A hybrid learning algorithm combined with generalized RLS approach for radial basis function neural networks

In this paper, a new hybrid learning method for radial basis function neural networks based on generalized recursive least square algorithm is proposed. Firstly the generalized recursive least square (GRLS) model including a general quadratic weight decay term in the energy function for the training...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 205; no. 2; pp. 908 - 915
Main Authors Du, Ji-Xiang, Zhai, Chuan-Min
Format Journal Article Conference Proceeding
LanguageEnglish
Published Amsterdam Elsevier Inc 15.11.2008
Elsevier
Subjects
Online AccessGet full text
ISSN0096-3003
1873-5649
DOI10.1016/j.amc.2008.05.075

Cover

Loading…
Abstract In this paper, a new hybrid learning method for radial basis function neural networks based on generalized recursive least square algorithm is proposed. Firstly the generalized recursive least square (GRLS) model including a general quadratic weight decay term in the energy function for the training of RBF neural networks is described. Then combined with the GRLS approach, a new hybrid learning method is proposed to meet the design goals: improving the generalization ability of the trained network. Finally experimental results demonstrate that our approach can achieve a significantly improved generalization performance of the RBF networks.
AbstractList In this paper, a new hybrid learning method for radial basis function neural networks based on generalized recursive least square algorithm is proposed. Firstly the generalized recursive least square (GRLS) model including a general quadratic weight decay term in the energy function for the training of RBF neural networks is described. Then combined with the GRLS approach, a new hybrid learning method is proposed to meet the design goals: improving the generalization ability of the trained network. Finally experimental results demonstrate that our approach can achieve a significantly improved generalization performance of the RBF networks.
Author Zhai, Chuan-Min
Du, Ji-Xiang
Author_xml – sequence: 1
  givenname: Ji-Xiang
  surname: Du
  fullname: Du, Ji-Xiang
  email: du_jx@iim.ac.cn
  organization: Department of Computer Science and Technology, Huaqiao University, Quanzhou, Fujian 362021, PR China
– sequence: 2
  givenname: Chuan-Min
  surname: Zhai
  fullname: Zhai, Chuan-Min
  organization: Department of Computer Science and Technology, Huaqiao University, Quanzhou, Fujian 362021, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21205206$$DView record in Pascal Francis
BookMark eNp9kE1rGzEQhkVJoM7HD-hNlx53O5K8q116CqFfYCi0zVmMRpItd6010qYh_fWVcemhh5xeZniegXmv2EWak2fsjYBWgOjf7Vs8UCsBhha6FnT3iq3EoFXT9evxgq0Axr5RAOo1uyplDwC6F-sVm-747tnm6PjkMaeYthyn7Zzjsjtwmg82Ju_4Ux351iefcYq_6-Lb5jvH4zHPSDse5swzuogTt1hi4eEx0RLnxJN_rEaN5WnOP8sNuww4FX_7N6_Zw8cPP-4_N5uvn77c320aUlIvTae1koOwivqwpjAQaegshNH1NEgrFdI4AgbrvHWDG4PASii7lohaa6mu2dvz3SMWwilkTBSLOeZ4wPxspJDQSegrJ84c5bmU7MM_RIA51Wr2ptZqTrUa6EyttTr6P4figqdvl4xxetF8fzZ9ff1X9NkUij6RdzF7Woyb4wv2H7kxll0
CODEN AMHCBQ
CitedBy_id crossref_primary_10_4018_IJORIS_2018040102
crossref_primary_10_1016_j_engappai_2017_04_017
crossref_primary_10_4028_www_scientific_net_AMR_317_319_1529
Cites_doi 10.1142/S0218001499000525
10.1162/089976604774201668
10.1016/j.amc.2003.12.105
10.1016/j.neucom.2006.05.003
10.1515/JISYS.1999.9.1.1
10.1109/TNN.2004.836229
10.1109/72.963768
10.1109/34.531803
10.1109/TNN.2005.860857
10.1109/NNSP.1991.239541
10.1162/neco.1992.4.3.448
10.1109/TNN.2004.824424
10.1109/72.839002
10.1142/S0218001499000604
ContentType Journal Article
Conference Proceeding
Copyright 2008 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2008 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2008.05.075
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 915
