On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions
This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regu...
Saved in:
Published in | Nonlinear analysis Vol. 113; pp. 190 - 208 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.01.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0362-546X 1873-5215 |
DOI | 10.1016/j.na.2014.10.003 |
Cover
Loading…
Abstract | This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regularity of solutions to the Allen–Cahn equation, subject to the nonlinear and non-homogeneous dynamic boundary conditions. The existence, uniqueness and regularity of solutions to the Caginalp system in this new formulation are also proved. This extends previous works concerned with regular potential and nonlinear boundary conditions, allowing the present mathematical model to better approximate the real physical phenomena, especially phase transitions. |
---|---|
AbstractList | This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regularity of solutions to the Allen–Cahn equation, subject to the nonlinear and non-homogeneous dynamic boundary conditions. The existence, uniqueness and regularity of solutions to the Caginalp system in this new formulation are also proved. This extends previous works concerned with regular potential and nonlinear boundary conditions, allowing the present mathematical model to better approximate the real physical phenomena, especially phase transitions. |
Author | Moroşanu, Costică Miranville, Alain Cârjă, Ovidiu |
Author_xml | – sequence: 1 givenname: Ovidiu surname: Cârjă fullname: Cârjă, Ovidiu organization: University of Iaşi, 700506 Iaşi, Romania – sequence: 2 givenname: Alain surname: Miranville fullname: Miranville, Alain organization: Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, 86962 Chasseneuil Futuroscope Cedex, France – sequence: 3 givenname: Costică surname: Moroşanu fullname: Moroşanu, Costică email: costica.morosanu@uaic.ro organization: University of Iaşi, 700506 Iaşi, Romania |
BookMark | eNp9UU1P3DAQtRCVulDuPfrYQ7P4I3ESbgiVFgmJC0jcLMcZs1557a3tFPa_9cfh7FJVqkRP1sy89-aN3wk69sEDQp8pWVJCxfl66dWSEVqXckkIP0IL2rW8ahhtjtGCcMGqphaPH9FJSmtCCG25WKDfdx7nFWB4sSmD1_AVT97-nMBDSlj5EUd4mpyKNu9wMDgFN2UbfMI57InblUpQGQtuxGlXNDb42eYVVvipaETl_gjgbSgLsi2dWfbvXDtVVhXtcpGzHgp0BpSqWoVNmGFhSngIkx9V3GEd_Gj3Hj6hD0a5BGdv7yl6uP52f_Wjur37fnN1eVtpztpcNbwmWlDgnAzC1ARMD7ytO2NUw_pBNQM1TJhR1GOvmWppz1it2q5nQgy06_kp-nLQ3cZQviZlubFJg3Nqb01S0YmaCdqIAiUHqI4hpQhGbqPdFNuSEjkHJdfSKzkHNXdKUIUi_qFom9V8YI7Kuv8RLw5EKLf_shBl0nbOcLQRdJZjsO-TXwFxU7Ln |
CitedBy_id | crossref_primary_10_3390_math9010091 crossref_primary_10_1080_00207179_2015_1137634 crossref_primary_10_1007_s00245_019_09643_5 crossref_primary_10_1016_j_amc_2019_01_004 crossref_primary_10_11948_2017001 crossref_primary_10_1007_s11784_015_0274_8 crossref_primary_10_1137_18M1218546 crossref_primary_10_11948_20200359 crossref_primary_10_3934_dcdss_2022203 |
Cites_doi | 10.1080/01630569208816458 10.1007/s10957-010-9742-x 10.1002/mma.590 10.1016/0167-2789(90)90015-H 10.1017/S0956792598003520 10.1016/0362-546X(94)90235-6 10.1006/jmaa.1999.6467 10.1016/j.jmaa.2008.01.077 10.1137/S0036142997331669 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1016/j.na.2014.10.003 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Engineering Mathematics |
EISSN | 1873-5215 |
EndPage | 208 |
ExternalDocumentID | 10_1016_j_na_2014_10_003 S0362546X14003253 |
GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADGUI ADIYS ADMUD ADTZH AEBSH AECPX AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 GBLVA HMJ HVGLF HZ~ IHE J1W JJJVA KOM M26 M41 MHUIS MO0 MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SME SPC SPCBC SST SSW SSZ T5K TN5 WUQ XPP YQT ZMT ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACRPL ADNMO AEIPS AFJKZ AFXIZ AGCQF AGQPQ AGRNS AIIUN ANKPU APXCP BNPGV CITATION SSH 7SC 7TB 8FD EFKBS FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c327t-5340c61e330b6f40ef9e3748ffa529ba5b1f26fd64d9c2a719224a789266b1893 |
IEDL.DBID | .~1 |
ISSN | 0362-546X |
IngestDate | Mon Jul 21 11:11:27 EDT 2025 Thu Apr 24 22:55:16 EDT 2025 Tue Jul 01 01:42:13 EDT 2025 Fri Feb 23 02:29:50 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Nonlinear initial–boundary value problems 80A22 35K61 Nemytskii’s operator Dynamic boundary conditions Leray–Schauder principle Phase-field models Thermodynamics 47H30 Nonlinear parabolic systems 35Q56 74A15 35B65 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-5340c61e330b6f40ef9e3748ffa529ba5b1f26fd64d9c2a719224a789266b1893 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1686426156 |
PQPubID | 23500 |
PageCount | 19 |
ParticipantIDs | proquest_miscellaneous_1686426156 crossref_primary_10_1016_j_na_2014_10_003 crossref_citationtrail_10_1016_j_na_2014_10_003 elsevier_sciencedirect_doi_10_1016_j_na_2014_10_003 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 01 year: 2015 text: January 2015 |
PublicationDecade | 2010 |
PublicationTitle | Nonlinear analysis |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Barrett, Blowey, Garcke (br000005) 1999; 37 Elliott, Zheng (br000035) 1990; vol. 95 Benincasa, Favini, Moroşanu (br000010) 2011; 148 Blowey, Elliott (br000020) 1994 Moroşanu, Motreanu (br000090) 2000; 2 Hoffman, Jiang (br000045) 1992; 13 Miranville, Zelik (br000070) 2005; 28 Ladyzhenskaya, Solonnikov, Uraltzava (br000060) 1968 Fonseca, Gangbo (br000040) 1995 Kenmochi, Niezgódka (br000055) 1994; 22 Moroşanu, Motreanu (br000085) 2000; 1 Penrose, Fife (br000095) 1990; 43 Iorga, Moroşanu, Tofan (br000050) 2009; XIV Moroşanu, Motreanu (br000080) 1999; 237 Bird, Stewart, Lightfoot (br000015) 2002 Caginalp, Chen (br000025) 1998; 9 Cherfils, Gatti, Miranville (br000030) 2008; 343 Lions (br000065) 1985 Moroşanu (br000075) 2012 Fonseca (10.1016/j.na.2014.10.003_br000040) 1995 Lions (10.1016/j.na.2014.10.003_br000065) 1985 Moroşanu (10.1016/j.na.2014.10.003_br000090) 2000; 2 Elliott (10.1016/j.na.2014.10.003_br000035) 1990; vol. 95 Benincasa (10.1016/j.na.2014.10.003_br000010) 2011; 148 Penrose (10.1016/j.na.2014.10.003_br000095) 1990; 43 Moroşanu (10.1016/j.na.2014.10.003_br000080) 1999; 237 Caginalp (10.1016/j.na.2014.10.003_br000025) 1998; 9 Bird (10.1016/j.na.2014.10.003_br000015) 2002 Moroşanu (10.1016/j.na.2014.10.003_br000075) 2012 Barrett (10.1016/j.na.2014.10.003_br000005) 1999; 37 Cherfils (10.1016/j.na.2014.10.003_br000030) 2008; 343 Hoffman (10.1016/j.na.2014.10.003_br000045) 1992; 13 Moroşanu (10.1016/j.na.2014.10.003_br000085) 2000; 1 Iorga (10.1016/j.na.2014.10.003_br000050) 2009; XIV Kenmochi (10.1016/j.na.2014.10.003_br000055) 1994; 22 Ladyzhenskaya (10.1016/j.na.2014.10.003_br000060) 1968 Miranville (10.1016/j.na.2014.10.003_br000070) 2005; 28 Blowey (10.1016/j.na.2014.10.003_br000020) 1994 |
References_xml | – volume: 343 start-page: 557 year: 2008 end-page: 566 ident: br000030 article-title: Existence of global solutions to the Caginalp phase field system with dynamic boundary conditions and singular potentials publication-title: J. Math. Anal. Appl. – volume: vol. 95 start-page: 46 year: 1990 end-page: 58 ident: br000035 article-title: Global existence and stability of solutions to the phase field equations publication-title: Internat. Ser. Numer. Math. – year: 1968 ident: br000060 article-title: Linear and Quasi Linear Equations of Parabolic Type – volume: 13 start-page: 11 year: 1992 end-page: 27 ident: br000045 article-title: Optimal control problem of a phase field model for solidification publication-title: Numer. Funct. Anal. Optim. – volume: 237 start-page: 515 year: 1999 end-page: 540 ident: br000080 article-title: A generalized phase field system publication-title: J. Math. Anal. Appl. – year: 2002 ident: br000015 article-title: Transport Phenomena – volume: 28 start-page: 709 year: 2005 end-page: 735 ident: br000070 article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Math. Methods Appl. Sci. – volume: 1 start-page: 187 year: 2000 end-page: 204 ident: br000085 article-title: The phase field system with a general nonlinearity publication-title: Int. J. Differ. Equ. Appl. – volume: 2 start-page: 113 year: 2000 end-page: 129 ident: br000090 article-title: Uniqueness and approximation for the nonlinear parabolic equation in Caginalp’s model publication-title: Int. J. Appl. Math. – volume: 9 start-page: 417 year: 1998 end-page: 445 ident: br000025 article-title: Convergence of the phase field model to its sharp interface limits publication-title: European J. Appl. Math. – volume: 148 start-page: 14 year: 2011 end-page: 30 ident: br000010 article-title: A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: a phase-field model publication-title: J. Optim. Theory Appl. – year: 2012 ident: br000075 article-title: Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods – volume: 43 start-page: 44 year: 1990 end-page: 62 ident: br000095 article-title: Thermodynamically consistent models of phase-field type for kinetics of phase transitions publication-title: Physica D – volume: 22 start-page: 1163 year: 1994 end-page: 1180 ident: br000055 article-title: Evolution systems of nonlinear variational inequalities arising from phase change problems publication-title: Nonlinear Anal. TMA – start-page: 1 year: 1994 end-page: 22 ident: br000020 article-title: A phase-field model with a double obstacle potential publication-title: Motion by Mean Curvature and Related Topics, Trento—1992 – volume: XIV start-page: 72 year: 2009 end-page: 75 ident: br000050 article-title: Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine publication-title: Metal. Int. – volume: 37 start-page: 286 year: 1999 end-page: 318 ident: br000005 article-title: Finite element aproximation of the Cahn–Hilliard equation with degenerate mobility publication-title: SIAM J. Numer. Anal. – year: 1985 ident: br000065 article-title: Control of Distributed Singular Systems – year: 1995 ident: br000040 article-title: Degree Theory in Analysis and Applications – volume: 13 start-page: 11 issue: 1–2 year: 1992 ident: 10.1016/j.na.2014.10.003_br000045 article-title: Optimal control problem of a phase field model for solidification publication-title: Numer. Funct. Anal. Optim. doi: 10.1080/01630569208816458 – volume: 148 start-page: 14 issue: 1 year: 2011 ident: 10.1016/j.na.2014.10.003_br000010 article-title: A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: a phase-field model publication-title: J. Optim. Theory Appl. doi: 10.1007/s10957-010-9742-x – year: 2012 ident: 10.1016/j.na.2014.10.003_br000075 – volume: vol. 95 start-page: 46 year: 1990 ident: 10.1016/j.na.2014.10.003_br000035 article-title: Global existence and stability of solutions to the phase field equations – year: 1985 ident: 10.1016/j.na.2014.10.003_br000065 – volume: 28 start-page: 709 year: 2005 ident: 10.1016/j.na.2014.10.003_br000070 article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.590 – volume: 43 start-page: 44 year: 1990 ident: 10.1016/j.na.2014.10.003_br000095 article-title: Thermodynamically consistent models of phase-field type for kinetics of phase transitions publication-title: Physica D doi: 10.1016/0167-2789(90)90015-H – volume: 9 start-page: 417 year: 1998 ident: 10.1016/j.na.2014.10.003_br000025 article-title: Convergence of the phase field model to its sharp interface limits publication-title: European J. Appl. Math. doi: 10.1017/S0956792598003520 – year: 1968 ident: 10.1016/j.na.2014.10.003_br000060 – volume: 22 start-page: 1163 year: 1994 ident: 10.1016/j.na.2014.10.003_br000055 article-title: Evolution systems of nonlinear variational inequalities arising from phase change problems publication-title: Nonlinear Anal. TMA doi: 10.1016/0362-546X(94)90235-6 – volume: 237 start-page: 515 year: 1999 ident: 10.1016/j.na.2014.10.003_br000080 article-title: A generalized phase field system publication-title: J. Math. Anal. Appl. doi: 10.1006/jmaa.1999.6467 – volume: XIV start-page: 72 issue: 1 year: 2009 ident: 10.1016/j.na.2014.10.003_br000050 article-title: Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine publication-title: Metal. Int. – year: 2002 ident: 10.1016/j.na.2014.10.003_br000015 – start-page: 1 year: 1994 ident: 10.1016/j.na.2014.10.003_br000020 article-title: A phase-field model with a double obstacle potential – volume: 343 start-page: 557 year: 2008 ident: 10.1016/j.na.2014.10.003_br000030 article-title: Existence of global solutions to the Caginalp phase field system with dynamic boundary conditions and singular potentials publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.01.077 – volume: 37 start-page: 286 year: 1999 ident: 10.1016/j.na.2014.10.003_br000005 article-title: Finite element aproximation of the Cahn–Hilliard equation with degenerate mobility publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142997331669 – volume: 2 start-page: 113 issue: 1 year: 2000 ident: 10.1016/j.na.2014.10.003_br000090 article-title: Uniqueness and approximation for the nonlinear parabolic equation in Caginalp’s model publication-title: Int. J. Appl. Math. – volume: 1 start-page: 187 issue: 2 year: 2000 ident: 10.1016/j.na.2014.10.003_br000085 article-title: The phase field system with a general nonlinearity publication-title: Int. J. Differ. Equ. Appl. – year: 1995 ident: 10.1016/j.na.2014.10.003_br000040 |
SSID | ssj0001736 |
Score | 2.1941879 |
Snippet | This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 190 |
SubjectTerms | Boundary conditions Dynamic boundary conditions Dynamical systems Leray–Schauder principle Mathematical analysis Mathematical models Nemytskii’s operator Nonlinear dynamics Nonlinear initial–boundary value problems Nonlinear parabolic systems Nonlinearity Phase-field models Regularity Thermodynamics Uniqueness |
Title | On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions |
URI | https://dx.doi.org/10.1016/j.na.2014.10.003 https://www.proquest.com/docview/1686426156 |
Volume | 113 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gIHKAVEgVaDxAWJdOP4kc2xqlotoJYDVNpbZCc2bQXJajd74MIv48cxYztbQKIHLpHGGTtRPJ6HPfmGsddVqXTZGlxIdJEqbzKrfJu5ynpXCceloxPd8ws9u5Tv52q-xU7Gf2EorTLp_qjTg7ZOLZP0NSeL6-vJJ9K9Suo5hgi5KBQhfkpZkpQf_bhN8-Cl0COEFHGno8qY49UR8hCXRyG_S_zLNP2lpIPlOdtlD5LLCMfxrR6xLdftsYfJfYS0OFd77P5v2IJInW8AWVeP2c-PHSAJBHwZvOS3sA7QraTpwHQtLENReiplB72HjUTC0IeOiys0d1nId4OI_gy0hQsGvkTg6nEAWPQDZSBhCw17e78hP53G7iI6B7ISA1LZVf-tJ7Z-vQIb6jwtvwMG6m3MJ3vCLs9OP5_MslS4IWtEUQ6ZEjJvNHdC5FZ7mTtfOYK58d6oorJGWe4L7Vst26opTIleZiFNOa3QW7AcPainbBuf7p4xkHZaKYPCgJpHejc13Le8RfH3mmuM9vbZZJyzukmo5lRc42s9pq_d1J2paZapBWd5n73Z9FhERI87eMUoBvUfUlmjwbmj16tRYmpcrHQCY8InrLmeaopZlX7-XyO_YPeQUnEL6CXbHpZrd4BO0WAPg9Qfsp3jdx9mF78A-X8QAw |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbK9AAcWAqoZTUSFyTCxPGSybGqqKa0MxxopblZdmLTIpqMZjIH_hs_jvdsZ1gkeuASyctzIvtttl--R8ibqpSqbAwIEj6EzOvMSt9krrLeVdwx4fBGdzZX0wvxcSEXO-Ro-BcGwyqT7o86PWjrVDNOszleXl2NP6PulUItYIuQ80LyW2QX0ankiOwenpxO51uFzEquBhQpJEi3lTHMq0XwISbehxAv_i_r9JeeDsbn-AG5l7xGehg_7CHZce0euZ88SJrkc71H7v4GLwil2RaTdf2I_PjUUihSxL4MjvI7ugnorajsqGkbugp56TGbHe083TIl7btAuLwEi5eFkDcaAaApnuJSQ79E7OphALrsegxCghoc9ld7ja46jt1GgA7oih2glF121x126zZrakOqp9V3Cnv1JoaUPSYXxx_Oj6ZZyt2Q1bwo-0xykdeKOc5zq7zIna8cIt14b2RRWSMt84XyjRJNVRemBEezEKacVOAwWAZO1BMygre7fUKFnVTSAD-A8hHeTQzzDWtAArxiCjZ8B2Q8rJmuE7A55tf4pocItq-6NRpXGWtglQ_I2y3FMoJ63NCXD2yg_2BMDTbnBqrXA8dokFe8hDFhCjVTE4XbVqme_tfIr8jt6fnsTJ-dzE-fkTvQIuOJ0HMy6lcb9wJ8pN6-TDLwEzcyErQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+existence%2C+uniqueness+and+regularity+of+solutions+to+the+phase-field+system+with+a+general+regular+potential+and+a+general+class+of+nonlinear+and+non-homogeneous+boundary+conditions&rft.jtitle=Nonlinear+analysis&rft.au=C%C3%A2rj%C4%83%2C+Ovidiu&rft.au=Miranville%2C+Alain&rft.au=Moro%C5%9Fanu%2C+Costic%C4%83&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=113&rft.spage=190&rft.epage=208&rft_id=info:doi/10.1016%2Fj.na.2014.10.003&rft.externalDocID=S0362546X14003253 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon |