUhUVIyav5Ad0UQaE7t1cPy_JyOukjMNNA05JdxR37ulGwrcSSA_Pvq86kFLLoSmfxnYv4zik7HMNIjL0S8E7qyr5_FACqLgBssQvqgJ0IW9tCA8jDXTaFENIcs9MY7wCMNABH7FhYq2VZ1ifs52JOYcBELf-AW4oeR35NvwYaEyYfRh46vvbNFB4xNnOPE7-59YmKNaZEE1_lRhgj9yNPt8QXy-XVt4tiffn1gl-nud2-ZC867COdP71n7Menj9-XX4rV1efL5WJVNEpWqTAaa2g2hFqVEggUdlSVRErWlQFZto3RuoNWVZvWltQKWyIKQEuIoMGqM_Z2f_d-Cg8zxeQGHxvqexwpzNGZuoZKGcjgm2fgXZinMf_NCSWzK1XrMlOvn6h5M1Dr7ic_4LR1f71lQOyBbCbGibp_CLg_27j9Ni5v43ZB5U71rNP4veQ0oe__0_wNmduRFQ |
CitedBy_id | crossref_primary_10_1016_j_nicl_2019_102151 crossref_primary_10_1016_j_neuroimage_2017_06_009 crossref_primary_10_1016_j_athoracsur_2010_04_016 crossref_primary_10_1136_bmjopen_2020_042660 crossref_primary_10_1109_TMI_2017_2693978 crossref_primary_10_1016_j_mri_2018_06_009 crossref_primary_10_1016_j_nicl_2019_101772 crossref_primary_10_1007_s10278_021_00470_1 crossref_primary_10_3390_app10061903 crossref_primary_10_1016_j_patrec_2010_01_025 crossref_primary_10_1016_j_neuroimage_2016_07_018 crossref_primary_10_1148_ryai_210187 crossref_primary_10_1016_j_neuroimage_2011_11_032 |
Cites_doi | 10.1016/j.neuroimage.2004.08.018 10.1161/01.STR.29.2.388 10.1212/WNL.44.7.1246 10.1109/42.563664 10.1007/978-1-4757-4286-2 10.1109/TMI.2005.854305 10.1016/0010-468X(79)90051-5 10.1049/ip-smt:20000841 10.1002/hbm.10062 10.1109/42.906424 10.1109/42.414608 10.1109/42.938237 10.1016/j.amjcard.2007.03.029 10.1109/42.363096 10.1016/j.media.2004.06.007 10.1093/brain/awf077 10.1109/42.932750 10.1006/nimg.2002.1301 10.1001/jama.282.1.40 10.1016/j.neuroimage.2005.06.061 10.1016/j.media.2004.06.019 10.1109/42.640750 10.1109/TMI.2002.803111 10.1109/42.491417 10.1016/S0895-6111(98)00049-4 10.1001/archpsyc.57.11.1071 10.1109/TMI.2004.841228 |
ContentType | Journal Article |
Copyright | Copyright Versita 2008 |
Copyright_xml | – notice: Copyright Versita 2008 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8AO 8FI 8FJ 8FK ABUWG AFKRA BENPR BYOGL CCPQU FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 |
DOI | 10.2478/v10039-008-0039-3 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central East Europe, Central Europe Database ProQuest One Community College Health Research Premium Collection (UHCL Subscription) Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition East Europe, Central Europe Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Pharma Collection ProQuest Central China ProQuest Hospital Collection (Alumni) ProQuest Central ProQuest Health & Medical Complete Health Research Premium Collection ProQuest Medical Library ProQuest One Academic UKI Edition Health and Medicine Complete (Alumni Edition) Health & Medical Research Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Medical Library (Alumni) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE ProQuest One Academic Middle East (New) |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BYOGL name: East Europe, Central Europe Database url: https://proxy.k.utb.cz/login?url=https://search.proquest.com/eastcentraleurope sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1898-4002 |