ExternalDocumentID 21205206
10_1016_j_amc_2008_05_075
S0096300308003706
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c327t-5773281b3c6f4cf8cc705b0f9d6c82b23ac990afbdebd8d9f1ac703b42aa77723
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:17:32 EDT 2025
Thu Apr 24 23:08:52 EDT 2025
Tue Jul 01 04:07:07 EDT 2025
Fri Feb 23 02:18:48 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Hybrid learning
Radial basis function neural networks
Generalized recursive least square mode
Learning
Experimental result
Numerical analysis
Applied mathematics
Least squares method
Neural network
Learning algorithm
Recursive algorithm
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MeetingName Special Issue on Advanced Intelligent Computing Theory and Methodology in Applied Mathematics and Computation
MergedId FETCHMERGED-LOGICAL-c327t-5773281b3c6f4cf8cc705b0f9d6c82b23ac990afbdebd8d9f1ac703b42aa77723
PageCount 8
ParticipantIDs pascalfrancis_primary_21205206
crossref_primary_10_1016_j_amc_2008_05_075
crossref_citationtrail_10_1016_j_amc_2008_05_075
elsevier_sciencedirect_doi_10_1016_j_amc_2008_05_075
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-11-15
PublicationDateYYYYMMDD 2008-11-15
PublicationDate_xml – month: 11
  year: 2008
  text: 2008-11-15
  day: 15
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Applied mathematics and computation
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Leung, Tsoi, Chan (bib5) 2001; 12
Huang, Horace, Chi (bib12) 2004; 16
Du, Huang (bib8) 2006; 70
Huang (bib13) 2004; 15
Manjunath, Ma (bib9) 1996; 18
Huang, Ma (bib14) 1999; 9
Xu, Wong, Leung (bib4) 2006; 17
Huang, Zhao (bib3) 2005; 162
Mackay (bib6) 1992; 1
Huang (bib11) 1996
J.E. Moody, Note on generalization, regularization and architecture selection in nonlinear systems, in Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, 1991, pp. 1–10.
Oyang, Hwang, Ou, Chen, Chen (bib1) 2005; 16
Gomm, Yu (bib2) 2000; 11
Huang (bib10) 1999; 13
Huang (bib15) 1999; 13
Huang (10.1016/j.amc.2008.05.075_bib3) 2005; 162
Huang (10.1016/j.amc.2008.05.075_bib11) 1996
Mackay (10.1016/j.amc.2008.05.075_bib6) 1992; 1
Xu (10.1016/j.amc.2008.05.075_bib4) 2006; 17
Huang (10.1016/j.amc.2008.05.075_bib12) 2004; 16
10.1016/j.amc.2008.05.075_bib7
Huang (10.1016/j.amc.2008.05.075_bib13) 2004; 15
Huang (10.1016/j.amc.2008.05.075_bib14) 1999; 9
Gomm (10.1016/j.amc.2008.05.075_bib2) 2000; 11
Leung (10.1016/j.amc.2008.05.075_bib5) 2001; 12
Huang (10.1016/j.amc.2008.05.075_bib15) 1999; 13
Du (10.1016/j.amc.2008.05.075_bib8) 2006; 70
Huang (10.1016/j.amc.2008.05.075_bib10) 1999; 13
Oyang (10.1016/j.amc.2008.05.075_bib1) 2005; 16
Manjunath (10.1016/j.amc.2008.05.075_bib9) 1996; 18
References_xml – volume: 11
  start-page: 306
  year: 2000
  end-page: 314
  ident: bib2
  article-title: Selecting radial basis function network centers with recursive orthogonal least squares training
  publication-title: IEEE Trans. Neural Network
– year: 1996
  ident: bib11
  article-title: Systematic Theory of Neural Networks for Pattern Recognition
– volume: 70
  start-page: 592
  year: 2006
  end-page: 596
  ident: bib8
  article-title: A novel full structure optimization algorithm for radial basis probabilistic neural networks
  publication-title: Neurocomputing
– volume: 17
  start-page: 19
  year: 2006
  end-page: 34
  ident: bib4
  article-title: Generalized RLS approach to the training of neural networks
  publication-title: IEEE Trans. Neural Network
– volume: 12
  start-page: 1314
  year: 2001
  end-page: 1332
  ident: bib5
  article-title: Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks
  publication-title: IEEE Trans. Neural Network
– reference: J.E. Moody, Note on generalization, regularization and architecture selection in nonlinear systems, in Proceedings of the IEEE Workshop on Neural Networks for Signal Processing, 1991, pp. 1–10.
– volume: 1
  start-page: 448
  year: 1992
  end-page: 472
  ident: bib6
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
– volume: 162
  start-page: 461
  year: 2005
  end-page: 473
  ident: bib3
  article-title: Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 945
  year: 1999
  end-page: 962
  ident: bib15
  article-title: Application of generalized radial basis function networks to recognition of radar targets
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– volume: 16
  start-page: 1721
  year: 2004
  end-page: 1762
  ident: bib12
  article-title: A neural root finder of polynomials based on root moments
  publication-title: Neural. Comput.
– volume: 18
  start-page: 837
  year: 1996
  end-page: 842
  ident: bib9
  article-title: Texture features for browsing and retrieval of large image data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 16
  start-page: 225
  year: 2005
  end-page: 236
  ident: bib1
  article-title: Data classification with radial basis function networks based on a novel kernel density estimation algorithm
  publication-title: IEEE Trans. Neural Network
– volume: 9
  start-page: 1
  year: 1999
  end-page: 38
  ident: bib14
  article-title: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding
  publication-title: J. Intell. Syst.
– volume: 15
  start-page: 477
  year: 2004
  end-page: 491
  ident: bib13
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks
  publication-title: IEEE Trans. Neural Network
– volume: 13
  start-page: 1083
  year: 1999
  end-page: 1101
  ident: bib10
  article-title: Radial basis probabilistic neural networks: model and application
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
– year: 1996
  ident: 10.1016/j.amc.2008.05.075_bib11
– volume: 13
  start-page: 945
  issue: 6
  year: 1999
  ident: 10.1016/j.amc.2008.05.075_bib15
  article-title: Application of generalized radial basis function networks to recognition of radar targets
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001499000525
– volume: 16
  start-page: 1721
  issue: 8
  year: 2004
  ident: 10.1016/j.amc.2008.05.075_bib12
  article-title: A neural root finder of polynomials based on root moments
  publication-title: Neural. Comput.
  doi: 10.1162/089976604774201668
– volume: 162
  start-page: 461
  year: 2005
  ident: 10.1016/j.amc.2008.05.075_bib3
  article-title: Determining the centers of radial basis probabilities neural networks by recursive orthogonal least square algorithms
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2003.12.105
– volume: 70
  start-page: 592
  year: 2006
  ident: 10.1016/j.amc.2008.05.075_bib8
  article-title: A novel full structure optimization algorithm for radial basis probabilistic neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.05.003
– volume: 9
  start-page: 1
  issue: 1
  year: 1999
  ident: 10.1016/j.amc.2008.05.075_bib14
  article-title: Linear and nonlinear feedforward neural network classifiers: a comprehensive understanding
  publication-title: J. Intell. Syst.
  doi: 10.1515/JISYS.1999.9.1.1
– volume: 16
  start-page: 225
  issue: 1
  year: 2005
  ident: 10.1016/j.amc.2008.05.075_bib1
  article-title: Data classification with radial basis function networks based on a novel kernel density estimation algorithm
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/TNN.2004.836229
– volume: 12
  start-page: 1314
  year: 2001
  ident: 10.1016/j.amc.2008.05.075_bib5
  article-title: Two regularizers for recursive least squared algorithms in feedforward multilayered neural networks
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/72.963768
– volume: 18
  start-page: 837
  year: 1996
  ident: 10.1016/j.amc.2008.05.075_bib9
  article-title: Texture features for browsing and retrieval of large image data
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.531803
– volume: 17
  start-page: 19
  year: 2006
  ident: 10.1016/j.amc.2008.05.075_bib4
  article-title: Generalized RLS approach to the training of neural networks
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/TNN.2005.860857
– ident: 10.1016/j.amc.2008.05.075_bib7
  doi: 10.1109/NNSP.1991.239541
– volume: 1
  start-page: 448
  year: 1992
  ident: 10.1016/j.amc.2008.05.075_bib6
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– volume: 15
  start-page: 477
  issue: 2
  year: 2004
  ident: 10.1016/j.amc.2008.05.075_bib13
  article-title: A constructive approach for finding arbitrary roots of polynomials by neural networks
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/TNN.2004.824424
– volume: 11
  start-page: 306
  issue: 2
  year: 2000
  ident: 10.1016/j.amc.2008.05.075_bib2
  article-title: Selecting radial basis function network centers with recursive orthogonal least squares training
  publication-title: IEEE Trans. Neural Network
  doi: 10.1109/72.839002
– volume: 13
  start-page: 1083
  year: 1999
  ident: 10.1016/j.amc.2008.05.075_bib10
  article-title: Radial basis probabilistic neural networks: model and application
  publication-title: Int. J. Pattern Recogn. Artif. Intell.
  doi: 10.1142/S0218001499000604
SSID ssj0007614
Score 1.9047596
Snippet In this paper, a new hybrid learning method for radial basis function neural networks based on generalized recursive least square algorithm is proposed....
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 908
SubjectTerms Combinatorics
Combinatorics. Ordered structures
Designs and configurations
Exact sciences and technology
Generalized recursive least square mode
Hybrid learning
Mathematical analysis
Mathematics
Numerical analysis
Numerical analysis. Scientific computation
Radial basis function neural networks
Sciences and techniques of general use
Title A hybrid learning algorithm combined with generalized RLS approach for radial basis function neural networks
URI https://dx.doi.org/10.1016/j.amc.2008.05.075
Volume 205
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4gXDTG-Iz4IHvwZFJou90-joRI8AEHlYRbs91usQYKoXjQg7_dGbolkhgOXje7fcxM5tF-8w0hNwrshgvwfsKG2sQxk8AITDM2hFTShppIOQIbhfsDtzd0HkZ8VCGdshcGYZXa9xc-feWt9UpLS7M1T1Ps8Q2QL4phzsM8pN2u2SxwwbRr7fvH3mDtkKFSL8iYA4R5maz8ubmCeYmp1IhK3jQRbfh3eNqfixyElhTTLn6FoO4hOdC5I20Xj3dEKio7Jnv9NfFqfkImbfr2iU1YVI-DGFMxGc8W6fJtSuEdoQ5WMcWPr3RcEE6nX7Dw_PRCS3ZxCmksXSBlwYRCjEtzirEP9UeR_BJWswI6np-SYffutdMz9EAFQzLbWxrcQ2oeK2LSTRyZ-FJ6Jo9AP7ErfTuymZAQnEQSxSqK_ThILAE7WOTYQniQhrMzUs1mmTonVPmWa1uuRLYdx_O5cGUkFZfKM5Fvx6sTs5RjKDXbOA69mIQlrOw9BNHrKZg8BNHXye36yLyg2ti22SmVE27YSwihYNuxxoYi1zeCCI6IIPfif9e9JLsrIAniA_kVqS4XH-oaspVl1CA7zW-roW3yB_606e4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPKgxxmfEB-7Bk0mhtLt9HAmRoAIHhYRbs91uoaY8AnjQg7_dGbpFSQwHr5vdPmZ259F-8w0hdwr2DRdg_YQFuQkzY9_wTTMyhFTSgpxIMYGFwp2u0-qzpwEfFEgjr4VBWKW2_ZlNX1lrPVLV0qzOkgRrfH3ki7Ix5rFdpN3eYXB88XRWvn5wHpCnZ1TMPoK8TDv_tbkCeYmx1HhKXjERa_i3czqYiQWILM56XfxyQM0jcqgjR1rPHu6YFNTkhOx31rSri1OS1unoA0uwqG4GMaQiHU4h_x-NKbwhZMEqovjplQ4zuunkEwZe2q805xanEMTSORIWpBQ8XLKg6PlQexSpL2F0kgHHF2ek33zoNVqGbqdgSNtylwZ3kZinFtrSiZmMPSldk4egnciRnhVatpDgmkQcRiqMvMiPawJm2CGzhHAhCLfPSXEynagLQpVXc6yaI5Frh7keF44MpeJSuSay7bglYuZyDKTmGseWF2mQg8reAhC97oHJAxB9idyvl8wyoo1tk1munGBjtwTgCLYtK28ocn0j8N-IB3Iu_3fdW7Lb6nXaQfux-3xF9laQEkQK8mtSXM7f1Q3ELcuwvNqX3-ap6rI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Applied+mathematics+and+computation&rft.atitle=A+hybrid+learning+algorithm+combined+with+generalized+RLS+approach+for+radial+basis+function+neural+networks&rft.au=DU%2C+Ji-Xiang&rft.au=ZHAI%2C+Chuan-Min&rft.date=2008-11-15&rft.pub=Elsevier&rft.issn=0096-3003&rft.volume=205&rft.issue=2&rft.spage=908&rft.epage=915&rft_id=info:doi/10.1016%2Fj.amc.2008.05.075&rft.externalDBID=n%2Fa&rft.externalDocID=21205206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon