Control of magnon–photon coupling by a direct current in a Py/Pt-superconducting cavity hybrid system

In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation ra...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 22
Main Authors Zhao, Yue, Wang, Ledong, Han, Xiang, Tian, Yufeng, Yan, Shishen, Guo, Qingjie, Zhai, Ya, Bai, Lihui
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 29.05.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation rate. It is demonstrated that decreasing the magnon dissipation rate can lead to an enhancement in magnon–photon coupling. By applying a direct current into the Permalloy/platinum bilayer, we achieve modulation of the coupling in the Purcell regime. The magnon–photon coupling is enhanced with the increasing current, which is related to the decrease in the magnon dissipation rate due to the thermal effect of the current. In addition, we establish an approach to obtain the coupling strength from the coupled microwave photon dispersion and linewidth. The electrical control of the Permalloy-superconducting cavity coupled system will play an important role in manipulating integrated hybrid magnon–photon devices.
AbstractList In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation rate. It is demonstrated that decreasing the magnon dissipation rate can lead to an enhancement in magnon–photon coupling. By applying a direct current into the Permalloy/platinum bilayer, we achieve modulation of the coupling in the Purcell regime. The magnon–photon coupling is enhanced with the increasing current, which is related to the decrease in the magnon dissipation rate due to the thermal effect of the current. In addition, we establish an approach to obtain the coupling strength from the coupled microwave photon dispersion and linewidth. The electrical control of the Permalloy-superconducting cavity coupled system will play an important role in manipulating integrated hybrid magnon–photon devices.
Author Zhao, Yue
Tian, Yufeng
Yan, Shishen
Zhai, Ya
Bai, Lihui
Wang, Ledong
Han, Xiang
Guo, Qingjie
Author_xml – sequence: 1
  givenname: Yue
  surname: Zhao
  fullname: Zhao, Yue
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 2
  givenname: Ledong
  surname: Wang
  fullname: Wang, Ledong
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 3
  givenname: Xiang
  surname: Han
  fullname: Han, Xiang
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 4
  givenname: Yufeng
  surname: Tian
  fullname: Tian, Yufeng
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 5
  givenname: Shishen
  surname: Yan
  fullname: Yan, Shishen
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
– sequence: 6
  givenname: Qingjie
  surname: Guo
  fullname: Guo, Qingjie
  organization: Department of Physics, Southeast University
– sequence: 7
  givenname: Ya
  surname: Zhai
  fullname: Zhai, Ya
  organization: Department of Physics, Southeast University
– sequence: 8
  givenname: Lihui
  surname: Bai
  fullname: Bai, Lihui
  organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University
BookMark eNp9kM1KAzEQx4NUsK0efIOAJ4Vt87HJbo9S_IKCPeg5ZLPZNqVN1iRb2Jvv4Bv6JG5pVVBxLsMMv_kN_AegZ53VAJxjNMKI0zEbIcwox_wI9DHKsoRinPdAHyFEEz5h-AQMQlh1IyOU9sFi6mz0bg1dBTdy0dneX9_qpYvOQuWaem3sAhYtlLA0XqsIVeO9thEa2-3m7Xgek9DU2itny0bFHa7k1sQWLtvCmxKGNkS9OQXHlVwHfXboQ_B8e_M0vU9mj3cP0-tZoijJYpJyjdJUl7igTKaU8QlBOVelTCtelGlFMEsnOaccMY6KvOK6yDNVUsIJzwpU0SG42Htr714aHaJYucbb7qUgOcEZ6Yp21OWeUt6F4HUlam820rcCI7HLUTBxyLFjxz9YZaKMZpebNOs_L672F-GT_NJvnf8GRV1W_8G_zR_6DpMc
CODEN APPLAB
CitedBy_id crossref_primary_10_1002_qute_202300420
crossref_primary_10_1088_2515_7639_ad2984
Cites_doi 10.1103/PhysRevResearch.2.013154
10.1103/PhysRevLett.123.127202
10.1038/ncomms9914
10.1103/PhysRevApplied.20.024039
10.1103/PhysRevB.99.224408
10.1063/1.4959140
10.1038/s41534-021-00445-8
10.1103/PhysRevB.95.214411
10.1103/PhysRevLett.113.083603
10.1103/PhysRevB.99.024432
10.1016/j.jmmm.2019.166319
10.1063/1.4961052
10.1103/PhysRevB.96.064407
10.1103/PhysRevLett.94.117201
10.1103/PhysRevB.94.054403
10.1063/5.0054837
10.1103/PhysRevLett.123.107701
10.1103/PhysRevLett.114.227201
10.1063/1.4939134
10.1103/PhysRevLett.121.137203
10.1103/PhysRevLett.106.036601
10.1103/PhysRevLett.123.107702
10.1103/PhysRevB.99.134426
10.1103/PhysRevLett.101.036601
10.1103/PhysRevLett.107.220501
10.1103/PhysRevLett.98.127601
10.1103/PhysRevB.98.024406
10.1038/srep22890
10.1103/PhysRevLett.113.156401
10.1038/s42005-019-0266-x
10.1126/science.aaa3693
10.1103/PhysRevLett.128.047701
10.1088/1361-6463/ab1f42
10.1103/PhysRevB.94.054433
10.1103/PhysRevApplied.11.054023
10.1103/PhysRevB.91.094423
10.1109/TMAG.2016.2527691
10.1103/PhysRevLett.111.127003
10.1063/1.4904857
10.1088/1367-2630/ab2482
10.1103/PhysRevApplied.2.054002
10.7567/1882-0786/ab248d
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0153616
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0153616
apl
GrantInformation_xml – fundername: National Natural Science Foundation of China-Shandong Joint Fund
  grantid: NSFC No. 12274260
  funderid: 10.13039/100017055
– fundername: The Shandong Provincial Natural Science Foundation (No. ZR2019JQ02)
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-46e044ed1b35a435692086cda4f6bd4f2154986360560b8f6eb87cd326267b0f3
ISSN 0003-6951
IngestDate Sun Jun 29 15:39:30 EDT 2025
Tue Jul 01 01:08:31 EDT 2025
Thu Apr 24 23:00:44 EDT 2025
Tue Jul 04 19:18:46 EDT 2023
Fri Jun 21 00:12:32 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 22
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-46e044ed1b35a435692086cda4f6bd4f2154986360560b8f6eb87cd326267b0f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7327-9968
0000-0001-8979-3577
0000-0002-9006-9575
0000-0003-4934-1167
0000-0003-0791-1635
PQID 2821722223
PQPubID 2050678
PageCount 6
ParticipantIDs crossref_citationtrail_10_1063_5_0153616
proquest_journals_2821722223
scitation_primary_10_1063_5_0153616
crossref_primary_10_1063_5_0153616
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230529
2023-05-29
PublicationDateYYYYMMDD 2023-05-29
PublicationDate_xml – month: 05
  year: 2023
  text: 20230529
  day: 29
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Zhao, Song, Yang, Su, Yuan, Parkin, Shi, Han (c39) 2016
Martín-Rio, Pomar, Balcells, Bozzo, Frontera, Martínez (c40) 2020
Tabuchi, Ishino, Noguchi, Ishikawa, Yamazaki, Usami, Nakamura (c16) 2015
Liu, Moriyama, Ralph, Buhrman (c42) 2011
Asami, An, Musha, Gao, Kuroda, Ando (c32) 2019
Harder, Yang, Yao, Yu, Rao, Gui, Stamps, Hu (c3) 2018
Maier-Flaig, Harder, Gross, Huebl, Gönnenwein (c6) 2016
Gollwitzer, Bocklage, Röhlsberger, Meier (c35) 2021
Tabuchi, Ishino, Ishikawa, Yamazaki, Usami, Nakamura (c4) 2014
Goryachev, Farr, Creedon, Fan, Kostylev, Tobar (c12) 2014