ExternalDocumentID | 2929184531 18842559 10_2478_v10039_008_0039_3 |
Genre | Research Support, U.S. Gov't, P.H.S Evaluation Studies Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: N01-HC-95180 – fundername: NHLBI NIH HHS grantid: N01-HC-95182 – fundername: NIA NIH HHS grantid: R01 AG13743 – fundername: NHLBI NIH HHS grantid: IAA Y1-HC-9035 – fundername: NHLBI NIH HHS grantid: HC-99-16 – fundername: NHLBI NIH HHS grantid: N01-HC-95181 – fundername: NHLBI NIH HHS grantid: N01-HC95178 – fundername: NHLBI NIH HHS grantid: N01-HC-95183 – fundername: NHLBI NIH HHS grantid: IAA Y1-HC-1010 – fundername: NHLBI NIH HHS grantid: N01-HC-95179 |
GroupedDBID | --- .~1 23M 2WC 4.4 53G 5GY 7X7 88E 8AO 8FI 8FJ 8P~ 9-L AAOAW AAYXX ABDBF ABJNI ABMXE ABUWG ABXDB ACGFS ACRLP ACRPL ACUHS ADBBV ADNMO ADUQZ AENEX AFKRA AFSHE AGCQF AGGNV AGQPQ AGRNS AGUBO AHMBA AIKHN ALIPV ALMA_UNASSIGNED_HOLDINGS ASPBG AVWKF AZFZN BAWUL BENPR BLXMC BPHCQ BVXVI BYOGL C1A CCPQU CITATION CS3 DIK E3Z EBS EMOBN ESX F5P FDB FYUFA HMCUK KOM LVMAB M1P MET MK0 OAUVE OVT P-9 P2P P6G PC. PHGZM PHGZT PQQKQ PROAC PSQYO RNS SPCBC SV3 TR2 UKHRP Y2W ~8M ~G- ~Z8 --M 0R~ 1~. 457 4G. 7-5 AAAJQ AAEDT AAEDW AAIKJ AAKOC AALRI AAQFI AATTM AAXKI AAXLA AAXUO AAYWO ABMAC ABMZM ABUDA ACDAQ ACIEU ACVFH ADCNI ADEZE AEBSH AEHWI AEIPS AEKER AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AIEXJ AIGII AIIUN AITUG AKBMS AKRWK AKYEP AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BNPGV CGR CJTIS CUY CVF E0C ECM EFJIC EFKBS EIF EJD FEDTE FIRID FYGXN GBLVA HVGLF HZ~ M41 NPM O9- P-8 PJZUB PPXIY RIG ROL SA. SLJYH SSH SSI SSN SSP SSU SSZ T5K 3V. 7XB 8FK K9. PKEHL PQEST PQUKI PRINS 7X8 PUEGO |
ID | FETCH-LOGICAL-c327t-64a90cbea43520e03afe75ee32976025dc644f0d37bd85ed185aa10a8eaa04083 |
IEDL.DBID | 7X7 |
ISSN | 1896-1126 |
IngestDate | Fri Sep 05 09:51:15 EDT 2025 Fri Jul 25 02:40:52 EDT 2025 Mon Jul 21 06:02:34 EDT 2025 Tue Jul 01 03:03:10 EDT 2025 Thu Apr 24 23:09:46 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-64a90cbea43520e03afe75ee32976025dc644f0d37bd85ed185aa10a8eaa04083 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3 content type line 23 |
PMID | 18842559 |
PQID | 1321123945 |
PQPubID | 2016338 |
ParticipantIDs | proquest_miscellaneous_69907360 proquest_journals_1321123945 pubmed_primary_18842559 crossref_primary_10_2478_v10039_008_0039_3 crossref_citationtrail_10_2478_v10039_008_0039_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2008-00-00 |
PublicationDateYYYYMMDD | 2008-01-01 |
PublicationDate_xml | – year: 2008 text: 2008-00-00 |
PublicationDecade | 2000 |
PublicationPlace | Netherlands |
PublicationPlace_xml | – name: Netherlands – name: Bialystok |
PublicationTitle | Advances in medical sciences |
PublicationTitleAlternate | Adv Med Sci |
PublicationYear | 2008 |
Publisher | Elsevier Limited |
Publisher_xml | – name: Elsevier Limited |
References | M Tarter (28) 1979; 1 A Zijdenbos (7) 1994; 4 R Chen (23) 2005; 10 L Aït-Ali (26) 2005; 1 P Anbeek (15) 2004; 3 M Haan (2) 1999; 1 J Udupa (6) 1997; 5 M Kamber (10) 1995; 3 J Berger (29) 1985 S Hojjatoleslami (12) 2001; 7 F Admiraal-Behloul (14) 2005; 3 M Breteler (1) 1994; 7 F Maes (18) 1997; 2 L Kuller (5) 1998; 2 D Shen (17) 2003; 1 C Pachai (9) 1998; 5 D Shen (22) 2004; 2 N Kabani (21) 1998 F de Leeuw (3) 2002; 4 J de Groot (4) 2000; 11 J Williamson (8) 2007; 12A Y Zhang (20) 2001; 1 B Johnston (11) 1996; 2 S Smith (19) 2002; 3 D Freedman (24) 2005; 3 D Shen (16) 2002; 11 M Prastawa (25) 2004; 3 S Roberts (27) 2000; 6 K van Leemput (13) 2001; 8 |
References_xml | – year: 1998 ident: 21 article-title: A 3D atlas of the human brain – volume: 2 start-page: 648 year: 2004 ident: 22 article-title: Automated morphometric study of brain variation in XXY males publication-title: Neuroimage doi: 10.1016/j.neuroimage.2004.08.018 – volume: 2 start-page: 388 year: 1998 ident: 5 article-title: Relationship between ApoE, MRI findings, and cognitive function in the Cardiovascular Health Study publication-title: Stroke doi: 10.1161/01.STR.29.2.388 – volume: 7 start-page: 1246 year: 1994 ident: 1 article-title: Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: the Rotterdam Study publication-title: Neurology doi: 10.1212/WNL.44.7.1246 – volume: 2 start-page: 187 year: 1997 ident: 18 article-title: Multimodality image registration by maximization of mutual information publication-title: IEEE Trans Med Imaging doi: 10.1109/42.563664 – year: 1985 ident: 29 publication-title: Statistical Decision Theory and Bayesian Analysis doi: 10.1007/978-1-4757-4286-2 – volume: 10 start-page: 1237 year: 2005 ident: 23 article-title: Graphical-model-based morphometric analysis publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2005.854305 – volume: 1 start-page: 55 year: 1979 ident: 28 article-title: Density estimation applications for outlier detection publication-title: Comput Programs Biomed doi: 10.1016/0010-468X(79)90051-5 – volume: 6 start-page: 363 year: 2000 ident: 27 article-title: Extreme value statistics for novelty detection in biomedical data processing publication-title: IEE Proceedings of Science, Measurement & Technology doi: 10.1049/ip-smt:20000841 – volume: 3 start-page: 143 year: 2002 ident: 19 article-title: Fast robust automated brain extraction publication-title: Hum Brain Mapp doi: 10.1002/hbm.10062 – volume: 1 start-page: 45 year: 2001 ident: 20 article-title: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm publication-title: IEEE Trans Med Imaging doi: 10.1109/42.906424 – volume: 1 start-page: 409 year: 2005 ident: 26 article-title: STREM: A robust multidimensional parametric method to segment MS lesions in MRI publication-title: Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv – volume: 3 start-page: 442 year: 1995 ident: 10 article-title: Model-based 3-D segmentation of multiple sclerosis lesions in magnetic resonance brain images publication-title: IEEE Trans Med Imaging doi: 10.1109/42.414608 – volume: 8 start-page: 677 year: 2001 ident: 13 article-title: Automated segmentation of multiple sclerosis lesions by model outlier detection publication-title: IEEE Trans Med Imaging doi: 10.1109/42.938237 – volume: 12A start-page: 112i year: 2007 ident: 8 article-title: ACCORD Study Group. The action to control cardiovascular risk in diabetes memory in diabetes study (ACCORD-MIND): rationale, design, and methods publication-title: Am J Cardiol doi: 10.1016/j.amjcard.2007.03.029 – volume: 4 start-page: 716 year: 1994 ident: 7 article-title: Morphometric analysis of white matter lesions in MR images: method and validation publication-title: IEEE Trans Med Imaging doi: 10.1109/42.363096 – volume: 3 start-page: 275 year: 2004 ident: 25 article-title: A brain tumor segmentation framework based on outlier detection publication-title: Med Image Anal doi: 10.1016/j.media.2004.06.007 – volume: 4 start-page: 765 year: 2002 ident: 3 article-title: Hypertension and cerebral white matter lesions in a prospective cohort study publication-title: Brain doi: 10.1093/brain/awf077 – volume: 7 start-page: 666 year: 2001 ident: 12 article-title: Segmentation of large brain lesions publication-title: IEEE Trans Med Imaging doi: 10.1109/42.932750 – volume: 1 start-page: 28 year: 2003 ident: 17 article-title: Very high-resolution morphometry using mass-preserving deformations and HAMMER elastic registration publication-title: Neuroimage doi: 10.1006/nimg.2002.1301 – volume: 1 start-page: 40 year: 1999 ident: 2 article-title: The role of APOE e4 in modulating effects of other risk factors for cognitive decline in elderly men publication-title: JAMA doi: 10.1001/jama.282.1.40 – volume: 3 start-page: 607 year: 2005 ident: 14 article-title: Fully automatic segmentation of white matter hyperintensities in MR images of the elderly publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.06.061 – volume: 3 start-page: 205 year: 2004 ident: 15 article-title: Automatic segmentation of differentsized white matter lesions by voxel probability estimation publication-title: Med Image Anal doi: 10.1016/j.media.2004.06.019 – volume: 5 start-page: 598 year: 1997 ident: 6 article-title: Multiple sclerosis lesion quantification using fuzzy-connectedness principles publication-title: IEEE Trans Medical Imaging doi: 10.1109/42.640750 – volume: 11 start-page: 1421 year: 2002 ident: 16 article-title: HAMMER: Hierarchical attribute matching mechanism for elastic registration publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2002.803111 – volume: 2 start-page: 154 year: 1996 ident: 11 article-title: Segmentation of multiple sclerosis lesions in intensity corrected multispectral MRI publication-title: IEEE Trans Med Imaging doi: 10.1109/42.491417 – volume: 5 start-page: 399 year: 1998 ident: 9 article-title: A pyramidal approach for automatic segmentation of multiple sclerosis lesions in brain MRI publication-title: Comput Med Imaging Graph doi: 10.1016/S0895-6111(98)00049-4 – volume: 11 start-page: 1071 year: 2000 ident: 4 article-title: Cerebral white matter lesions and depressive symptoms in elderly adults publication-title: Arch Gen Psychiatry doi: 10.1001/archpsyc.57.11.1071 – volume: 3 start-page: 281 year: 2005 ident: 24 article-title: Model-based segmentation of medical imagery by matching distributions publication-title: IEEE Trans Med Imaging doi: 10.1109/TMI.2004.841228 |
SSID | ssj0062600 |
Score | 1.8361969 |
Snippet | Automatic brain-lesion segmentation has the potential to greatly expand the analysis of the relationships between brain function and lesion locations in... Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study Purpose: Automatic brain-lesion segmentation has the potential... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 182 |
SubjectTerms | Adult Algorithms Bayes Theorem Brain - diagnostic imaging Brain - pathology Brain Diseases - diagnostic imaging Brain Diseases - pathology Humans Image Processing, Computer-Assisted Magnetic Resonance Imaging Models, Statistical Pattern Recognition, Automated Prospective Studies Radiography ROC Curve |
Title | Automated Bayesian Segmentation of Microvascular White-Matter Lesions in the ACCORD-MIND Study |
URI | https://www.ncbi.nlm.nih.gov/pubmed/18842559 https://www.proquest.com/docview/1321123945 https://www.proquest.com/docview/69907360 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT9wwELYKSIhLBS1tt7x86KmShTeOE-eElgUEiKyqFqQ9ETnxBFWCZNvdReLfM-N4F3GAm6U8NTP2fPNm7AepEJQFKeq0KtFAcZVAyzYWkGidlrZCDUgFzvkoOb-JL8d6HBxu05BWuTgT_UHt2op85IdoNSE0UFmsjyb_BE2NouhqGKGxwtZ86zKU53S8NLgIq_uCSJMlgkpluqhmFKfm8LFPVanCB_9poV7rpTfAplc6Z5vsY0CLfNCxd4t9gOYTW89DPPwzux3MZy1iTnD82D4BFUTyP3D3EAqKGt7WPKeUu0XCKfcD8UTuu2ryKyBf2ZT_bTjiQD4YDtEkFPnF6IRTfuHTNrs5O70enoswMUFUKkpnIoltJqsSLIKgSIJUtoZUA6gIaY7oxlUIf2rpVFo6o8Ghsra2L60Ba3E3G_WFrTZtA98YT8ragjQAoLM46ltrnCsj5Uw_0WWdyR6TC3oVVWgnTlMt7gs0K4jERUfiwo-5pIXqsZ_LRyZdL433bt5dMKEI22pavAhBjx0sL-OGoCiHbaCdT4sE9WuqEvzBrx3rXr5lKOaos-_vv3qHbXT19uRn2WWrs_9z2EPkMSv3vXjts7Xj09Gv38-TLNS1 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrQRcEG8WCvUBLkhWvXGcOAeEtttWu3SzQtBKPRGceIKQICnsLmj_FL-RmTxacaC33iwlcazx2PONZz4PwEs2IaQLSpZxkZOD4gtJnm0oMTImzl1BFpAJzukimp6G787M2Rb86bkwnFbZ74nNRu3rgs_I98hrImigk9C8Pf8huWoUR1f7EhqtWhzj5je5bMs3swOa31dBcHR4MpnKrqqALHQQr2QUukQVOToCCoFCpV2JsUHUAY2LEIAvCCKUyus499agJ4Pm3Eg5i86RxltN_d6A7ZAZrQPY3j9cvP_Q7_3sHTQUTJtEksk5bRw1CGO792vEPFjZpBtwQ_9rCf8Dbxszd3QX7nT4VIxbhboHW1jdh5tpF4F_AJ_G61VNKBe92HcbZAqm-IhfvncUpkrUpUg5ya9PcRVNCT6ZNvd4ijny6dxSfK0EIU8xnkzICZXpbHEgOKNx8xBOr0Waj2BQ1RU-ARHlpUNlEdEkYTByznqfB9rbUWTyMlFDUL28sqK7wJzraHzLyJFhEWetiLOmsCY39BBeX3xy3t7ecdXLO_0kZN1CXmaXajeE3YvHtAQ5ruIqrNfLLCKLHuuIBvi4nbrLf1mOcprk6dVd78Kt6Uk6z-azxfEzuN2mpPApzw4MVj_X-Jxwzyp_0SmbgM_Xrd9_AdTlEXM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Bayesian+Segmentation+of+Microvascular+White-Matter+Lesions+in+the+ACCORD-MIND+Study&rft.jtitle=Advances+in+medical+sciences&rft.au=Herskovits%2C+E&rft.au=Bryan%2C+R&rft.au=Yang%2C+F&rft.date=2008&rft.pub=Elsevier+Limited&rft.issn=1896-1126&rft.eissn=1898-4002&rft.volume=53&rft.issue=2&rft.spage=182&rft_id=info:doi/10.2478%2Fv10039-008-0039-3&rft.externalDocID=2929184531 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1896-1126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1896-1126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1896-1126&client=summon |