On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions

This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regu...

Full description

Saved in:
Bibliographic Details
Published inNonlinear analysis Vol. 113; pp. 190 - 208
Main Authors Cârjă, Ovidiu, Miranville, Alain, Moroşanu, Costică
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.01.2015
Subjects
Online AccessGet full text
ISSN0362-546X
1873-5215
DOI10.1016/j.na.2014.10.003

Cover

Loading…
Abstract This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regularity of solutions to the Allen–Cahn equation, subject to the nonlinear and non-homogeneous dynamic boundary conditions. The existence, uniqueness and regularity of solutions to the Caginalp system in this new formulation are also proved. This extends previous works concerned with regular potential and nonlinear boundary conditions, allowing the present mathematical model to better approximate the real physical phenomena, especially phase transitions.
AbstractList This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of nonlinear and non-homogeneous (depending on time and space variables) boundary conditions. We first prove the existence, uniqueness and regularity of solutions to the Allen–Cahn equation, subject to the nonlinear and non-homogeneous dynamic boundary conditions. The existence, uniqueness and regularity of solutions to the Caginalp system in this new formulation are also proved. This extends previous works concerned with regular potential and nonlinear boundary conditions, allowing the present mathematical model to better approximate the real physical phenomena, especially phase transitions.
Author Moroşanu, Costică
Miranville, Alain
Cârjă, Ovidiu
Author_xml – sequence: 1
  givenname: Ovidiu
  surname: Cârjă
  fullname: Cârjă, Ovidiu
  organization: University of Iaşi, 700506 Iaşi, Romania
– sequence: 2
  givenname: Alain
  surname: Miranville
  fullname: Miranville, Alain
  organization: Université de Poitiers, Laboratoire de Mathématiques et Applications, UMR CNRS 7348, SP2MI, 86962 Chasseneuil Futuroscope Cedex, France
– sequence: 3
  givenname: Costică
  surname: Moroşanu
  fullname: Moroşanu, Costică
  email: costica.morosanu@uaic.ro
  organization: University of Iaşi, 700506 Iaşi, Romania
BookMark eNp9UU1P3DAQtRCVulDuPfrYQ7P4I3ESbgiVFgmJC0jcLMcZs1557a3tFPa_9cfh7FJVqkRP1sy89-aN3wk69sEDQp8pWVJCxfl66dWSEVqXckkIP0IL2rW8ahhtjtGCcMGqphaPH9FJSmtCCG25WKDfdx7nFWB4sSmD1_AVT97-nMBDSlj5EUd4mpyKNu9wMDgFN2UbfMI57InblUpQGQtuxGlXNDb42eYVVvipaETl_gjgbSgLsi2dWfbvXDtVVhXtcpGzHgp0BpSqWoVNmGFhSngIkx9V3GEd_Gj3Hj6hD0a5BGdv7yl6uP52f_Wjur37fnN1eVtpztpcNbwmWlDgnAzC1ARMD7ytO2NUw_pBNQM1TJhR1GOvmWppz1it2q5nQgy06_kp-nLQ3cZQviZlubFJg3Nqb01S0YmaCdqIAiUHqI4hpQhGbqPdFNuSEjkHJdfSKzkHNXdKUIUi_qFom9V8YI7Kuv8RLw5EKLf_shBl0nbOcLQRdJZjsO-TXwFxU7Ln
CitedBy_id crossref_primary_10_3390_math9010091
crossref_primary_10_1080_00207179_2015_1137634
crossref_primary_10_1007_s00245_019_09643_5
crossref_primary_10_1016_j_amc_2019_01_004
crossref_primary_10_11948_2017001
crossref_primary_10_1007_s11784_015_0274_8
crossref_primary_10_1137_18M1218546
crossref_primary_10_11948_20200359
crossref_primary_10_3934_dcdss_2022203
Cites_doi 10.1080/01630569208816458
10.1007/s10957-010-9742-x
10.1002/mma.590
10.1016/0167-2789(90)90015-H
10.1017/S0956792598003520
10.1016/0362-546X(94)90235-6
10.1006/jmaa.1999.6467
10.1016/j.jmaa.2008.01.077
10.1137/S0036142997331669
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.na.2014.10.003
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1873-5215
EndPage 208
ExternalDocumentID 10_1016_j_na_2014_10_003
S0362546X14003253
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
GBLVA
HMJ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M26
M41
MHUIS
MO0
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SME
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WUQ
XPP
YQT
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACRPL
ADNMO
AEIPS
AFJKZ
AFXIZ
AGCQF
AGQPQ
AGRNS
AIIUN
ANKPU
APXCP
BNPGV
CITATION
SSH
7SC
7TB
8FD
EFKBS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c327t-5340c61e330b6f40ef9e3748ffa529ba5b1f26fd64d9c2a719224a789266b1893
IEDL.DBID .~1
ISSN 0362-546X
IngestDate Mon Jul 21 11:11:27 EDT 2025
Thu Apr 24 22:55:16 EDT 2025
Tue Jul 01 01:42:13 EDT 2025
Fri Feb 23 02:29:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Nonlinear initial–boundary value problems
80A22
35K61
Nemytskii’s operator
Dynamic boundary conditions
Leray–Schauder principle
Phase-field models
Thermodynamics
47H30
Nonlinear parabolic systems
35Q56
74A15
35B65
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-5340c61e330b6f40ef9e3748ffa529ba5b1f26fd64d9c2a719224a789266b1893
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1686426156
PQPubID 23500
PageCount 19
ParticipantIDs proquest_miscellaneous_1686426156
crossref_primary_10_1016_j_na_2014_10_003
crossref_citationtrail_10_1016_j_na_2014_10_003
elsevier_sciencedirect_doi_10_1016_j_na_2014_10_003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 01
  year: 2015
  text: January 2015
PublicationDecade 2010
PublicationTitle Nonlinear analysis
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Barrett, Blowey, Garcke (br000005) 1999; 37
Elliott, Zheng (br000035) 1990; vol. 95
Benincasa, Favini, Moroşanu (br000010) 2011; 148
Blowey, Elliott (br000020) 1994
Moroşanu, Motreanu (br000090) 2000; 2
Hoffman, Jiang (br000045) 1992; 13
Miranville, Zelik (br000070) 2005; 28
Ladyzhenskaya, Solonnikov, Uraltzava (br000060) 1968
Fonseca, Gangbo (br000040) 1995
Kenmochi, Niezgódka (br000055) 1994; 22
Moroşanu, Motreanu (br000085) 2000; 1
Penrose, Fife (br000095) 1990; 43
Iorga, Moroşanu, Tofan (br000050) 2009; XIV
Moroşanu, Motreanu (br000080) 1999; 237
Bird, Stewart, Lightfoot (br000015) 2002
Caginalp, Chen (br000025) 1998; 9
Cherfils, Gatti, Miranville (br000030) 2008; 343
Lions (br000065) 1985
Moroşanu (br000075) 2012
Fonseca (10.1016/j.na.2014.10.003_br000040) 1995
Lions (10.1016/j.na.2014.10.003_br000065) 1985
Moroşanu (10.1016/j.na.2014.10.003_br000090) 2000; 2
Elliott (10.1016/j.na.2014.10.003_br000035) 1990; vol. 95
Benincasa (10.1016/j.na.2014.10.003_br000010) 2011; 148
Penrose (10.1016/j.na.2014.10.003_br000095) 1990; 43
Moroşanu (10.1016/j.na.2014.10.003_br000080) 1999; 237
Caginalp (10.1016/j.na.2014.10.003_br000025) 1998; 9
Bird (10.1016/j.na.2014.10.003_br000015) 2002
Moroşanu (10.1016/j.na.2014.10.003_br000075) 2012
Barrett (10.1016/j.na.2014.10.003_br000005) 1999; 37
Cherfils (10.1016/j.na.2014.10.003_br000030) 2008; 343
Hoffman (10.1016/j.na.2014.10.003_br000045) 1992; 13
Moroşanu (10.1016/j.na.2014.10.003_br000085) 2000; 1
Iorga (10.1016/j.na.2014.10.003_br000050) 2009; XIV
Kenmochi (10.1016/j.na.2014.10.003_br000055) 1994; 22
Ladyzhenskaya (10.1016/j.na.2014.10.003_br000060) 1968
Miranville (10.1016/j.na.2014.10.003_br000070) 2005; 28
Blowey (10.1016/j.na.2014.10.003_br000020) 1994
References_xml – volume: 343
  start-page: 557
  year: 2008
  end-page: 566
  ident: br000030
  article-title: Existence of global solutions to the Caginalp phase field system with dynamic boundary conditions and singular potentials
  publication-title: J. Math. Anal. Appl.
– volume: vol. 95
  start-page: 46
  year: 1990
  end-page: 58
  ident: br000035
  article-title: Global existence and stability of solutions to the phase field equations
  publication-title: Internat. Ser. Numer. Math.
– year: 1968
  ident: br000060
  article-title: Linear and Quasi Linear Equations of Parabolic Type
– volume: 13
  start-page: 11
  year: 1992
  end-page: 27
  ident: br000045
  article-title: Optimal control problem of a phase field model for solidification
  publication-title: Numer. Funct. Anal. Optim.
– volume: 237
  start-page: 515
  year: 1999
  end-page: 540
  ident: br000080
  article-title: A generalized phase field system
  publication-title: J. Math. Anal. Appl.
– year: 2002
  ident: br000015
  article-title: Transport Phenomena
– volume: 28
  start-page: 709
  year: 2005
  end-page: 735
  ident: br000070
  article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Math. Methods Appl. Sci.
– volume: 1
  start-page: 187
  year: 2000
  end-page: 204
  ident: br000085
  article-title: The phase field system with a general nonlinearity
  publication-title: Int. J. Differ. Equ. Appl.
– volume: 2
  start-page: 113
  year: 2000
  end-page: 129
  ident: br000090
  article-title: Uniqueness and approximation for the nonlinear parabolic equation in Caginalp’s model
  publication-title: Int. J. Appl. Math.
– volume: 9
  start-page: 417
  year: 1998
  end-page: 445
  ident: br000025
  article-title: Convergence of the phase field model to its sharp interface limits
  publication-title: European J. Appl. Math.
– volume: 148
  start-page: 14
  year: 2011
  end-page: 30
  ident: br000010
  article-title: A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: a phase-field model
  publication-title: J. Optim. Theory Appl.
– year: 2012
  ident: br000075
  article-title: Analysis and Optimal Control of Phase-Field Transition System: Fractional Steps Methods
– volume: 43
  start-page: 44
  year: 1990
  end-page: 62
  ident: br000095
  article-title: Thermodynamically consistent models of phase-field type for kinetics of phase transitions
  publication-title: Physica D
– volume: 22
  start-page: 1163
  year: 1994
  end-page: 1180
  ident: br000055
  article-title: Evolution systems of nonlinear variational inequalities arising from phase change problems
  publication-title: Nonlinear Anal. TMA
– start-page: 1
  year: 1994
  end-page: 22
  ident: br000020
  article-title: A phase-field model with a double obstacle potential
  publication-title: Motion by Mean Curvature and Related Topics, Trento—1992
– volume: XIV
  start-page: 72
  year: 2009
  end-page: 75
  ident: br000050
  article-title: Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine
  publication-title: Metal. Int.
– volume: 37
  start-page: 286
  year: 1999
  end-page: 318
  ident: br000005
  article-title: Finite element aproximation of the Cahn–Hilliard equation with degenerate mobility
  publication-title: SIAM J. Numer. Anal.
– year: 1985
  ident: br000065
  article-title: Control of Distributed Singular Systems
– year: 1995
  ident: br000040
  article-title: Degree Theory in Analysis and Applications
– volume: 13
  start-page: 11
  issue: 1–2
  year: 1992
  ident: 10.1016/j.na.2014.10.003_br000045
  article-title: Optimal control problem of a phase field model for solidification
  publication-title: Numer. Funct. Anal. Optim.
  doi: 10.1080/01630569208816458
– volume: 148
  start-page: 14
  issue: 1
  year: 2011
  ident: 10.1016/j.na.2014.10.003_br000010
  article-title: A product formula approach to a non-homogeneous boundary optimal control problem governed by nonlinear phase-field transition system. Part I: a phase-field model
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/s10957-010-9742-x
– year: 2012
  ident: 10.1016/j.na.2014.10.003_br000075
– volume: vol. 95
  start-page: 46
  year: 1990
  ident: 10.1016/j.na.2014.10.003_br000035
  article-title: Global existence and stability of solutions to the phase field equations
– year: 1985
  ident: 10.1016/j.na.2014.10.003_br000065
– volume: 28
  start-page: 709
  year: 2005
  ident: 10.1016/j.na.2014.10.003_br000070
  article-title: Exponential attractors for the Cahn–Hilliard equation with dynamic boundary conditions
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.590
– volume: 43
  start-page: 44
  year: 1990
  ident: 10.1016/j.na.2014.10.003_br000095
  article-title: Thermodynamically consistent models of phase-field type for kinetics of phase transitions
  publication-title: Physica D
  doi: 10.1016/0167-2789(90)90015-H
– volume: 9
  start-page: 417
  year: 1998
  ident: 10.1016/j.na.2014.10.003_br000025
  article-title: Convergence of the phase field model to its sharp interface limits
  publication-title: European J. Appl. Math.
  doi: 10.1017/S0956792598003520
– year: 1968
  ident: 10.1016/j.na.2014.10.003_br000060
– volume: 22
  start-page: 1163
  year: 1994
  ident: 10.1016/j.na.2014.10.003_br000055
  article-title: Evolution systems of nonlinear variational inequalities arising from phase change problems
  publication-title: Nonlinear Anal. TMA
  doi: 10.1016/0362-546X(94)90235-6
– volume: 237
  start-page: 515
  year: 1999
  ident: 10.1016/j.na.2014.10.003_br000080
  article-title: A generalized phase field system
  publication-title: J. Math. Anal. Appl.
  doi: 10.1006/jmaa.1999.6467
– volume: XIV
  start-page: 72
  issue: 1
  year: 2009
  ident: 10.1016/j.na.2014.10.003_br000050
  article-title: Numerical simulation of the thickness accretions in the secondary cooling zone of a continuous casting machine
  publication-title: Metal. Int.
– year: 2002
  ident: 10.1016/j.na.2014.10.003_br000015
– start-page: 1
  year: 1994
  ident: 10.1016/j.na.2014.10.003_br000020
  article-title: A phase-field model with a double obstacle potential
– volume: 343
  start-page: 557
  year: 2008
  ident: 10.1016/j.na.2014.10.003_br000030
  article-title: Existence of global solutions to the Caginalp phase field system with dynamic boundary conditions and singular potentials
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.01.077
– volume: 37
  start-page: 286
  year: 1999
  ident: 10.1016/j.na.2014.10.003_br000005
  article-title: Finite element aproximation of the Cahn–Hilliard equation with degenerate mobility
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142997331669
– volume: 2
  start-page: 113
  issue: 1
  year: 2000
  ident: 10.1016/j.na.2014.10.003_br000090
  article-title: Uniqueness and approximation for the nonlinear parabolic equation in Caginalp’s model
  publication-title: Int. J. Appl. Math.
– volume: 1
  start-page: 187
  issue: 2
  year: 2000
  ident: 10.1016/j.na.2014.10.003_br000085
  article-title: The phase field system with a general nonlinearity
  publication-title: Int. J. Differ. Equ. Appl.
– year: 1995
  ident: 10.1016/j.na.2014.10.003_br000040
SSID ssj0001736
Score 2.1941879
Snippet This paper studies a Caginalp phase-field transition system endowed with a general regular potential, as well as a general class, in both unknown functions, of...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 190
SubjectTerms Boundary conditions
Dynamic boundary conditions
Dynamical systems
Leray–Schauder principle
Mathematical analysis
Mathematical models
Nemytskii’s operator
Nonlinear dynamics
Nonlinear initial–boundary value problems
Nonlinear parabolic systems
Nonlinearity
Phase-field models
Regularity
Thermodynamics
Uniqueness
Title On the existence, uniqueness and regularity of solutions to the phase-field system with a general regular potential and a general class of nonlinear and non-homogeneous boundary conditions
URI https://dx.doi.org/10.1016/j.na.2014.10.003
https://www.proquest.com/docview/1686426156
Volume 113
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaq9gIHKAVEgVaDxAWJdOP4kc2xqlotoJYDVNpbZCc2bQXJajd74MIv48cxYztbQKIHLpHGGTtRPJ6HPfmGsddVqXTZGlxIdJEqbzKrfJu5ynpXCceloxPd8ws9u5Tv52q-xU7Gf2EorTLp_qjTg7ZOLZP0NSeL6-vJJ9K9Suo5hgi5KBQhfkpZkpQf_bhN8-Cl0COEFHGno8qY49UR8hCXRyG_S_zLNP2lpIPlOdtlD5LLCMfxrR6xLdftsYfJfYS0OFd77P5v2IJInW8AWVeP2c-PHSAJBHwZvOS3sA7QraTpwHQtLENReiplB72HjUTC0IeOiys0d1nId4OI_gy0hQsGvkTg6nEAWPQDZSBhCw17e78hP53G7iI6B7ISA1LZVf-tJ7Z-vQIb6jwtvwMG6m3MJ3vCLs9OP5_MslS4IWtEUQ6ZEjJvNHdC5FZ7mTtfOYK58d6oorJGWe4L7Vst26opTIleZiFNOa3QW7AcPainbBuf7p4xkHZaKYPCgJpHejc13Le8RfH3mmuM9vbZZJyzukmo5lRc42s9pq_d1J2paZapBWd5n73Z9FhERI87eMUoBvUfUlmjwbmj16tRYmpcrHQCY8InrLmeaopZlX7-XyO_YPeQUnEL6CXbHpZrd4BO0WAPg9Qfsp3jdx9mF78A-X8QAw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLbK9AAcWAqoZTUSFyTCxPGSybGqqKa0MxxopblZdmLTIpqMZjIH_hs_jvdsZ1gkeuASyctzIvtttl--R8ibqpSqbAwIEj6EzOvMSt9krrLeVdwx4fBGdzZX0wvxcSEXO-Ro-BcGwyqT7o86PWjrVDNOszleXl2NP6PulUItYIuQ80LyW2QX0ankiOwenpxO51uFzEquBhQpJEi3lTHMq0XwISbehxAv_i_r9JeeDsbn-AG5l7xGehg_7CHZce0euZ88SJrkc71H7v4GLwil2RaTdf2I_PjUUihSxL4MjvI7ugnorajsqGkbugp56TGbHe083TIl7btAuLwEi5eFkDcaAaApnuJSQ79E7OphALrsegxCghoc9ld7ja46jt1GgA7oih2glF121x126zZrakOqp9V3Cnv1JoaUPSYXxx_Oj6ZZyt2Q1bwo-0xykdeKOc5zq7zIna8cIt14b2RRWSMt84XyjRJNVRemBEezEKacVOAwWAZO1BMygre7fUKFnVTSAD-A8hHeTQzzDWtAArxiCjZ8B2Q8rJmuE7A55tf4pocItq-6NRpXGWtglQ_I2y3FMoJ63NCXD2yg_2BMDTbnBqrXA8dokFe8hDFhCjVTE4XbVqme_tfIr8jt6fnsTJ-dzE-fkTvQIuOJ0HMy6lcb9wJ8pN6-TDLwEzcyErQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+existence%2C+uniqueness+and+regularity+of+solutions+to+the+phase-field+system+with+a+general+regular+potential+and+a+general+class+of+nonlinear+and+non-homogeneous+boundary+conditions&rft.jtitle=Nonlinear+analysis&rft.au=C%C3%A2rj%C4%83%2C+Ovidiu&rft.au=Miranville%2C+Alain&rft.au=Moro%C5%9Fanu%2C+Costic%C4%83&rft.date=2015-01-01&rft.pub=Elsevier+Ltd&rft.issn=0362-546X&rft.eissn=1873-5215&rft.volume=113&rft.spage=190&rft.epage=208&rft_id=info:doi/10.1016%2Fj.na.2014.10.003&rft.externalDocID=S0362546X14003253
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0362-546X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0362-546X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0362-546X&client=summon