Zhang, Zou, Zhu, Marquardt, Jiang, Tang (c9) 2015
Huebl, Zollitsch, Lotze, Hocke, Greifenstein, Marx, Gross, Goennenwein (c1) 2013
Zhang, Zou, Jiang, Tang (c2) 2014
Klingler, Maier-Flaig, Gross, Hu, Huebl, Gönnenwein, Weiler (c7) 2016
Castel, Jeunehomme, Youssef, Vukadinovic, Manchec, Dejene, Bauer (c25) 2017
Ando, Takahashi, Harii, Sasage, Ieda, Maekawa, Saitoh (c41) 2008
Lachance-Quirion, Tabuchi, Gloppe, Usami, Nakamura (c10) 2019
Grigoryan, Xia (c26) 2019
De Loubens, Naletov, Klein, Youssef, Boust, Vukadinovic (c31) 2007
Bai, Blanchette, Harder, Chen, Fan, Xiao, Hu (c38) 2016
Cao, Yan, Huebl, Goennenwein, Bauer (c13) 2015
Baity, Bozhko, Macêdo, Smith, Holland, Danilin, Seferai, Barbosa, Peroor, Goldman (c21) 2021
Li, Yefremenko, Lisovenko, Trevillian, Polakovic, Cecil, Barry, Pearson, Divan, Tyberkevych (c22) 2022
Wolz, Stehli, Schneider, Boventer, Macêdo, Ustinov, Kläui, Weides (c5) 2020
Wang, Rao, Yang, Xu, Gui, Yao, You, Hu (c8) 2019
Boventer, Dörflinger, Wolz, Macêdo, Lebrun, Kläui, Weides (c28) 2020
Hou, Liu (c34) 2019
Bhoi, Cliff, Maksymov, Kostylev, Aiyar, Venkataramani, Prasad, Stamps (c18) 2014
Kubo, Grezes, Dewes, Umeda, Isoya, Sumiya, Morishita, Abe, Onoda, Ohshima (c11) 2011
Rao, Yu, Zhao, Gui, Fan, Xue, Hu (c19) 2019
Baltz, Sort, Landis, Rodmacq, Dieny (c30) 2005
Harder, Hyde, Bai, Match, Hu (c20) 2016
Shi, Zhang, Zhang, Jiang, Chai (c27) 2019
Yang, Rao, Gui, Yao, Lu, Hu (c17) 2019
Li, Polakovic, Wang, Xu, Lendinez, Zhang, Ding, Khaire, Saglam, Divan (c33) 2019
Bhoi, Kim, Jang, Kim, Yang, Cho, Kim (c15) 2019
Zhang, Zou, Jiang, Tang (c14) 2016
Kaur, Yao, Rao, Gui, Hu (c24) 2016
Harder, Bai, Hyde, Hu (c36) 2017
Bai, Harder, Chen, Fan, Xiao, Hu (c37) 2015
Grigoryan, Shen, Xia (c29) 2018
(2023081121372705000_c7) 2016; 109
(2023081121372705000_c38) 2016; 52
(2023081121372705000_c42) 2011; 106
(2023081121372705000_c33) 2019; 123
(2023081121372705000_c4) 2014; 113
(2023081121372705000_c31) 2007; 98
(2023081121372705000_c19) 2019; 21
(2023081121372705000_c1) 2013; 111
2023081121372705000_c23
(2023081121372705000_c39) 2016; 6
(2023081121372705000_c24) 2016; 109
(2023081121372705000_c28) 2020; 2
(2023081121372705000_c9) 2015; 6
(2023081121372705000_c27) 2019; 52
(2023081121372705000_c3) 2018; 121
(2023081121372705000_c5) 2020; 3
(2023081121372705000_c29) 2018; 98
(2023081121372705000_c14) 2016; 119
(2023081121372705000_c17) 2019; 11
(2023081121372705000_c30) 2005; 94
(2023081121372705000_c13) 2015; 91
(2023081121372705000_c41) 2008; 101
(2023081121372705000_c10) 2019; 12
(2023081121372705000_c2) 2014; 113
(2023081121372705000_c15) 2019; 99
(2023081121372705000_c16) 2015; 349
(2023081121372705000_c11) 2011; 107
(2023081121372705000_c32) 2019; 99
(2023081121372705000_c25) 2017; 96
(2023081121372705000_c35) 2021; 7
(2023081121372705000_c20) 2016; 94
(2023081121372705000_c26) 2019; 99
(2023081121372705000_c37) 2015; 114
(2023081121372705000_c36) 2017; 95
(2023081121372705000_c12) 2014; 2
(2023081121372705000_c40) 2020; 500
(2023081121372705000_c34) 2019; 123
(2023081121372705000_c6) 2016; 94
(2023081121372705000_c8) 2019; 123
(2023081121372705000_c21) 2021; 119
(2023081121372705000_c18) 2014; 116
(2023081121372705000_c22) 2022; 128
References_xml – start-page: 114
  year: 2021
  ident: c35
  article-title: Connecting fano interference and the Jaynes-Cummings model in cavity magnonics
  publication-title: npj Quantum Inf.
– start-page: 047701
  year: 2022
  ident: c22
  article-title: Coherent coupling of two remote magnonic resonators mediated by superconducting circuits
  publication-title: Phys. Rev. Lett.
– start-page: 054403
  year: 2016
  ident: c20
  article-title: Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system
  publication-title: Phys. Rev. B
– start-page: 166319
  year: 2020
  ident: c40
  article-title: Temperature dependence of spin pumping and inverse spin hall effect in Permalloy/Pt bilayers
  publication-title: J. Magn. Magn. Mater.
– start-page: 054002
  year: 2014
  ident: c12
  article-title: High-cooperativity cavity QED with magnons at microwave frequencies
  publication-title: Phys. Rev. Appl.
– start-page: 3
  year: 2020
  ident: c5
  article-title: Introducing coherent time control to cavity magnon-polariton modes
  publication-title: Commun. Phys.
– start-page: 227201
  year: 2015
  ident: c37
  article-title: Spin pumping in electrodynamically coupled magnon-photon systems
  publication-title: Phys. Rev. Lett.
– start-page: 34426
  year: 2019
  ident: c15
  article-title: Abnormal anticrossing effect in photon-magnon coupling
  publication-title: Phys. Rev. B
– start-page: 064407
  year: 2017
  ident: c25
  article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system
  publication-title: Phys. Rev. B
– start-page: 137203
  year: 2018
  ident: c3
  article-title: Level attraction due to dissipative magnon-photon coupling
  publication-title: Phys. Rev. Lett.
– start-page: 405
  year: 2015
  ident: c16
  article-title: Coherent coupling between a ferromagnetic magnon and a superconducting qubit
  publication-title: Science
– start-page: 065001
  year: 2019
  ident: c19
  article-title: Level attraction and level repulsion of magnon coupled with a cavity anti-resonance
  publication-title: New J. Phys.
– start-page: 032404
  year: 2016
  ident: c24
  article-title: Voltage control of cavity magnon polariton
  publication-title: Appl. Phys. Lett.
– start-page: 070101
  year: 2019
  ident: c10
  article-title: Hybrid quantum systems based on magnonics
  publication-title: Appl. Phys. Express
– start-page: 036601
  year: 2008
  ident: c41
  article-title: Electric manipulation of spin relaxation using the spin Hall effect
  publication-title: Phys. Rev. Lett.
– start-page: 107701
  year: 2019
  ident: c33
  article-title: Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices
  publication-title: Phys. Rev. Lett.
– start-page: 127601
  year: 2007
  ident: c31
  article-title: Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks
  publication-title: Phys. Rev. Lett.
– start-page: 224408
  year: 2019
  ident: c26
  article-title: Thermally induced monochromatic microwave generation in magnon polaritons
  publication-title: Phys. Rev. B
– start-page: 036601
  year: 2011
  ident: c42
  article-title: Spin-torque ferromagnetic resonance induced by the spin Hall effect
  publication-title: Phys. Rev. Lett.
– start-page: 083603
  year: 2014
  ident: c4
  article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit
  publication-title: Phys. Rev. Lett.
– start-page: 013154
  year: 2020
  ident: c28
  article-title: Control of the coupling strength and linewidth of a cavity magnon-polariton
  publication-title: Phys. Rev. Res.
– start-page: 117201
  year: 2005
  ident: c30
  article-title: Tailoring size effects on the exchange bias in ferromagnetic-antiferromagnetic < 100 nm nanostructures
  publication-title: Phys. Rev. Lett.
– start-page: 127202
  year: 2019
  ident: c8
  article-title: Nonreciprocity and unidirectional invisibility in cavity magnonics
  publication-title: Phys. Rev. Lett.
– start-page: 054023
  year: 2019
  ident: c17
  article-title: Control of the magnon-photon level attraction in a planar cavity
  publication-title: Phys. Rev. Appl.
– start-page: 024432
  year: 2019
  ident: c32
  article-title: Spin absorption at a ferromagnetic-metal/platinum-oxide interface
  publication-title: Phys. Rev. B
– start-page: 8914
  year: 2015
  ident: c9
  article-title: Magnon dark modes and gradient memory
  publication-title: Nat. Commun.
– start-page: 024406
  year: 2018
  ident: c29
  article-title: Synchronized spin-photon coupling in a microwave cavity
  publication-title: Phys. Rev. B
– start-page: 127003
  year: 2013
  ident: c1
  article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids
  publication-title: Phys. Rev. Lett.
– start-page: 220501
  year: 2011
  ident: c11
  article-title: Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble
  publication-title: Phys. Rev. Lett.
– start-page: 023905
  year: 2016
  ident: c14
  article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity
  publication-title: J. Appl. Phys.
– start-page: 072402
  year: 2016
  ident: c7
  article-title: Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system
  publication-title: Appl. Phys. Lett.
– start-page: 033502
  year: 2021
  ident: c21
  article-title: Strong magnon–photon coupling with chip-integrated yig in the zero-temperature limit
  publication-title: Appl. Phys. Lett.
– start-page: 243906
  year: 2014
  ident: c18
  article-title: Study of photon–magnon coupling in a YIG-film split-ring resonant system
  publication-title: J. Appl. Phys.
– start-page: 054433
  year: 2016
  ident: c6
  article-title: Spin pumping in strongly coupled magnon-photon systems
  publication-title: Phys. Rev. B
– start-page: 214411
  year: 2017
  ident: c36
  article-title: Topological properties of a coupled spin-photon system induced by damping
  publication-title: Phys. Rev. B
– start-page: 156401
  year: 2014
  ident: c2
  article-title: Strongly coupled magnons and cavity microwave photons
  publication-title: Phys. Rev. Lett.
– start-page: 094423
  year: 2015
  ident: c13
  article-title: Exchange magnon-polaritons in microwave cavities
  publication-title: Phys. Rev. B
– start-page: 305003
  year: 2019
  ident: c27
  article-title: Control of photon-magnon coupling with a nonuniform microwave magnetic field
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1
  year: 2016
  ident: c39
  article-title: Experimental investigation of temperature-dependent gilbert damping in Permalloy thin films
  publication-title: Sci. Rep.
– start-page: 107702
  year: 2019
  ident: c34
  article-title: Strong coupling between microwave photons and nanomagnet magnons
  publication-title: Phys. Rev. Lett.
– start-page: 1
  year: 2016
  ident: c38
  article-title: Control of the magnon–photon coupling
  publication-title: IEEE Trans. Magn.
– volume: 2
  start-page: 013154
  year: 2020
  ident: 2023081121372705000_c28
  article-title: Control of the coupling strength and linewidth of a cavity magnon-polariton
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.013154
– volume: 123
  start-page: 127202
  year: 2019
  ident: 2023081121372705000_c8
  article-title: Nonreciprocity and unidirectional invisibility in cavity magnonics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.127202
– volume: 6
  start-page: 8914
  year: 2015
  ident: 2023081121372705000_c9
  article-title: Magnon dark modes and gradient memory
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9914
– ident: 2023081121372705000_c23
  doi: 10.1103/PhysRevApplied.20.024039
– volume: 99
  start-page: 224408
  year: 2019
  ident: 2023081121372705000_c26
  article-title: Thermally induced monochromatic microwave generation in magnon polaritons
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.224408
– volume: 109
  start-page: 032404
  year: 2016
  ident: 2023081121372705000_c24
  article-title: Voltage control of cavity magnon polariton
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4959140
– volume: 7
  start-page: 114
  year: 2021
  ident: 2023081121372705000_c35
  article-title: Connecting fano interference and the Jaynes-Cummings model in cavity magnonics
  publication-title: npj Quantum Inf.
  doi: 10.1038/s41534-021-00445-8
– volume: 95
  start-page: 214411
  year: 2017
  ident: 2023081121372705000_c36
  article-title: Topological properties of a coupled spin-photon system induced by damping
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.214411
– volume: 113
  start-page: 083603
  year: 2014
  ident: 2023081121372705000_c4
  article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.083603
– volume: 99
  start-page: 024432
  year: 2019
  ident: 2023081121372705000_c32
  article-title: Spin absorption at a ferromagnetic-metal/platinum-oxide interface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.024432
– volume: 500
  start-page: 166319
  year: 2020
  ident: 2023081121372705000_c40
  article-title: Temperature dependence of spin pumping and inverse spin hall effect in Permalloy/Pt bilayers
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.166319
– volume: 109
  start-page: 072402
  year: 2016
  ident: 2023081121372705000_c7
  article-title: Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4961052
– volume: 96
  start-page: 064407
  year: 2017
  ident: 2023081121372705000_c25
  article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.064407
– volume: 94
  start-page: 117201
  year: 2005
  ident: 2023081121372705000_c30
  article-title: Tailoring size effects on the exchange bias in ferromagnetic-antiferromagnetic < 100 nm nanostructures
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.94.117201
– volume: 94
  start-page: 054403
  year: 2016
  ident: 2023081121372705000_c20
  article-title: Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.054403
– volume: 119
  start-page: 033502
  year: 2021
  ident: 2023081121372705000_c21
  article-title: Strong magnon–photon coupling with chip-integrated yig in the zero-temperature limit
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/5.0054837
– volume: 123
  start-page: 107701
  year: 2019
  ident: 2023081121372705000_c33
  article-title: Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.107701
– volume: 114
  start-page: 227201
  year: 2015
  ident: 2023081121372705000_c37
  article-title: Spin pumping in electrodynamically coupled magnon-photon systems
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.227201
– volume: 119
  start-page: 023905
  year: 2016
  ident: 2023081121372705000_c14
  article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4939134
– volume: 121
  start-page: 137203
  year: 2018
  ident: 2023081121372705000_c3
  article-title: Level attraction due to dissipative magnon-photon coupling
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.137203
– volume: 106
  start-page: 036601
  year: 2011
  ident: 2023081121372705000_c42
  article-title: Spin-torque ferromagnetic resonance induced by the spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.036601
– volume: 123
  start-page: 107702
  year: 2019
  ident: 2023081121372705000_c34
  article-title: Strong coupling between microwave photons and nanomagnet magnons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.107702
– volume: 99
  start-page: 34426
  year: 2019
  ident: 2023081121372705000_c15
  article-title: Abnormal anticrossing effect in photon-magnon coupling
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.134426
– volume: 101
  start-page: 036601
  year: 2008
  ident: 2023081121372705000_c41
  article-title: Electric manipulation of spin relaxation using the spin Hall effect
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.036601
– volume: 107
  start-page: 220501
  year: 2011
  ident: 2023081121372705000_c11
  article-title: Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.220501
– volume: 98
  start-page: 127601
  year: 2007
  ident: 2023081121372705000_c31
  article-title: Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.98.127601
– volume: 98
  start-page: 024406
  year: 2018
  ident: 2023081121372705000_c29
  article-title: Synchronized spin-photon coupling in a microwave cavity
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.024406
– volume: 6
  start-page: 1
  year: 2016
  ident: 2023081121372705000_c39
  article-title: Experimental investigation of temperature-dependent gilbert damping in Permalloy thin films
  publication-title: Sci. Rep.
  doi: 10.1038/srep22890
– volume: 113
  start-page: 156401
  year: 2014
  ident: 2023081121372705000_c2
  article-title: Strongly coupled magnons and cavity microwave photons
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.156401
– volume: 3
  start-page: 3
  year: 2020
  ident: 2023081121372705000_c5
  article-title: Introducing coherent time control to cavity magnon-polariton modes
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0266-x
– volume: 349
  start-page: 405
  year: 2015
  ident: 2023081121372705000_c16
  article-title: Coherent coupling between a ferromagnetic magnon and a superconducting qubit
  publication-title: Science
  doi: 10.1126/science.aaa3693
– volume: 128
  start-page: 047701
  year: 2022
  ident: 2023081121372705000_c22
  article-title: Coherent coupling of two remote magnonic resonators mediated by superconducting circuits
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.047701
– volume: 52
  start-page: 305003
  year: 2019
  ident: 2023081121372705000_c27
  article-title: Control of photon-magnon coupling with a nonuniform microwave magnetic field
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/1361-6463/ab1f42
– volume: 94
  start-page: 054433
  year: 2016
  ident: 2023081121372705000_c6
  article-title: Spin pumping in strongly coupled magnon-photon systems
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.054433
– volume: 11
  start-page: 054023
  year: 2019
  ident: 2023081121372705000_c17
  article-title: Control of the magnon-photon level attraction in a planar cavity
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.11.054023
– volume: 91
  start-page: 094423
  year: 2015
  ident: 2023081121372705000_c13
  article-title: Exchange magnon-polaritons in microwave cavities
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.91.094423
– volume: 52
  start-page: 1
  year: 2016
  ident: 2023081121372705000_c38
  article-title: Control of the magnon–photon coupling
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2016.2527691
– volume: 111
  start-page: 127003
  year: 2013
  ident: 2023081121372705000_c1
  article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.111.127003
– volume: 116
  start-page: 243906
  year: 2014
  ident: 2023081121372705000_c18
  article-title: Study of photon–magnon coupling in a YIG-film split-ring resonant system
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4904857
– volume: 21
  start-page: 065001
  year: 2019
  ident: 2023081121372705000_c19
  article-title: Level attraction and level repulsion of magnon coupled with a cavity anti-resonance
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab2482
– volume: 2
  start-page: 054002
  year: 2014
  ident: 2023081121372705000_c12
  article-title: High-cooperativity cavity QED with magnons at microwave frequencies
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.2.054002
– volume: 12
  start-page: 070101
  year: 2019
  ident: 2023081121372705000_c10
  article-title: Hybrid quantum systems based on magnonics
  publication-title: Appl. Phys. Express
  doi: 10.7567/1882-0786/ab248d
SSID ssj0005233
Score 2.4447045
Snippet In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Coupling
Direct current
Dispersion
Dissipation
Ferrous alloys
Hybrid systems
Magnetic alloys
Magnons
Microwave transmission
Modulation
Photons
Superconductivity
Temperature effects
Title Control of magnon–photon coupling by a direct current in a Py/Pt-superconducting cavity hybrid system
URI http://dx.doi.org/10.1063/5.0153616
https://www.proquest.com/docview/2821722223
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60RbQPolVxa5VBfRCW2CQzmU0eS7UUqbLgFra-hExmpruwbMJuIqxP_gf_ob_EM5dctItUX8LuYRjCnC8n3zk5F4ReZ6BmRRLqJQJ8Eyp93-O51NPcBRWZkHrcsc62-MTOLuiHaTTtZmya6pKKv82_ba0r-R-tggz0qqtk_0Gz7aYggN-gX7iChuF6Ix2fuDxz_Y1cZ8wtm9QFUs4K3S8jL-rS1JsDycyG9vU1zF1LpvkSZGM45NNx5a3rUq7AN9btX00dbmaGSsw2uqLL9XvuE9mGvdrIyHq4MGVBLUH_MstMDPay7r79uMj0uRSFe10ay2fM3hRQ2somcyu8rJV0UheXCE0WoAteNLaWeCxx7WSlNa_-SEdFncVt7G8Y9oBm_1wz7MCk4Dh0i9WIsOCP5tnmdZyVi9toNwRvAczd7vG7j-efe7k-hDSjE_UtNS2mGDlqt_ydmHTexl2gIjYrokc8Jg_Qfecx4GOr_ofollzuo71eH8l9dGdstfAIXTlI4EJhC4mf339YMOAGDJhvcIYtGLADA54vQTbeHF2HArZQwBYK2ELhMbo4fT85OfPcLA0vJ-Go8iiTPqVSBJxEGVBkloTgzOYio4pxQVWoW_XFunkcUGAeKyZ5PMoFkPuQjbivyBO0A_csnyIcKJXkuTT0nNJMxiISeRyzKFCjkAd8gN40B5k2R6fnnSxSk_DASBql7swH6GW7tLTdVbYtOmy0kbqHb52GsZ6spsntAL1qNfS3Tbas-lqsuhVpKdTBjfZ6hu51gD9EO9Wqls-Bmlb8hQPeL490j-o
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+magnon%E2%80%93photon+coupling+by+a+direct+current+in+a+Py%2FPt-superconducting+cavity+hybrid+system&rft.jtitle=Applied+physics+letters&rft.au=Zhao%2C+Yue&rft.au=Wang%2C+Ledong&rft.au=Han%2C+Xiang&rft.au=Tian%2C+Yufeng&rft.date=2023-05-29&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=22&rft_id=info:doi/10.1063%2F5.0153616&rft.externalDocID=apl
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon