Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems

In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 108; no. 20
Main Authors Cao, Wenping, Li, Weili, Feng, Yu, Bai, Terigele, Qiao, Yulong, Hou, Yafei, Zhang, Tiandong, Yu, Yang, Fei, Weidong
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 16.05.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (P max) and negligible remanent polarization (P r) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of P max-P r (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications.
AbstractList In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (Pmax) and negligible remanent polarization (Pr) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of Pmax-Pr (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications.
In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing defect dipoles into Na0.5Bi0.5TiO3 (NBT)-based relaxor ferroelectrics. It has been found that pinched and double polarization hysteresis loops with high maximum polarization (P max) and negligible remanent polarization (P r) can be observed due to the presence of acceptor-induced defect dipoles. A large recoverable strain of 0.24% with very little hysteresis and high electrostriction coefficient of 0.022 m4 C2 with purely electrostrictive characteristics were acquired when 11 mol. ‰ Mn-doped. Meanwhile, a high recoverable energy density of 1.06 J/cm3 with excellent temperature stability was obtained at the same composition owing to the enlarged value of P max-P r (36.8 μC/cm2) and relatively high electric field (95 kV/cm). Our achievement can open up the exciting opportunities for ferroelectric materials in high-precision positioning devices and high electric power pulse energy storage applications.
Author Qiao, Yulong
Yu, Yang
Li, Weili
Feng, Yu
Fei, Weidong
Bai, Terigele
Zhang, Tiandong
Cao, Wenping
Hou, Yafei
Author_xml – sequence: 1
  givenname: Wenping
  surname: Cao
  fullname: Cao, Wenping
  organization: Harbin Institute of Technology
– sequence: 2
  givenname: Weili
  surname: Li
  fullname: Li, Weili
  email: wlli@hit.edu.cn
  organization: 2National Key Laboratory of Science and Technology on Precision Heat Processing of Metals, Harbin Institute of Technology, Harbin 150001, People's Republic of China
– sequence: 3
  givenname: Yu
  surname: Feng
  fullname: Feng, Yu
  organization: Harbin Institute of Technology
– sequence: 4
  givenname: Terigele
  surname: Bai
  fullname: Bai, Terigele
  organization: Harbin Institute of Technology
– sequence: 5
  givenname: Yulong
  surname: Qiao
  fullname: Qiao, Yulong
  organization: Harbin Institute of Technology
– sequence: 6
  givenname: Yafei
  surname: Hou
  fullname: Hou, Yafei
  organization: Harbin Institute of Technology
– sequence: 7
  givenname: Tiandong
  surname: Zhang
  fullname: Zhang, Tiandong
  organization: Harbin Institute of Technology
– sequence: 8
  givenname: Yang
  surname: Yu
  fullname: Yu, Yang
  organization: Harbin Institute of Technology
– sequence: 9
  givenname: Weidong
  surname: Fei
  fullname: Fei, Weidong
  organization: Harbin Institute of Technology
BookMark eNp9kEtLZDEQRoMo2D4W_oPArBy4bSq5z6Xj-AKxN7q-lEndNnJN2iQt0__eNK0Ig7qpoqhTp-DbY9vOO2LsCMQURK1OYFp2leiacotNQDRNoQDabTYRQqii7irYZXsxPuWxkkpN2L-_NJBO3NiFH4lbZ5aaDB8xzIkH0v6VAj7kTUwBrePoDH-080dOjsJ8VcTkA2bUkIs2rbKAj4SmGAIRv0Uxrf7YXO7sTBUPGLM6rmKi53jAdgYcIx2-9312f3F-d3ZV3Mwur89ObwqtZJOKStamk9TUdWUMDroBbDpNAjshNAAYRdKoUspByVaWgFS2XdOBEdQiAql99mvjXQT_sqSY-ie_DC6_7CVIaOuyLUWmjjeUDj7GQEO_CPYZw6oH0a-D7aF_DzazJ_-x2iZM1rt1ROOXF783F_GD_FH_LfzqwyfYL8yg3gD-Jpdg
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_cej_2020_127555
crossref_primary_10_1063_1_4968003
crossref_primary_10_1016_j_ceramint_2019_06_245
crossref_primary_10_1016_j_ceramint_2022_02_123
crossref_primary_10_1049_iet_nde_2018_0002
crossref_primary_10_1016_j_jeurceramsoc_2020_03_037
crossref_primary_10_1016_j_ceramint_2019_02_109
crossref_primary_10_1038_s41427_018_0013_x
crossref_primary_10_1016_j_jpcs_2024_111981
crossref_primary_10_1021_acsami_9b13215
crossref_primary_10_1142_S2010135X18300050
crossref_primary_10_1016_j_mseb_2020_114869
crossref_primary_10_1111_ijac_14706
crossref_primary_10_1111_jace_15308
crossref_primary_10_1080_00150193_2023_2198974
crossref_primary_10_1016_j_jeurceramsoc_2019_11_029
crossref_primary_10_1016_j_ceramint_2018_02_081
crossref_primary_10_1016_j_ceramint_2024_06_397
crossref_primary_10_1007_s40145_021_0500_3
crossref_primary_10_1007_s42452_025_06699_7
crossref_primary_10_1016_j_jallcom_2023_172487
crossref_primary_10_1016_j_jeurceramsoc_2023_07_047
crossref_primary_10_1063_5_0239629
crossref_primary_10_1002_ente_201700504
crossref_primary_10_1016_j_cej_2020_126290
crossref_primary_10_1063_1_4986468
crossref_primary_10_1016_j_jallcom_2024_175697
crossref_primary_10_1038_s41598_017_06966_7
crossref_primary_10_1080_21663831_2018_1457095
crossref_primary_10_1016_j_ceramint_2017_05_203
crossref_primary_10_1063_1_5000980
crossref_primary_10_1039_C9TC04320A
crossref_primary_10_1016_j_jallcom_2017_09_022
crossref_primary_10_1007_s10854_022_07857_y
crossref_primary_10_1016_j_jeurceramsoc_2024_117073
crossref_primary_10_1039_C7RA12575E
crossref_primary_10_1039_D0TC05969B
crossref_primary_10_4191_kcers_2019_56_1_02
crossref_primary_10_1088_1361_665X_aa590c
crossref_primary_10_1088_2053_1591_ad1773
crossref_primary_10_1007_s10904_023_02891_7
crossref_primary_10_1016_j_ceramint_2021_08_176
crossref_primary_10_1111_jace_16603
crossref_primary_10_1016_j_nanoen_2019_02_003
crossref_primary_10_1039_C9DT01738K
crossref_primary_10_1007_s10832_021_00255_6
crossref_primary_10_1111_jace_19553
crossref_primary_10_1016_j_mtcomm_2025_111930
crossref_primary_10_1063_5_0064160
crossref_primary_10_54227_mlab_20220057
crossref_primary_10_1016_j_jeurceramsoc_2017_12_032
crossref_primary_10_1016_j_jmat_2018_05_006
crossref_primary_10_1039_D1TC00437A
crossref_primary_10_1063_5_0058826
crossref_primary_10_1021_acsami_1c18936
crossref_primary_10_1039_C7DT02846F
crossref_primary_10_1016_j_mtcomm_2024_110795
crossref_primary_10_1039_C8TC02801J
crossref_primary_10_1007_s10854_021_05893_8
crossref_primary_10_1016_j_jeurceramsoc_2021_04_002
crossref_primary_10_1016_j_jeurceramsoc_2020_06_059
crossref_primary_10_1007_s10854_021_05376_w
crossref_primary_10_1088_2053_1591_ab30e9
crossref_primary_10_1007_s10853_022_07281_x
crossref_primary_10_1016_j_ensm_2021_11_043
crossref_primary_10_1063_1_5020679
crossref_primary_10_2109_jcersj2_19241
crossref_primary_10_1016_j_jallcom_2020_158237
crossref_primary_10_1080_10584587_2020_1857177
crossref_primary_10_1111_ijac_14373
crossref_primary_10_1016_j_cej_2024_149947
crossref_primary_10_1016_j_jeurceramsoc_2020_03_070
crossref_primary_10_1016_j_jallcom_2019_02_332
crossref_primary_10_1016_j_jeurceramsoc_2019_05_064
crossref_primary_10_1016_j_solidstatesciences_2017_02_007
crossref_primary_10_1080_00150193_2023_2215522
crossref_primary_10_1007_s10854_021_05613_2
crossref_primary_10_1016_j_materresbull_2021_111407
crossref_primary_10_1016_j_cej_2023_145989
crossref_primary_10_1007_s00339_021_05124_1
crossref_primary_10_1016_j_ceramint_2017_04_164
crossref_primary_10_1016_j_jallcom_2018_03_383
crossref_primary_10_1016_j_jeurceramsoc_2018_06_020
crossref_primary_10_1016_j_jallcom_2020_154961
crossref_primary_10_1016_j_jeurceramsoc_2018_10_008
crossref_primary_10_1016_j_ceramint_2020_03_006
crossref_primary_10_1007_s40145_021_0532_8
crossref_primary_10_1016_j_polymertesting_2023_108025
crossref_primary_10_1007_s00339_022_05420_4
crossref_primary_10_1039_D3TA00068K
crossref_primary_10_1007_s11664_022_09684_7
crossref_primary_10_3390_cryst9110558
crossref_primary_10_1016_j_jallcom_2022_167887
crossref_primary_10_1016_j_jpowsour_2024_234210
crossref_primary_10_1016_j_jallcom_2020_155938
crossref_primary_10_1016_j_jmat_2024_100979
crossref_primary_10_1063_1_4979467
crossref_primary_10_1002_pssr_202100389
crossref_primary_10_1016_j_jallcom_2024_174966
crossref_primary_10_3390_cryst14100861
crossref_primary_10_1002_admt_201800111
crossref_primary_10_1016_j_cej_2021_132540
crossref_primary_10_1016_j_mtener_2022_101193
crossref_primary_10_1016_j_ceramint_2017_03_094
crossref_primary_10_1007_s10854_023_10363_4
crossref_primary_10_1016_j_jsamd_2019_04_008
crossref_primary_10_1111_jace_17486
crossref_primary_10_1016_j_jallcom_2022_163837
crossref_primary_10_1142_S0218625X19500823
crossref_primary_10_1002_adma_201802155
crossref_primary_10_1016_j_jallcom_2019_153045
crossref_primary_10_1016_j_cap_2022_02_002
crossref_primary_10_1016_j_jeurceramsoc_2019_03_047
crossref_primary_10_1088_1361_648X_ab4b2a
crossref_primary_10_1016_j_ceramint_2016_11_175
crossref_primary_10_3390_ma16114008
crossref_primary_10_3390_en13020455
crossref_primary_10_1007_s10854_019_01723_0
crossref_primary_10_1021_acs_chemrev_9b00507
crossref_primary_10_1111_jace_17697
crossref_primary_10_1016_j_ceramint_2020_08_254
crossref_primary_10_3390_ma17102277
crossref_primary_10_1016_j_jallcom_2020_153772
crossref_primary_10_1016_j_sna_2020_112307
crossref_primary_10_1016_j_ceramint_2020_11_222
crossref_primary_10_1016_j_ceramint_2022_10_110
crossref_primary_10_1111_jace_16088
crossref_primary_10_1016_j_jeurceramsoc_2017_03_071
crossref_primary_10_3390_ma14237188
crossref_primary_10_1142_S2010135X18500418
crossref_primary_10_3390_molecules30010008
crossref_primary_10_1016_j_pmatsci_2021_100836
crossref_primary_10_1007_s10854_021_06299_2
crossref_primary_10_1016_j_ceramint_2020_01_199
crossref_primary_10_1016_j_jallcom_2018_09_252
crossref_primary_10_1111_jace_14994
crossref_primary_10_1021_acs_chemmater_4c00056
crossref_primary_10_1002_pssa_202100737
crossref_primary_10_35848_1882_0786_acd047
crossref_primary_10_1016_j_nanoen_2018_06_016
crossref_primary_10_1039_C8TC02368A
crossref_primary_10_1016_j_est_2024_112020
crossref_primary_10_1142_S0217984920501006
crossref_primary_10_1016_j_jpcs_2024_112102
crossref_primary_10_1088_1361_6463_ac46ed
crossref_primary_10_1016_j_jallcom_2024_175791
Cites_doi 10.1016/j.actamat.2013.02.055
10.1063/1.2756355
10.1038/nmat1051
10.1063/1.4802794
10.1002/adfm.201102758
10.1063/1.4801893
10.1063/1.3491839
10.1111/j.1551-2916.2012.05119.x
10.1111/jace.13999
10.1002/ente.201500173
10.1063/1.2838472
10.1063/1.4770311
10.1063/1.2938064
10.1016/j.matlet.2013.09.103
10.1016/j.jeurceramsoc.2014.09.003
10.1002/adma.201301752
10.1063/1.2783200
10.1016/j.actamat.2007.12.027
10.1016/j.matlet.2014.08.133
10.1063/1.4768461
10.1063/1.4795511
10.1103/PhysRevB.71.174108
10.1063/1.2360933
10.1063/1.1829394
10.1016/j.jallcom.2015.07.178
10.1002/adma.200500951
10.1111/jace.12841
10.1063/1.4887066
10.1039/c3tc00619k
10.1016/j.jallcom.2013.09.052
10.1002/adma.200901516
10.1111/jace.12884
10.1063/1.3121203
10.1039/b923590f
10.1007/s10853-013-7849-9
10.1038/srep08595
10.1039/C4TC01124D
10.1039/C5NR05032D
ContentType Journal Article
Copyright Author(s)
2016 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2016 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4950974
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_4950974
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  grantid: 51471057
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-526d92e7665ddafc71a79ce0a900c111d3e2d3422f328241ae489791d0e8aa1e3
ISSN 0003-6951
IngestDate Mon Jun 30 04:44:50 EDT 2025
Tue Jul 01 01:15:14 EDT 2025
Thu Apr 24 23:09:17 EDT 2025
Fri Jun 21 00:14:58 EDT 2024
Sun Jul 14 13:20:54 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 0003-6951/2016/108(20)/202902/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-526d92e7665ddafc71a79ce0a900c111d3e2d3422f328241ae489791d0e8aa1e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2121864840
PQPubID 2050678
PageCount 5
ParticipantIDs crossref_primary_10_1063_1_4950974
crossref_citationtrail_10_1063_1_4950974
scitation_primary_10_1063_1_4950974
proquest_journals_2121864840
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20160516
2016-05-16
PublicationDateYYYYMMDD 2016-05-16
PublicationDate_xml – month: 05
  year: 2016
  text: 20160516
  day: 16
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2016
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Wang, Luo, Jiang, Li, Chen (c17) 2014; 585
Zhang, Kounga, Jo, Jamin, Seifert, Granzow, Rödel, Damjanovic (c35) 2009; 21
Liu, Chen, Yang, Zhang, Wang, Zhou, Li, Ren (c7) 2006; 89
Yuan, Dang, Yao, Zha, Zhou, Li, Bai (c19) 2010; 20
Wang, Xu, Tang, Wang, Shi, Leung (c5) 2012; 95
Ang, Yu (c36) 2006; 18
Maurya, Pramanick, Feygenson, Neuefeind, Bodnard, Priya (c23) 2014; 2
Zhao, Zuo, Zheng, Li (c6) 2014; 97
Zhang, Kounga, Aulbach, Granzow, Jo, Kleebe, Rödel (c27) 2008; 103
Xu, Li, Hao, Zhang, Wang, Cao, Yao, Liu (c15) 2015; 35
Maurya, Zhou, Wang, Yan, Li, Viehland, Priya (c8) 2015; 5
Jo, Granzow, Aulbach, Rödel, Damjanovic (c4) 2009; 105
Feng, Ren (c9) 2007; 91
Hao, Shen, Zhai, Liu, Li, Gao (c2) 2013; 113
Ren (c11) 2004; 3
Ding, Liu, Lu, Qian, Gao, Chen, Ma (c39) 2014; 114
Gobeljic, Shvartsman, Belianinov, Okatan, Jesse, Kalinin, Groh, Rödel, Lupascu (c25) 2016; 8
Fu, Zuo (c1) 2013; 61
Kounga, Zhang, Jo, Granzow, Rödel (c24) 2008; 92
Bai, Li, Li, Zhang, Shen, Zhai (c3) 2015; 649
Zhang, Liu, Chen, Ren, Sun, Gurdal, Ural, Uchino (c10) 2012; 101
Hu, Ma, Koritala, Balachandran (c14) 2014; 104
Cao, Li, Zhang, Sheng, Hou, Feng, Yu, Fei (c30) 2015; 3
Blömker, Erdem, Li, Weber, Klein, Rödel, Frömling (c20) 2016; 99
Wang, Jin, Tian, Shu, Hu, Wei (c38) 2014; 137
Han, Jo, Kang, Ahn, Kim, Ahn, Lee (c28) 2013; 113
Zhang, Chen, Ren (c12) 2004; 85
Hao, Wang, Yang, An, Xu (c13) 2012; 112
Zhang, Yan, Yang, Cao (c34) 2010; 97
Dorcet, Trolliard (c21) 2008; 56
Hao, Wang, Zhang, Zhang, An (c37) 2013; 102
Luo, Wang, Jiang, Li (c16) 2014; 49
Maurya, Zhou, Yan, Priya (c22) 2013; 1
Acosta, Jo, Rödel (c29) 2014; 97
Zhang, Kounga, Aulbach (c26) 2007; 91
Dang, Yuan, Yao, Liao (c18) 2013; 25
Schütz, Deluca, Krauss, Feteira, Jackson, Reichmann (c33) 2012; 22
Zhang, Ren (c32) 2005; 71
(2023061715280321100_c13) 2012; 112
(2023061715280321100_c37) 2013; 102
(2023061715280321100_c29) 2014; 97
(2023061715280321100_c27) 2008; 103
(2023061715280321100_c7) 2006; 89
(2023061715280321100_c23) 2014; 2
(2023061715280321100_c32) 2005; 71
(2023061715280321100_c28) 2013; 113
(2023061715280321100_c21) 2008; 56
(2023061715280321100_c33) 2012; 22
(2023061715280321100_c11) 2004; 3
(2023061715280321100_c12) 2004; 85
(2023061715280321100_c36) 2006; 18
(2023061715280321100_c8) 2015; 5
(2023061715280321100_c22) 2013; 1
(2023061715280321100_c3) 2015; 649
(2023061715280321100_c15) 2015; 35
(2023061715280321100_c26) 2007; 91
(2023061715280321100_c14) 2014; 104
2023061715280321100_c31
(2023061715280321100_c4) 2009; 105
(2023061715280321100_c10) 2012; 101
(2023061715280321100_c39) 2014; 114
(2023061715280321100_c16) 2014; 49
(2023061715280321100_c1) 2013; 61
(2023061715280321100_c24) 2008; 92
(2023061715280321100_c20) 2016; 99
(2023061715280321100_c30) 2015; 3
(2023061715280321100_c19) 2010; 20
(2023061715280321100_c5) 2012; 95
(2023061715280321100_c17) 2014; 585
(2023061715280321100_c18) 2013; 25
(2023061715280321100_c6) 2014; 97
(2023061715280321100_c9) 2007; 91
(2023061715280321100_c35) 2009; 21
(2023061715280321100_c38) 2014; 137
(2023061715280321100_c25) 2016; 8
(2023061715280321100_c2) 2013; 113
(2023061715280321100_c34) 2010; 97
References_xml – volume: 61
  start-page: 3687
  year: 2013
  ident: c1
  publication-title: Acta Mater.
– volume: 97
  start-page: 1855
  year: 2014
  ident: c6
  publication-title: J. Am. Ceram. Soc.
– volume: 103
  start-page: 034107
  year: 2008
  ident: c27
  publication-title: J. Appl. Phys.
– volume: 22
  start-page: 2285
  year: 2012
  ident: c33
  publication-title: Adv. Funct. Mater.
– volume: 97
  start-page: 1937
  year: 2014
  ident: c29
  publication-title: J. Am. Ceram. Soc.
– volume: 18
  start-page: 103
  year: 2006
  ident: c36
  publication-title: Adv. Mater.
– volume: 85
  start-page: 5658
  year: 2004
  ident: c12
  publication-title: Appl. Phys. Lett.
– volume: 102
  start-page: 163903
  year: 2013
  ident: c37
  publication-title: Appl. Phys. Lett.
– volume: 71
  start-page: 174108
  year: 2005
  ident: c32
  publication-title: Phys. Rev. B
– volume: 1
  start-page: 2102
  year: 2013
  ident: c22
  publication-title: J. Mater. Chem. C
– volume: 49
  start-page: 1659
  year: 2014
  ident: c16
  publication-title: J. Mater. Sci.
– volume: 91
  start-page: 032904
  year: 2007
  ident: c9
  publication-title: Appl. Phys. Lett.
– volume: 585
  start-page: 14
  year: 2014
  ident: c17
  publication-title: J. Alloys Comp.
– volume: 95
  start-page: 1955
  year: 2012
  ident: c5
  publication-title: J. Am. Ceram. Soc.
– volume: 3
  start-page: 1198
  year: 2015
  ident: c30
  publication-title: Energy Technol.
– volume: 99
  start-page: 543
  year: 2016
  ident: c20
  publication-title: J. Am. Ceram. Soc.
– volume: 35
  start-page: 545
  year: 2015
  ident: c15
  publication-title: J. Eur. Ceram. Soc.
– volume: 56
  start-page: 1753
  year: 2008
  ident: c21
  publication-title: Acta Mater.
– volume: 649
  start-page: 772
  year: 2015
  ident: c3
  publication-title: J. Alloys Comp.
– volume: 5
  start-page: 8595
  year: 2015
  ident: c8
  publication-title: Sci. Rep.
– volume: 25
  start-page: 6334
  year: 2013
  ident: c18
  publication-title: Adv. Mater.
– volume: 97
  start-page: 122901
  year: 2010
  ident: c34
  publication-title: Appl. Phys. Lett.
– volume: 3
  start-page: 91
  year: 2004
  ident: c11
  publication-title: Nat. Mater.
– volume: 2
  start-page: 8423
  year: 2014
  ident: c23
  publication-title: J. Mater. Chem. C
– volume: 21
  start-page: 4716
  year: 2009
  ident: c35
  publication-title: Adv. Mater.
– volume: 137
  start-page: 79
  year: 2014
  ident: c38
  publication-title: Mater. Lett.
– volume: 114
  start-page: 107
  year: 2014
  ident: c39
  publication-title: Mater. Lett.
– volume: 104
  start-page: 263902
  year: 2014
  ident: c14
  publication-title: Appl. Phys. Lett.
– volume: 101
  start-page: 242903
  year: 2012
  ident: c10
  publication-title: Appl. Phys. Lett.
– volume: 91
  start-page: 112906
  year: 2007
  ident: c26
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 154102
  year: 2013
  ident: c28
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 2168
  year: 2016
  ident: c25
  publication-title: Nanoscale
– volume: 105
  start-page: 094102
  year: 2009
  ident: c4
  publication-title: J. Appl. Phys.
– volume: 89
  start-page: 172908
  year: 2006
  ident: c7
  publication-title: Appl. Phys. Lett.
– volume: 92
  start-page: 222902
  year: 2008
  ident: c24
  publication-title: Appl. Phys. Lett.
– volume: 113
  start-page: 114106
  year: 2013
  ident: c2
  publication-title: J. Appl. Phys.
– volume: 112
  start-page: 114111
  year: 2012
  ident: c13
  publication-title: J. Appl. Phys.
– volume: 20
  start-page: 2441
  year: 2010
  ident: c19
  publication-title: J. Mater. Chem.
– volume: 61
  start-page: 3687
  year: 2013
  ident: 2023061715280321100_c1
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.02.055
– volume: 91
  start-page: 032904
  year: 2007
  ident: 2023061715280321100_c9
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2756355
– volume: 3
  start-page: 91
  year: 2004
  ident: 2023061715280321100_c11
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1051
– volume: 102
  start-page: 163903
  year: 2013
  ident: 2023061715280321100_c37
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802794
– volume: 22
  start-page: 2285
  year: 2012
  ident: 2023061715280321100_c33
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102758
– volume: 113
  start-page: 154102
  year: 2013
  ident: 2023061715280321100_c28
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801893
– volume: 97
  start-page: 122901
  year: 2010
  ident: 2023061715280321100_c34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3491839
– volume: 95
  start-page: 1955
  issue: 6
  year: 2012
  ident: 2023061715280321100_c5
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2012.05119.x
– volume: 99
  start-page: 543
  issue: 2
  year: 2016
  ident: 2023061715280321100_c20
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.13999
– volume: 3
  start-page: 1198
  issue: 12
  year: 2015
  ident: 2023061715280321100_c30
  publication-title: Energy Technol.
  doi: 10.1002/ente.201500173
– volume: 103
  start-page: 034107
  year: 2008
  ident: 2023061715280321100_c27
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2838472
– volume: 101
  start-page: 242903
  year: 2012
  ident: 2023061715280321100_c10
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4770311
– volume: 92
  start-page: 222902
  year: 2008
  ident: 2023061715280321100_c24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2938064
– volume: 114
  start-page: 107
  year: 2014
  ident: 2023061715280321100_c39
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2013.09.103
– volume: 35
  start-page: 545
  year: 2015
  ident: 2023061715280321100_c15
  publication-title: J. Eur. Ceram. Soc.
  doi: 10.1016/j.jeurceramsoc.2014.09.003
– volume: 25
  start-page: 6334
  year: 2013
  ident: 2023061715280321100_c18
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201301752
– volume: 91
  start-page: 112906
  year: 2007
  ident: 2023061715280321100_c26
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2783200
– volume: 56
  start-page: 1753
  issue: 8
  year: 2008
  ident: 2023061715280321100_c21
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2007.12.027
– volume: 137
  start-page: 79
  year: 2014
  ident: 2023061715280321100_c38
  publication-title: Mater. Lett.
  doi: 10.1016/j.matlet.2014.08.133
– volume: 112
  start-page: 114111
  year: 2012
  ident: 2023061715280321100_c13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4768461
– volume: 113
  start-page: 114106
  year: 2013
  ident: 2023061715280321100_c2
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4795511
– volume: 71
  start-page: 174108
  year: 2005
  ident: 2023061715280321100_c32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.71.174108
– volume: 89
  start-page: 172908
  year: 2006
  ident: 2023061715280321100_c7
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2360933
– volume: 85
  start-page: 5658
  year: 2004
  ident: 2023061715280321100_c12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1829394
– volume: 649
  start-page: 772
  year: 2015
  ident: 2023061715280321100_c3
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2015.07.178
– volume: 18
  start-page: 103
  year: 2006
  ident: 2023061715280321100_c36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200500951
– volume: 97
  start-page: 1855
  issue: 6
  year: 2014
  ident: 2023061715280321100_c6
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12841
– volume: 104
  start-page: 263902
  year: 2014
  ident: 2023061715280321100_c14
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4887066
– volume: 1
  start-page: 2102
  year: 2013
  ident: 2023061715280321100_c22
  publication-title: J. Mater. Chem. C
  doi: 10.1039/c3tc00619k
– volume: 585
  start-page: 14
  year: 2014
  ident: 2023061715280321100_c17
  publication-title: J. Alloys Comp.
  doi: 10.1016/j.jallcom.2013.09.052
– volume: 21
  start-page: 4716
  year: 2009
  ident: 2023061715280321100_c35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901516
– ident: 2023061715280321100_c31
– volume: 97
  start-page: 1937
  issue: 6
  year: 2014
  ident: 2023061715280321100_c29
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/jace.12884
– volume: 105
  start-page: 094102
  year: 2009
  ident: 2023061715280321100_c4
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3121203
– volume: 20
  start-page: 2441
  year: 2010
  ident: 2023061715280321100_c19
  publication-title: J. Mater. Chem.
  doi: 10.1039/b923590f
– volume: 49
  start-page: 1659
  year: 2014
  ident: 2023061715280321100_c16
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7849-9
– volume: 5
  start-page: 8595
  year: 2015
  ident: 2023061715280321100_c8
  publication-title: Sci. Rep.
  doi: 10.1038/srep08595
– volume: 2
  start-page: 8423
  year: 2014
  ident: 2023061715280321100_c23
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C4TC01124D
– volume: 8
  start-page: 2168
  year: 2016
  ident: 2023061715280321100_c25
  publication-title: Nanoscale
  doi: 10.1039/C5NR05032D
SSID ssj0005233
Score 2.559376
Snippet In this letter, we propose an effective route to obtain large recoverable strain, purely electrostrictive effects and high energy-storage density by inducing...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Bismuth titanate
Defects
Dipoles
Electrostriction
Energy storage
Ferroelectric materials
Ferroelectricity
Flux density
Hysteresis loops
Lead free
Polarization
Positioning devices (machinery)
Recoverable strain
Relaxors
System effectiveness
Title Defect dipole induced large recoverable strain and high energy-storage density in lead-free Na0.5Bi0.5TiO3-based systems
URI http://dx.doi.org/10.1063/1.4950974
https://www.proquest.com/docview/2121864840
Volume 108
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegEwIeEAwQHQNZwAPS5M6JHSd5HAw0IQZIdGI8RUnsoEhVV7XphPjrubOdj7IKDV6iyrq4se_n89357kzIq8ikgU5KzoJcaiZ1DGsuChJW5FLEFcC6KNChf_pJnZzJD-fReX9cYLNLmmJS_tqaV_I_XIU24Ctmyf4DZ7tOoQF-A3_hCRyG57V4fGxs6WFdLzBGEKzrNZ7mzzC4-wAtXRiQzYxa2Ysg7DkBlic-MDbhj2FgJIbsaAxib2wC4AxYzqqlMSB2-SR6U8NjWn8WDHc77es-r4YabavGOhfJCnqwBTv7sw3ri_1m5ot2k8Twn9o11rO610Wd1Pm-7p2rlmoKM_nD-IF7_0Sg8GjdpU92MlcwlfqyssaJWR6jd9RL3lYO82QAOJsid1XAg0aFvoYJ2HU8dff7bBbR_mNz60IO7WG7ElmQ-Vdvkp0QTItwRHaOjk8_fh0EBgnR3rOI393Wo1LisPvfTS2mN01ug97iQigGWsr0PrnnzQt65LDygNww811yd1B0cpfc-uI49ZD8dPihDj_U44da_NABfqjDDwX8UMQP3cQP9fiBDmiHH7oNP9Tj5xE5e_9u-vaE-Zs4WCnCuGFRqHQamlipSOu8KuMgj9PS8DzlvITdUgsTaiHDsBJgwssgNzJJY5AC3CR5HhjxmIzmF3PzhNC4SNDEV0bkQJhiD5JLkCQVaOpGF2Pyup3ZrJ1LHOQsu8LBMXnRkS5cbZZtRPstezK_dFcZ6GtBomQi-Zi87Fj2t062UF1eLHuKbKGrvet8z1Nyp18l-2TULNfmGei1TfHcA_E31r6ghg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Defect+dipole+induced+large+recoverable+strain+and+high+energy-storage+density+in+lead-free+Na0.5Bi0.5TiO3-based+systems&rft.jtitle=Applied+physics+letters&rft.au=Cao%2C+Wenping&rft.au=Li%2C+Weili&rft.au=Feng%2C+Yu&rft.au=Bai%2C+Terigele&rft.date=2016-05-16&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=108&rft.issue=20&rft_id=info:doi/10.1063%2F1.4950974&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_1_4950974
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon