Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems
In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops...
Saved in:
Published in | Applied physics letters Vol. 108; no. 20 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
16.05.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (P
max) and negligible remanent polarization (P
r) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of P
max-P
r (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications. |
---|---|
AbstractList | In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (Pmax) and negligible remanent polarization (Pr) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of Pmax-Pr (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications. In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (P max) and negligible remanent polarization (P r) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of P max-P r (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications. |
Author | Qiao, Yulong Yu, Yang Li, Weili Feng, Yu Fei, Weidong Bai, Terigele Zhang, Tiandong Cao, Wenping Hou, Yafei |
Author_xml | – sequence: 1 givenname: Wenping surname: Cao fullname: Cao, Wenping organization: Harbin Institute of Technology – sequence: 2 givenname: Weili surname: Li fullname: Li, Weili email: wlli@hit.edu.cn organization: 2National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001, People's Republic of China – sequence: 3 givenname: Yu surname: Feng fullname: Feng, Yu organization: Harbin Institute of Technology – sequence: 4 givenname: Terigele surname: Bai fullname: Bai, Terigele organization: Harbin Institute of Technology – sequence: 5 givenname: Yulong surname: Qiao fullname: Qiao, Yulong organization: Harbin Institute of Technology – sequence: 6 givenname: Yafei surname: Hou fullname: Hou, Yafei organization: Harbin Institute of Technology – sequence: 7 givenname: Tiandong surname: Zhang fullname: Zhang, Tiandong organization: Harbin Institute of Technology – sequence: 8 givenname: Yang surname: Yu fullname: Yu, Yang organization: Harbin Institute of Technology – sequence: 9 givenname: Weidong surname: Fei fullname: Fei, Weidong organization: Harbin Institute of Technology |
BookMark | eNp9kEtLZDEQRoMo2D4W_oPArBy4bSq5z6Xj-AKxN7q-lEndNnJN2iQt0__eNK0Ig7qpoqhTp-DbY9vOO2LsCMQURK1OYFp2leiacotNQDRNoQDabTYRQqii7irYZXsxPuWxkkpN2L-_NJBO3NiFH4lbZ5aaDB8xzIkH0v6VAj7kTUwBrePoDH-080dOjsJ8VcTkA2bUkIs2rbKAj4SmGAIRv0Uxrf7YXO7sTBUPGLM6rmKi53jAdgYcIx2-9312f3F-d3ZV3Mwur89ObwqtZJOKStamk9TUdWUMDroBbDpNAjshNAAYRdKoUspByVaWgFS2XdOBEdQiAql99mvjXQT_sqSY-ie_DC6_7CVIaOuyLUWmjjeUDj7GQEO_CPYZw6oH0a-D7aF_DzazJ_-x2iZM1rt1ROOXF783F_GD_FH_LfzqwyfYL8yg3gD-Jpdg |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_127555 crossref_primary_10_1063_1_4968003 crossref_primary_10_1016_j_ceramint_2019_06_245 crossref_primary_10_1016_j_ceramint_2022_02_123 crossref_primary_10_1049_iet_nde_2018_0002 crossref_primary_10_1016_j_jeurceramsoc_2020_03_037 crossref_primary_10_1016_j_ceramint_2019_02_109 crossref_primary_10_1038_s41427_018_0013_x crossref_primary_10_1016_j_jpcs_2024_111981 crossref_primary_10_1021_acsami_9b13215 crossref_primary_10_1142_S2010135X18300050 crossref_primary_10_1016_j_mseb_2020_114869 crossref_primary_10_1111_ijac_14706 crossref_primary_10_1111_jace_15308 crossref_primary_10_1080_00150193_2023_2198974 crossref_primary_10_1016_j_jeurceramsoc_2019_11_029 crossref_primary_10_1016_j_ceramint_2018_02_081 crossref_primary_10_1016_j_ceramint_2024_06_397 crossref_primary_10_1007_s40145_021_0500_3 crossref_primary_10_1007_s42452_025_06699_7 crossref_primary_10_1016_j_jallcom_2023_172487 crossref_primary_10_1016_j_jeurceramsoc_2023_07_047 crossref_primary_10_1063_5_0239629 crossref_primary_10_1002_ente_201700504 crossref_primary_10_1016_j_cej_2020_126290 crossref_primary_10_1063_1_4986468 crossref_primary_10_1016_j_jallcom_2024_175697 crossref_primary_10_1038_s41598_017_06966_7 crossref_primary_10_1080_21663831_2018_1457095 crossref_primary_10_1016_j_ceramint_2017_05_203 crossref_primary_10_1063_1_5000980 crossref_primary_10_1039_C9TC04320A crossref_primary_10_1016_j_jallcom_2017_09_022 crossref_primary_10_1007_s10854_022_07857_y crossref_primary_10_1016_j_jeurceramsoc_2024_117073 crossref_primary_10_1039_C7RA12575E crossref_primary_10_1039_D0TC05969B crossref_primary_10_4191_kcers_2019_56_1_02 crossref_primary_10_1088_1361_665X_aa590c crossref_primary_10_1088_2053_1591_ad1773 crossref_primary_10_1007_s10904_023_02891_7 crossref_primary_10_1016_j_ceramint_2021_08_176 crossref_primary_10_1111_jace_16603 crossref_primary_10_1016_j_nanoen_2019_02_003 crossref_primary_10_1039_C9DT01738K crossref_primary_10_1007_s10832_021_00255_6 crossref_primary_10_1111_jace_19553 crossref_primary_10_1016_j_mtcomm_2025_111930 crossref_primary_10_1063_5_0064160 crossref_primary_10_54227_mlab_20220057 crossref_primary_10_1016_j_jeurceramsoc_2017_12_032 crossref_primary_10_1016_j_jmat_2018_05_006 crossref_primary_10_1039_D1TC00437A crossref_primary_10_1063_5_0058826 crossref_primary_10_1021_acsami_1c18936 crossref_primary_10_1039_C7DT02846F crossref_primary_10_1016_j_mtcomm_2024_110795 crossref_primary_10_1039_C8TC02801J crossref_primary_10_1007_s10854_021_05893_8 crossref_primary_10_1016_j_jeurceramsoc_2021_04_002 crossref_primary_10_1016_j_jeurceramsoc_2020_06_059 crossref_primary_10_1007_s10854_021_05376_w crossref_primary_10_1088_2053_1591_ab30e9 crossref_primary_10_1007_s10853_022_07281_x crossref_primary_10_1016_j_ensm_2021_11_043 crossref_primary_10_1063_1_5020679 crossref_primary_10_2109_jcersj2_19241 crossref_primary_10_1016_j_jallcom_2020_158237 crossref_primary_10_1080_10584587_2020_1857177 crossref_primary_10_1111_ijac_14373 crossref_primary_10_1016_j_cej_2024_149947 crossref_primary_10_1016_j_jeurceramsoc_2020_03_070 crossref_primary_10_1016_j_jallcom_2019_02_332 crossref_primary_10_1016_j_jeurceramsoc_2019_05_064 crossref_primary_10_1016_j_solidstatesciences_2017_02_007 crossref_primary_10_1080_00150193_2023_2215522 crossref_primary_10_1007_s10854_021_05613_2 crossref_primary_10_1016_j_materresbull_2021_111407 crossref_primary_10_1016_j_cej_2023_145989 crossref_primary_10_1007_s00339_021_05124_1 crossref_primary_10_1016_j_ceramint_2017_04_164 crossref_primary_10_1016_j_jallcom_2018_03_383 crossref_primary_10_1016_j_jeurceramsoc_2018_06_020 crossref_primary_10_1016_j_jallcom_2020_154961 crossref_primary_10_1016_j_jeurceramsoc_2018_10_008 crossref_primary_10_1016_j_ceramint_2020_03_006 crossref_primary_10_1007_s40145_021_0532_8 crossref_primary_10_1016_j_polymertesting_2023_108025 crossref_primary_10_1007_s00339_022_05420_4 crossref_primary_10_1039_D3TA00068K crossref_primary_10_1007_s11664_022_09684_7 crossref_primary_10_3390_cryst9110558 crossref_primary_10_1016_j_jallcom_2022_167887 crossref_primary_10_1016_j_jpowsour_2024_234210 crossref_primary_10_1016_j_jallcom_2020_155938 crossref_primary_10_1016_j_jmat_2024_100979 crossref_primary_10_1063_1_4979467 crossref_primary_10_1002_pssr_202100389 crossref_primary_10_1016_j_jallcom_2024_174966 crossref_primary_10_3390_cryst14100861 crossref_primary_10_1002_admt_201800111 crossref_primary_10_1016_j_cej_2021_132540 crossref_primary_10_1016_j_mtener_2022_101193 crossref_primary_10_1016_j_ceramint_2017_03_094 crossref_primary_10_1007_s10854_023_10363_4 crossref_primary_10_1016_j_jsamd_2019_04_008 crossref_primary_10_1111_jace_17486 crossref_primary_10_1016_j_jallcom_2022_163837 crossref_primary_10_1142_S0218625X19500823 crossref_primary_10_1002_adma_201802155 crossref_primary_10_1016_j_jallcom_2019_153045 crossref_primary_10_1016_j_cap_2022_02_002 crossref_primary_10_1016_j_jeurceramsoc_2019_03_047 crossref_primary_10_1088_1361_648X_ab4b2a crossref_primary_10_1016_j_ceramint_2016_11_175 crossref_primary_10_3390_ma16114008 crossref_primary_10_3390_en13020455 crossref_primary_10_1007_s10854_019_01723_0 crossref_primary_10_1021_acs_chemrev_9b00507 crossref_primary_10_1111_jace_17697 crossref_primary_10_1016_j_ceramint_2020_08_254 crossref_primary_10_3390_ma17102277 crossref_primary_10_1016_j_jallcom_2020_153772 crossref_primary_10_1016_j_sna_2020_112307 crossref_primary_10_1016_j_ceramint_2020_11_222 crossref_primary_10_1016_j_ceramint_2022_10_110 crossref_primary_10_1111_jace_16088 crossref_primary_10_1016_j_jeurceramsoc_2017_03_071 crossref_primary_10_3390_ma14237188 crossref_primary_10_1142_S2010135X18500418 crossref_primary_10_3390_molecules30010008 crossref_primary_10_1016_j_pmatsci_2021_100836 crossref_primary_10_1007_s10854_021_06299_2 crossref_primary_10_1016_j_ceramint_2020_01_199 crossref_primary_10_1016_j_jallcom_2018_09_252 crossref_primary_10_1111_jace_14994 crossref_primary_10_1021_acs_chemmater_4c00056 crossref_primary_10_1002_pssa_202100737 crossref_primary_10_35848_1882_0786_acd047 crossref_primary_10_1016_j_nanoen_2018_06_016 crossref_primary_10_1039_C8TC02368A crossref_primary_10_1016_j_est_2024_112020 crossref_primary_10_1142_S0217984920501006 crossref_primary_10_1016_j_jpcs_2024_112102 crossref_primary_10_1088_1361_6463_ac46ed crossref_primary_10_1016_j_jallcom_2024_175791 |
Cites_doi | 10.1016/j.actamat.2013.02.055 10.1063/1.2756355 10.1038/nmat1051 10.1063/1.4802794 10.1002/adfm.201102758 10.1063/1.4801893 10.1063/1.3491839 10.1111/j.1551-2916.2012.05119.x 10.1111/jace.13999 10.1002/ente.201500173 10.1063/1.2838472 10.1063/1.4770311 10.1063/1.2938064 10.1016/j.matlet.2013.09.103 10.1016/j.jeurceramsoc.2014.09.003 10.1002/adma.201301752 10.1063/1.2783200 10.1016/j.actamat.2007.12.027 10.1016/j.matlet.2014.08.133 10.1063/1.4768461 10.1063/1.4795511 10.1103/PhysRevB.71.174108 10.1063/1.2360933 10.1063/1.1829394 10.1016/j.jallcom.2015.07.178 10.1002/adma.200500951 10.1111/jace.12841 10.1063/1.4887066 10.1039/c3tc00619k 10.1016/j.jallcom.2013.09.052 10.1002/adma.200901516 10.1111/jace.12884 10.1063/1.3121203 10.1039/b923590f 10.1007/s10853-013-7849-9 10.1038/srep08595 10.1039/C4TC01124D 10.1039/C5NR05032D |
ContentType | Journal Article |
Copyright | Author(s) 2016 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2016 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4950974 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_4950974 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) grantid: 51471057 funderid: http://dx.doi.org/10.13039/501100001809 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-526d92e7665ddafc71a79ce0a900c111d3e2d3422f328241ae489791d0e8aa1e3 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 04:44:50 EDT 2025 Tue Jul 01 01:15:14 EDT 2025 Thu Apr 24 23:09:17 EDT 2025 Fri Jun 21 00:14:58 EDT 2024 Sun Jul 14 13:20:54 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | 0003-6951/2016/108(20)/202902/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-526d92e7665ddafc71a79ce0a900c111d3e2d3422f328241ae489791d0e8aa1e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2121864840 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | crossref_primary_10_1063_1_4950974 crossref_citationtrail_10_1063_1_4950974 scitation_primary_10_1063_1_4950974 proquest_journals_2121864840 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20160516 2016-05-16 |
PublicationDateYYYYMMDD | 2016-05-16 |
PublicationDate_xml | – month: 05 year: 2016 text: 20160516 day: 16 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2016 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Wang, Luo, Jiang, Li, Chen (c17) 2014; 585 Zhang, Kounga, Jo, Jamin, Seifert, Granzow, Rödel, Damjanovic (c35) 2009; 21 Liu, Chen, Yang, Zhang, Wang, Zhou, Li, Ren (c7) 2006; 89 Yuan, Dang, Yao, Zha, Zhou, Li, Bai (c19) 2010; 20 Wang, Xu, Tang, Wang, Shi, Leung (c5) 2012; 95 Ang, Yu (c36) 2006; 18 Maurya, Pramanick, Feygenson, Neuefeind, Bodnard, Priya (c23) 2014; 2 Zhao, Zuo, Zheng, Li (c6) 2014; 97 Zhang, Kounga, Aulbach, Granzow, Jo, Kleebe, Rödel (c27) 2008; 103 Xu, Li, Hao, Zhang, Wang, Cao, Yao, Liu (c15) 2015; 35 Maurya, Zhou, Wang, Yan, Li, Viehland, Priya (c8) 2015; 5 Jo, Granzow, Aulbach, Rödel, Damjanovic (c4) 2009; 105 Feng, Ren (c9) 2007; 91 Hao, Shen, Zhai, Liu, Li, Gao (c2) 2013; 113 Ren (c11) 2004; 3 Ding, Liu, Lu, Qian, Gao, Chen, Ma (c39) 2014; 114 Gobeljic, Shvartsman, Belianinov, Okatan, Jesse, Kalinin, Groh, Rödel, Lupascu (c25) 2016; 8 Fu, Zuo (c1) 2013; 61 Kounga, Zhang, Jo, Granzow, Rödel (c24) 2008; 92 Bai, Li, Li, Zhang, Shen, Zhai (c3) 2015; 649 Zhang, Liu, Chen, Ren, Sun, Gurdal, Ural, Uchino (c10) 2012; 101 Hu, Ma, Koritala, Balachandran (c14) 2014; 104 Cao, Li, Zhang, Sheng, Hou, Feng, Yu, Fei (c30) 2015; 3 Blömker, Erdem, Li, Weber, Klein, Rödel, Frömling (c20) 2016; 99 Wang, Jin, Tian, Shu, Hu, Wei (c38) 2014; 137 Han, Jo, Kang, Ahn, Kim, Ahn, Lee (c28) 2013; 113 Zhang, Chen, Ren (c12) 2004; 85 Hao, Wang, Yang, An, Xu (c13) 2012; 112 Zhang, Yan, Yang, Cao (c34) 2010; 97 Dorcet, Trolliard (c21) 2008; 56 Hao, Wang, Zhang, Zhang, An (c37) 2013; 102 Luo, Wang, Jiang, Li (c16) 2014; 49 Maurya, Zhou, Yan, Priya (c22) 2013; 1 Acosta, Jo, Rödel (c29) 2014; 97 Zhang, Kounga, Aulbach (c26) 2007; 91 Dang, Yuan, Yao, Liao (c18) 2013; 25 Schütz, Deluca, Krauss, Feteira, Jackson, Reichmann (c33) 2012; 22 Zhang, Ren (c32) 2005; 71 (2023061715280321100_c13) 2012; 112 (2023061715280321100_c37) 2013; 102 (2023061715280321100_c29) 2014; 97 (2023061715280321100_c27) 2008; 103 (2023061715280321100_c7) 2006; 89 (2023061715280321100_c23) 2014; 2 (2023061715280321100_c32) 2005; 71 (2023061715280321100_c28) 2013; 113 (2023061715280321100_c21) 2008; 56 (2023061715280321100_c33) 2012; 22 (2023061715280321100_c11) 2004; 3 (2023061715280321100_c12) 2004; 85 (2023061715280321100_c36) 2006; 18 (2023061715280321100_c8) 2015; 5 (2023061715280321100_c22) 2013; 1 (2023061715280321100_c3) 2015; 649 (2023061715280321100_c15) 2015; 35 (2023061715280321100_c26) 2007; 91 (2023061715280321100_c14) 2014; 104 2023061715280321100_c31 (2023061715280321100_c4) 2009; 105 (2023061715280321100_c10) 2012; 101 (2023061715280321100_c39) 2014; 114 (2023061715280321100_c16) 2014; 49 (2023061715280321100_c1) 2013; 61 (2023061715280321100_c24) 2008; 92 (2023061715280321100_c20) 2016; 99 (2023061715280321100_c30) 2015; 3 (2023061715280321100_c19) 2010; 20 (2023061715280321100_c5) 2012; 95 (2023061715280321100_c17) 2014; 585 (2023061715280321100_c18) 2013; 25 (2023061715280321100_c6) 2014; 97 (2023061715280321100_c9) 2007; 91 (2023061715280321100_c35) 2009; 21 (2023061715280321100_c38) 2014; 137 (2023061715280321100_c25) 2016; 8 (2023061715280321100_c2) 2013; 113 (2023061715280321100_c34) 2010; 97 |
References_xml | – volume: 61 start-page: 3687 year: 2013 ident: c1 publication-title: Acta Mater. – volume: 97 start-page: 1855 year: 2014 ident: c6 publication-title: J. Am. Ceram. Soc. – volume: 103 start-page: 034107 year: 2008 ident: c27 publication-title: J. Appl. Phys. – volume: 22 start-page: 2285 year: 2012 ident: c33 publication-title: Adv. Funct. Mater. – volume: 97 start-page: 1937 year: 2014 ident: c29 publication-title: J. Am. Ceram. Soc. – volume: 18 start-page: 103 year: 2006 ident: c36 publication-title: Adv. Mater. – volume: 85 start-page: 5658 year: 2004 ident: c12 publication-title: Appl. Phys. Lett. – volume: 102 start-page: 163903 year: 2013 ident: c37 publication-title: Appl. Phys. Lett. – volume: 71 start-page: 174108 year: 2005 ident: c32 publication-title: Phys. Rev. B – volume: 1 start-page: 2102 year: 2013 ident: c22 publication-title: J. Mater. Chem. C – volume: 49 start-page: 1659 year: 2014 ident: c16 publication-title: J. Mater. Sci. – volume: 91 start-page: 032904 year: 2007 ident: c9 publication-title: Appl. Phys. Lett. – volume: 585 start-page: 14 year: 2014 ident: c17 publication-title: J. Alloys Comp. – volume: 95 start-page: 1955 year: 2012 ident: c5 publication-title: J. Am. Ceram. Soc. – volume: 3 start-page: 1198 year: 2015 ident: c30 publication-title: Energy Technol. – volume: 99 start-page: 543 year: 2016 ident: c20 publication-title: J. Am. Ceram. Soc. – volume: 35 start-page: 545 year: 2015 ident: c15 publication-title: J. Eur. Ceram. Soc. – volume: 56 start-page: 1753 year: 2008 ident: c21 publication-title: Acta Mater. – volume: 649 start-page: 772 year: 2015 ident: c3 publication-title: J. Alloys Comp. – volume: 5 start-page: 8595 year: 2015 ident: c8 publication-title: Sci. Rep. – volume: 25 start-page: 6334 year: 2013 ident: c18 publication-title: Adv. Mater. – volume: 97 start-page: 122901 year: 2010 ident: c34 publication-title: Appl. Phys. Lett. – volume: 3 start-page: 91 year: 2004 ident: c11 publication-title: Nat. Mater. – volume: 2 start-page: 8423 year: 2014 ident: c23 publication-title: J. Mater. Chem. C – volume: 21 start-page: 4716 year: 2009 ident: c35 publication-title: Adv. Mater. – volume: 137 start-page: 79 year: 2014 ident: c38 publication-title: Mater. Lett. – volume: 114 start-page: 107 year: 2014 ident: c39 publication-title: Mater. Lett. – volume: 104 start-page: 263902 year: 2014 ident: c14 publication-title: Appl. Phys. Lett. – volume: 101 start-page: 242903 year: 2012 ident: c10 publication-title: Appl. Phys. Lett. – volume: 91 start-page: 112906 year: 2007 ident: c26 publication-title: Appl. Phys. Lett. – volume: 113 start-page: 154102 year: 2013 ident: c28 publication-title: J. Appl. Phys. – volume: 8 start-page: 2168 year: 2016 ident: c25 publication-title: Nanoscale – volume: 105 start-page: 094102 year: 2009 ident: c4 publication-title: J. Appl. Phys. – volume: 89 start-page: 172908 year: 2006 ident: c7 publication-title: Appl. Phys. Lett. – volume: 92 start-page: 222902 year: 2008 ident: c24 publication-title: Appl. Phys. Lett. – volume: 113 start-page: 114106 year: 2013 ident: c2 publication-title: J. Appl. Phys. – volume: 112 start-page: 114111 year: 2012 ident: c13 publication-title: J. Appl. Phys. – volume: 20 start-page: 2441 year: 2010 ident: c19 publication-title: J. Mater. Chem. – volume: 61 start-page: 3687 year: 2013 ident: 2023061715280321100_c1 publication-title: Acta Mater. doi: 10.1016/j.actamat.2013.02.055 – volume: 91 start-page: 032904 year: 2007 ident: 2023061715280321100_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2756355 – volume: 3 start-page: 91 year: 2004 ident: 2023061715280321100_c11 publication-title: Nat. Mater. doi: 10.1038/nmat1051 – volume: 102 start-page: 163903 year: 2013 ident: 2023061715280321100_c37 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802794 – volume: 22 start-page: 2285 year: 2012 ident: 2023061715280321100_c33 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102758 – volume: 113 start-page: 154102 year: 2013 ident: 2023061715280321100_c28 publication-title: J. Appl. Phys. doi: 10.1063/1.4801893 – volume: 97 start-page: 122901 year: 2010 ident: 2023061715280321100_c34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3491839 – volume: 95 start-page: 1955 issue: 6 year: 2012 ident: 2023061715280321100_c5 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2012.05119.x – volume: 99 start-page: 543 issue: 2 year: 2016 ident: 2023061715280321100_c20 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.13999 – volume: 3 start-page: 1198 issue: 12 year: 2015 ident: 2023061715280321100_c30 publication-title: Energy Technol. doi: 10.1002/ente.201500173 – volume: 103 start-page: 034107 year: 2008 ident: 2023061715280321100_c27 publication-title: J. Appl. Phys. doi: 10.1063/1.2838472 – volume: 101 start-page: 242903 year: 2012 ident: 2023061715280321100_c10 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4770311 – volume: 92 start-page: 222902 year: 2008 ident: 2023061715280321100_c24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2938064 – volume: 114 start-page: 107 year: 2014 ident: 2023061715280321100_c39 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2013.09.103 – volume: 35 start-page: 545 year: 2015 ident: 2023061715280321100_c15 publication-title: J. Eur. Ceram. Soc. doi: 10.1016/j.jeurceramsoc.2014.09.003 – volume: 25 start-page: 6334 year: 2013 ident: 2023061715280321100_c18 publication-title: Adv. Mater. doi: 10.1002/adma.201301752 – volume: 91 start-page: 112906 year: 2007 ident: 2023061715280321100_c26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2783200 – volume: 56 start-page: 1753 issue: 8 year: 2008 ident: 2023061715280321100_c21 publication-title: Acta Mater. doi: 10.1016/j.actamat.2007.12.027 – volume: 137 start-page: 79 year: 2014 ident: 2023061715280321100_c38 publication-title: Mater. Lett. doi: 10.1016/j.matlet.2014.08.133 – volume: 112 start-page: 114111 year: 2012 ident: 2023061715280321100_c13 publication-title: J. Appl. Phys. doi: 10.1063/1.4768461 – volume: 113 start-page: 114106 year: 2013 ident: 2023061715280321100_c2 publication-title: J. Appl. Phys. doi: 10.1063/1.4795511 – volume: 71 start-page: 174108 year: 2005 ident: 2023061715280321100_c32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.71.174108 – volume: 89 start-page: 172908 year: 2006 ident: 2023061715280321100_c7 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2360933 – volume: 85 start-page: 5658 year: 2004 ident: 2023061715280321100_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1829394 – volume: 649 start-page: 772 year: 2015 ident: 2023061715280321100_c3 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2015.07.178 – volume: 18 start-page: 103 year: 2006 ident: 2023061715280321100_c36 publication-title: Adv. Mater. doi: 10.1002/adma.200500951 – volume: 97 start-page: 1855 issue: 6 year: 2014 ident: 2023061715280321100_c6 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12841 – volume: 104 start-page: 263902 year: 2014 ident: 2023061715280321100_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4887066 – volume: 1 start-page: 2102 year: 2013 ident: 2023061715280321100_c22 publication-title: J. Mater. Chem. C doi: 10.1039/c3tc00619k – volume: 585 start-page: 14 year: 2014 ident: 2023061715280321100_c17 publication-title: J. Alloys Comp. doi: 10.1016/j.jallcom.2013.09.052 – volume: 21 start-page: 4716 year: 2009 ident: 2023061715280321100_c35 publication-title: Adv. Mater. doi: 10.1002/adma.200901516 – ident: 2023061715280321100_c31 – volume: 97 start-page: 1937 issue: 6 year: 2014 ident: 2023061715280321100_c29 publication-title: J. Am. Ceram. Soc. doi: 10.1111/jace.12884 – volume: 105 start-page: 094102 year: 2009 ident: 2023061715280321100_c4 publication-title: J. Appl. Phys. doi: 10.1063/1.3121203 – volume: 20 start-page: 2441 year: 2010 ident: 2023061715280321100_c19 publication-title: J. Mater. Chem. doi: 10.1039/b923590f – volume: 49 start-page: 1659 year: 2014 ident: 2023061715280321100_c16 publication-title: J. Mater. Sci. doi: 10.1007/s10853-013-7849-9 – volume: 5 start-page: 8595 year: 2015 ident: 2023061715280321100_c8 publication-title: Sci. Rep. doi: 10.1038/srep08595 – volume: 2 start-page: 8423 year: 2014 ident: 2023061715280321100_c23 publication-title: J. Mater. Chem. C doi: 10.1039/C4TC01124D – volume: 8 start-page: 2168 year: 2016 ident: 2023061715280321100_c25 publication-title: Nanoscale doi: 10.1039/C5NR05032D |
SSID | ssj0005233 |
Score | 2.559376 |
Snippet | In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Bismuth titanate Defects Dipoles Electrostriction Energy storage Ferroelectric materials Ferroelectricity Flux density Hysteresis loops Lead free Polarization Positioning devices (machinery) Recoverable strain Relaxors System effectiveness |
Title | Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems |
URI | http://dx.doi.org/10.1063/1.4950974 https://www.proquest.com/docview/2121864840 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIeEAwQHQNZwAPS5M6JHSd5HAw0IQZIdGI8RUnsoEhVV7XphPjrubOdj7IKDV6iyrq4se_n89357kzIq8ikgU5KzoJcaiZ1DGsuChJW5FLEFcC6KNChf_pJnZzJD-fReX9cYLNLmmJS_tqaV_I_XIU24Ctmyf4DZ7tOoQF-A3_hCRyG57V4fGxs6WFdLzBGEKzrNZ7mzzC4-wAtXRiQzYxa2Ysg7DkBlic-MDbhj2FgJIbsaAxib2wC4AxYzqqlMSB2-SR6U8NjWn8WDHc77es-r4YabavGOhfJCnqwBTv7sw3ri_1m5ot2k8Twn9o11rO610Wd1Pm-7p2rlmoKM_nD-IF7_0Sg8GjdpU92MlcwlfqyssaJWR6jd9RL3lYO82QAOJsid1XAg0aFvoYJ2HU8dff7bBbR_mNz60IO7WG7ElmQ-Vdvkp0QTItwRHaOjk8_fh0EBgnR3rOI393Wo1LisPvfTS2mN01ug97iQigGWsr0PrnnzQt65LDygNww811yd1B0cpfc-uI49ZD8dPihDj_U44da_NABfqjDDwX8UMQP3cQP9fiBDmiHH7oNP9Tj5xE5e_9u-vaE-Zs4WCnCuGFRqHQamlipSOu8KuMgj9PS8DzlvITdUgsTaiHDsBJgwssgNzJJY5AC3CR5HhjxmIzmF3PzhNC4SNDEV0bkQJhiD5JLkCQVaOpGF2Pyup3ZrJ1LHOQsu8LBMXnRkS5cbZZtRPstezK_dFcZ6GtBomQi-Zi87Fj2t062UF1eLHuKbKGrvet8z1Nyp18l-2TULNfmGei1TfHcA_E31r6ghg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+dipole+induced+large+recoverable+strain+and+high+energy-storage+density+in+lead-free+Na0.5Bi0.5TiO3-based+systems&rft.jtitle=Applied+physics+letters&rft.au=Cao%2C+Wenping&rft.au=Li%2C+Weili&rft.au=Feng%2C+Yu&rft.au=Bai%2C+Terigele&rft.date=2016-05-16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=20&rft_id=info:doi/10.1063%2F1.4950974&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4950974 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |