An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model

The evaluation of an arc quenching medium in circuit breakers usually requires the experimental investigation or the 2D or 3D magnetohydrodynamics simulation of switching arcs, which are expensive and time-consuming. In this work, a fast method is proposed for evaluating the arc quenching performanc...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 26; no. 10
Main Authors Zhong, Linlin, Gu, Qi, Zheng, Shangzhi
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The evaluation of an arc quenching medium in circuit breakers usually requires the experimental investigation or the 2D or 3D magnetohydrodynamics simulation of switching arcs, which are expensive and time-consuming. In this work, a fast method is proposed for evaluating the arc quenching performance of gases. In this method, the arc decaying process is divided into three stages based on the results of 1D arc decaying modeling, including the thermal recovery stage, the predielectric recovery stage, and the postdielectric recovery stage. Compared to the previous method, the present method is improved mainly in the three aspects: the thermal recovery stage is featured by the average radial temperature instead of the axial temperature; the criterion of dividing the dielectric recovery stage into the pre- and postdielectric recovery stages is validated by the average electron number density instead of choosing arbitrarily; and the postdielectric recovery stage is characterized by the critical electric field strength Ecr instead of the reduced critical electric field strength (E/N)cr. The case study of SF6, CO2, CF4, and air arcs indicates that the present method yields the same descending order of the thermal recovery rate and the predielectric recovery rate for the four gases as the previous method. Moreover, the present method can avoid negative postdielectric recovery rates, which means that it is more reasonable than the previous method.
AbstractList The evaluation of an arc quenching medium in circuit breakers usually requires the experimental investigation or the 2D or 3D magnetohydrodynamics simulation of switching arcs, which are expensive and time-consuming. In this work, a fast method is proposed for evaluating the arc quenching performance of gases. In this method, the arc decaying process is divided into three stages based on the results of 1D arc decaying modeling, including the thermal recovery stage, the predielectric recovery stage, and the postdielectric recovery stage. Compared to the previous method, the present method is improved mainly in the three aspects: the thermal recovery stage is featured by the average radial temperature instead of the axial temperature; the criterion of dividing the dielectric recovery stage into the pre- and postdielectric recovery stages is validated by the average electron number density instead of choosing arbitrarily; and the postdielectric recovery stage is characterized by the critical electric field strength Ecr instead of the reduced critical electric field strength (E/N)cr. The case study of SF6, CO2, CF4, and air arcs indicates that the present method yields the same descending order of the thermal recovery rate and the predielectric recovery rate for the four gases as the previous method. Moreover, the present method can avoid negative postdielectric recovery rates, which means that it is more reasonable than the previous method.
Author Zhong, Linlin
Zheng, Shangzhi
Gu, Qi
Author_xml – sequence: 1
  givenname: Linlin
  surname: Zhong
  fullname: Zhong, Linlin
  email: mathboylinlin@gmail.com, linlin@seu.edu.cn
  organization: School of Electrical Engineering, Southeast University, No 2 Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
– sequence: 2
  givenname: Qi
  surname: Gu
  fullname: Gu, Qi
  organization: School of Electrical Engineering, Southeast University, No 2 Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
– sequence: 3
  givenname: Shangzhi
  surname: Zheng
  fullname: Zheng, Shangzhi
  organization: School of Electrical Engineering, Southeast University, No 2 Sipailou, Nanjing, Jiangsu 210096, People's Republic of China
BookMark eNp9kE9LAzEQxYNUsK0e_AYBTwrbJptNNnss9S8UvCh4C9ls0m7ZTWqyLfTbm7UVQdTTzMDvvZl5IzCwzmoALjGaYMTIFE8oTvM0z07AECNeJDnLs0Hf5yhhLHs7A6MQ1gihjFE-BKuZhXW78W6nK9jqbuUqaJyHRoYO6p1strKr7RJKr-D7Vlu16qeN9hFqpVUaOgMlXMoASxmih7MQ337ilVZy39Otq3RzDk6NbIK-ONYxeL2_e5k_Jovnh6f5bJEokuZdQomhpDSS58ygMt7OGapIwWmJM51RpArEuWY5VZyVqJBVWkYFNVlhSomVJGNwdfCNP8WDQyfWbuttXClSgigjnHIaqesDpbwLwWsjNr5upd8LjEQfpMDiGGRkpz9YVXcxFWc7L-vmV8XNQRG-yH_t_4R3zn-DYlMZ8gEDfZIS
CODEN PHPAEN
CitedBy_id crossref_primary_10_1063_5_0246444
crossref_primary_10_3390_axioms12070623
crossref_primary_10_1063_5_0054342
crossref_primary_10_1016_j_cpc_2020_107496
crossref_primary_10_1063_5_0106506
crossref_primary_10_1016_j_sab_2025_107196
crossref_primary_10_1088_1361_6463_adbb00
crossref_primary_10_23919_IEN_2023_0001
Cites_doi 10.1109/27.491761
10.1109/TPS.1980.4317341
10.1088/0022-3727/44/49/495202
10.1007/s11090-019-10015-8
10.1109/TDEI.2010.5539690
10.1140/epjd/e2015-60327-9
10.1063/1.5012850
10.1109/TPS.2011.2180404
10.1088/1361-6463/aa8f8a
10.1063/1.4963245
10.1049/ip-smt:20010585
10.1109/TPS.2013.2259183
10.1007/s11090-014-9543-3
10.1063/1.5043516
10.1140/epjd/e2016-70241-3
10.1088/0022-3727/35/17/311
10.1088/0022-3727/47/49/495201
10.1109/TPS.2004.827606
10.1049/ip-smt:20010586
10.1088/0022-3727/43/43/434011
10.1088/0022-3727/47/21/215201
10.1088/0022-3727/24/8/011
10.1088/0022-3727/47/49/495202
10.1109/TPS.2019.2898696
10.1109/61.852988
10.1109/TPS.2004.924559
10.1063/1.4993305
10.1063/1.4876744
10.1109/TPS.2010.2050703
ContentType Journal Article
Copyright Author(s)
2019 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2019 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5127274
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID 10_1063_1_5127274
pop
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 51907023
  funderid: https://doi.org/10.13039/501100001809
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20180387
  funderid: https://doi.org/10.13039/501100004608
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-53f53bfa876f0b674860d3985b14e450c9088e675c86b09ad2b3f55f49fba1ca3
ISSN 1070-664X
IngestDate Mon Jun 30 06:40:45 EDT 2025
Tue Jul 01 01:15:09 EDT 2025
Thu Apr 24 22:56:28 EDT 2025
Fri Jun 21 00:14:14 EDT 2024
Wed Nov 11 00:04:56 EST 2020
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License Published under license by AIP Publishing.
1070-664X/2019/26(10)/103507/8/$30.00
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-53f53bfa876f0b674860d3985b14e450c9088e675c86b09ad2b3f55f49fba1ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8135-2766
PQID 2305638585
PQPubID 2050668
PageCount 8
ParticipantIDs proquest_journals_2305638585
crossref_primary_10_1063_1_5127274
crossref_citationtrail_10_1063_1_5127274
scitation_primary_10_1063_1_5127274
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20191000
2019-10-01
20191001
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: 20191000
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of plasmas
PublicationYear 2019
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Rong, Yang, Wu, Murphy, Wang, Guo (c21) 2010
Zhong, Cressault, Teulet (c9) 2018
Kasuya, Kawamura, Mizoguchi, Nakamura, Yanabu, Nagasaki (c7) 2010
Zhong, Wang, Wang, Rong (c32) 2018
Zhong, Wang, Rong, Cressault (c6) 2016
Sun, Rong, Yang, Wu, Ma, Wang (c24) 2008
Yang, Rong, Wu, Murphy, Pei, Wang, Liu, Liu (c23) 2010
Zhong, Yang, Wang, Liu, Wu, Rong (c2) 2014
Nakano, Tanaka, Murai, Uesugi, Ishijima, Tomita, Suzuki, Shinkai, Nakano, Tanaka (c19) 2017
Gonzalez, Freton, Reichert, Randrianarivao (c26) 2012
Wang, Zhong, Cressault, Gleizes, Rong (c29) 2014
Zhang, Yan, Fang (c22) 2014
Wang, Rong, Wu (c31) 2014
Rong, Zhong, Cressault, Gleizes, Wang, Chen, Zheng (c28) 2014
Zhang, Yan, Fang (c25) 2004
Lee, Frost (c1) 1980
Gleizes, Rahmani, Gonzalez, Liani (c3) 1991
Chervy, Gonzalez, Gleizes (c4) 1996
Cressault, Connord, Hingana, Teulet, Gleizes (c12) 2011
Wang, Zhong, Yan, Yang, Han, Han, Wu, Rong (c8) 2015
Habedank, Knobloch (c15) 2001
Stoller, Seeger, Iordanidis, Naidis (c5) 2013
Schavemaker, Van der Sluis (c20) 2000
Tanaka, Sakuta (c18) 2002
Zhong, Cressault, Teulet (c14) 2019
Zhong, Wang, Xu, Wang, Rong (c10) 2019
Zhong, Rong, Wang, Wu, Han, Han, Lu, Yang, Wu (c11) 2017
Knobloch, Habedank (c16) 2001
Zhong, Wang, Cressault, Teulet, Rong (c30) 2016
(2023062915565303900_c11) 2017; 7
(2023062915565303900_c12) 2011; 44
(2023062915565303900_c3) 1991; 24
(2023062915565303900_c17) 2011
(2023062915565303900_c10) 2019; 39
(2023062915565303900_c24) 2008; 36
(2023062915565303900_c15) 2001; 148
(2023062915565303900_c9) 2018; 25
(2023062915565303900_c26) 2012; 40
(2023062915565303900_c6) 2016; 70
(2023062915565303900_c1) 1980; 8
(2023062915565303900_c28) 2014; 47
(2023062915565303900_c2) 2014; 21
(2023062915565303900_c27) 1994
(2023062915565303900_c30) 2016; 23
(2023062915565303900_c23) 2010; 43
(2023062915565303900_c4) 1996; 24
(2023062915565303900_c8) 2015; 69
(2023062915565303900_c25) 2004; 32
(2023062915565303900_c22) 2014; 47
(2023062915565303900_c19) 2017; 50
(2023062915565303900_c18) 2002; 35
(2023062915565303900_c21) 2010; 38
(2023062915565303900_c5) 2013; 41
(2023062915565303900_c16) 2001; 148
(2023062915565303900_c31) 2014; 34
(2023062915565303900_c7) 2010; 17
(2023062915565303900_c32) 2018; 8
(2023062915565303900_c13) 1997
(2023062915565303900_c29) 2014; 47
(2023062915565303900_c14) 2019; 47
(2023062915565303900_c20) 2000; 15
References_xml – start-page: 268
  year: 2001
  ident: c15
  publication-title: IEE Proc.-Sci., Meas. Technol.
– start-page: 233
  year: 2016
  ident: c6
  publication-title: Eur. Phys. J. D
– start-page: 215201
  year: 2014
  ident: c22
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1352
  year: 2004
  ident: c25
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 240
  year: 2015
  ident: c8
  publication-title: Eur. Phys. J. D
– start-page: 2306
  year: 2010
  ident: c21
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 1072
  year: 2008
  ident: c24
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 580
  year: 2000
  ident: c20
  publication-title: IEEE Trans. Power Delivery
– start-page: 434011
  year: 2010
  ident: c23
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 053506
  year: 2014
  ident: c2
  publication-title: Phys. Plasmas
– start-page: 093514
  year: 2016
  ident: c30
  publication-title: Phys. Plasmas
– start-page: 495201
  year: 2014
  ident: c29
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1300
  year: 1991
  ident: c3
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1835
  year: 2019
  ident: c14
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 495202
  year: 2011
  ident: c12
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1379
  year: 2019
  ident: c10
  publication-title: Plasma Chem. Plasma Process.
– start-page: 899
  year: 2014
  ident: c31
  publication-title: Plasma Chem. Plasma Process.
– start-page: 1196
  year: 2010
  ident: c7
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 936
  year: 2012
  ident: c26
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 033502
  year: 2018
  ident: c9
  publication-title: Phys. Plasmas
– start-page: 485602
  year: 2017
  ident: c19
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 075003
  year: 2017
  ident: c11
  publication-title: AIP Adv.
– start-page: 085122
  year: 2018
  ident: c32
  publication-title: AIP Adv.
– start-page: 2149
  year: 2002
  ident: c18
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 210
  year: 1996
  ident: c4
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 495202
  year: 2014
  ident: c28
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 2359
  year: 2013
  ident: c5
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 273
  year: 2001
  ident: c16
  publication-title: IEE Proc.-Sci., Meas. Technol.
– start-page: 362
  year: 1980
  ident: c1
  publication-title: IEEE Trans. Plasma Sci.
– volume: 24
  start-page: 210
  issue: 1
  year: 1996
  ident: 2023062915565303900_c4
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.491761
– volume: 8
  start-page: 362
  issue: 4
  year: 1980
  ident: 2023062915565303900_c1
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.1980.4317341
– volume: 44
  start-page: 495202
  issue: 49
  year: 2011
  ident: 2023062915565303900_c12
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/49/495202
– volume: 39
  start-page: 1379
  issue: 6
  year: 2019
  ident: 2023062915565303900_c10
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-019-10015-8
– volume: 17
  start-page: 1196
  issue: 4
  year: 2010
  ident: 2023062915565303900_c7
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2010.5539690
– volume: 69
  start-page: 240
  issue: 10
  year: 2015
  ident: 2023062915565303900_c8
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2015-60327-9
– volume: 25
  start-page: 033502
  issue: 3
  year: 2018
  ident: 2023062915565303900_c9
  publication-title: Phys. Plasmas
  doi: 10.1063/1.5012850
– volume-title: Gases for Electrical Insulation and Arc Interruption: Possible Present and Future Alternatives to Pure SF6
  year: 1997
  ident: 2023062915565303900_c13
– volume: 40
  start-page: 936
  issue: 3
  year: 2012
  ident: 2023062915565303900_c26
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2180404
– volume: 50
  start-page: 485602
  year: 2017
  ident: 2023062915565303900_c19
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/aa8f8a
– volume: 23
  start-page: 093514
  issue: 9
  year: 2016
  ident: 2023062915565303900_c30
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4963245
– volume: 148
  start-page: 268
  issue: 6
  year: 2001
  ident: 2023062915565303900_c15
  publication-title: IEE Proc.-Sci., Meas. Technol.
  doi: 10.1049/ip-smt:20010585
– volume: 41
  start-page: 2359
  issue: 8
  year: 2013
  ident: 2023062915565303900_c5
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2013.2259183
– volume: 34
  start-page: 899
  issue: 4
  year: 2014
  ident: 2023062915565303900_c31
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-014-9543-3
– volume: 8
  start-page: 085122
  issue: 8
  year: 2018
  ident: 2023062915565303900_c32
  publication-title: AIP Adv.
  doi: 10.1063/1.5043516
– volume: 70
  start-page: 233
  issue: 11
  year: 2016
  ident: 2023062915565303900_c6
  publication-title: Eur. Phys. J. D
  doi: 10.1140/epjd/e2016-70241-3
– volume: 35
  start-page: 2149
  issue: 17
  year: 2002
  ident: 2023062915565303900_c18
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/35/17/311
– volume: 47
  start-page: 495201
  issue: 49
  year: 2014
  ident: 2023062915565303900_c29
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/49/495201
– volume: 32
  start-page: 1352
  issue: 3
  year: 2004
  ident: 2023062915565303900_c25
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2004.827606
– volume: 148
  start-page: 273
  issue: 6
  year: 2001
  ident: 2023062915565303900_c16
  publication-title: IEE Proc.-Sci., Meas. Technol.
  doi: 10.1049/ip-smt:20010586
– volume: 43
  start-page: 434011
  issue: 43
  year: 2010
  ident: 2023062915565303900_c23
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/43/434011
– volume: 47
  start-page: 215201
  issue: 21
  year: 2014
  ident: 2023062915565303900_c22
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/21/215201
– volume: 24
  start-page: 1300
  issue: 8
  year: 1991
  ident: 2023062915565303900_c3
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/24/8/011
– volume: 47
  start-page: 495202
  issue: 49
  year: 2014
  ident: 2023062915565303900_c28
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/49/495202
– volume: 47
  start-page: 1835
  issue: 4
  year: 2019
  ident: 2023062915565303900_c14
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2019.2898696
– volume: 15
  start-page: 580
  issue: 2
  year: 2000
  ident: 2023062915565303900_c20
  publication-title: IEEE Trans. Power Delivery
  doi: 10.1109/61.852988
– volume: 36
  start-page: 1072
  issue: 4
  year: 2008
  ident: 2023062915565303900_c24
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2004.924559
– volume: 7
  start-page: 075003
  issue: 7
  year: 2017
  ident: 2023062915565303900_c11
  publication-title: AIP Adv.
  doi: 10.1063/1.4993305
– start-page: 559
  year: 2011
  ident: 2023062915565303900_c17
– volume: 21
  start-page: 053506
  issue: 5
  year: 2014
  ident: 2023062915565303900_c2
  publication-title: Phys. Plasmas
  doi: 10.1063/1.4876744
– volume: 38
  start-page: 2306
  issue: 9
  year: 2010
  ident: 2023062915565303900_c21
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2010.2050703
– volume-title: Thermal Plasmas: Fundamentals and Applications
  year: 1994
  ident: 2023062915565303900_c27
SSID ssj0004658
Score 2.336946
Snippet The evaluation of an arc quenching medium in circuit breakers usually requires the experimental investigation or the 2D or 3D magnetohydrodynamics simulation...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Circuit breakers
Computational fluid dynamics
Computer simulation
Decay
Discharge
Electric arcs
Electric field strength
Electric fields
Magnetohydrodynamic simulation
Plasma physics
Quenching media
Recovery
Title An improved method for fast evaluating arc quenching performance of a gas based on 1D arc decaying model
URI http://dx.doi.org/10.1063/1.5127274
https://www.proquest.com/docview/2305638585
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZy9hexroLy9YN0e1hEJzZlq1aj2FpKSXtGEsgb0I3t4Vhh8TpQ3_9juSbCqGsfTHBnMhG57P0Hek7Rwh9E8xQrbQMGJChAKYAEUhtVEC0SgQ7Zlq7EhsXl_RskZwv0-VgcO6plraVHKu7nXklT_Eq3AO_2izZR3i2axRuwG_wL1zBw3D9Lx9PCpvluC5vgTXWR0E71WAuNlVXxtvmIK7VyAmm3WrTyksVcMmRV2IzspOZthsH0dSZQ0cKlwDlTsrxGayTjConAFkB827VRW7tuXQZU7b2Rifr2Y5-3_QGxpb_tkvUd9c3_npDxDrlWuVJ_EVxX8zQPNsbSGEoCSit1Zdj09zLWGCLB_mjb50v36Is3DmqA42yCwxjICdAt5J-6mq36y9_8dPFbMbnJ8v5M7QfQ8gAY97-ZHox--NlyaZ1YmTzZm2dKUp-dE3fZyd9yPEC-EgtjfDYx_w1etWEDXhSY-AADUzxBj1v-uMtup4UuEUCrpGAwcnYIgH3SMDgWtwhAXtIwGWOBQYkYIcEXBY4mjrzFgnYIeEdWpyezH-eBc0ZGoEi8XEVpCRPicwFTHp5KO3JMjTUhGWpjBKTpKGyOjcDUaPKqAyZ0LGEf6R5wnIpIiXIe7RXlIX5gDBJKKOG2X1kCKtzkqV2i51lMTQLYb0Zou9t3_G2t-w5J3-5EzpQwiPedPMQHXWmq7qqyi6jw9YBvPnoNjy2Ia_bzB6ir51THmpkh9Vtue4t-ErnHx9-1Cf0sv8SDtFetd6az8BFK_mlAdk_6huMHA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+improved+method+for+fast+evaluating+arc+quenching+performance+of+a+gas+based+on+1D+arc+decaying+model&rft.jtitle=Physics+of+plasmas&rft.au=Zhong+Linlin&rft.au=Gu+Qi&rft.au=Zheng+Shangzhi&rft.date=2019-10-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=26&rft.issue=10&rft_id=info:doi/10.1063%2F1.5127274&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon