Control of magnon–photon coupling by a direct current in a Py/Pt-superconducting cavity hybrid system
In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation ra...
Saved in:
Published in | Applied physics letters Vol. 122; no. 22 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
29.05.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation rate. It is demonstrated that decreasing the magnon dissipation rate can lead to an enhancement in magnon–photon coupling. By applying a direct current into the Permalloy/platinum bilayer, we achieve modulation of the coupling in the Purcell regime. The magnon–photon coupling is enhanced with the increasing current, which is related to the decrease in the magnon dissipation rate due to the thermal effect of the current. In addition, we establish an approach to obtain the coupling strength from the coupled microwave photon dispersion and linewidth. The electrical control of the Permalloy-superconducting cavity coupled system will play an important role in manipulating integrated hybrid magnon–photon devices. |
---|---|
AbstractList | In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the magnon–photon coupled system in the Purcell regime, in which the modulation of the coupled system can be achieved by varying the magnon dissipation rate. It is demonstrated that decreasing the magnon dissipation rate can lead to an enhancement in magnon–photon coupling. By applying a direct current into the Permalloy/platinum bilayer, we achieve modulation of the coupling in the Purcell regime. The magnon–photon coupling is enhanced with the increasing current, which is related to the decrease in the magnon dissipation rate due to the thermal effect of the current. In addition, we establish an approach to obtain the coupling strength from the coupled microwave photon dispersion and linewidth. The electrical control of the Permalloy-superconducting cavity coupled system will play an important role in manipulating integrated hybrid magnon–photon devices. |
Author | Zhao, Yue Tian, Yufeng Yan, Shishen Zhai, Ya Bai, Lihui Wang, Ledong Han, Xiang Guo, Qingjie |
Author_xml | – sequence: 1 givenname: Yue surname: Zhao fullname: Zhao, Yue organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 2 givenname: Ledong surname: Wang fullname: Wang, Ledong organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 3 givenname: Xiang surname: Han fullname: Han, Xiang organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 4 givenname: Yufeng surname: Tian fullname: Tian, Yufeng organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 5 givenname: Shishen surname: Yan fullname: Yan, Shishen organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University – sequence: 6 givenname: Qingjie surname: Guo fullname: Guo, Qingjie organization: Department of Physics, Southeast University – sequence: 7 givenname: Ya surname: Zhai fullname: Zhai, Ya organization: Department of Physics, Southeast University – sequence: 8 givenname: Lihui surname: Bai fullname: Bai, Lihui organization: School of Physics, State Key Laboratory of Crystal Materials, Shandong University |
BookMark | eNp9kM1KAzEQx4NUsK0efIOAJ4Vt87HJbo9S_IKCPeg5ZLPZNqVN1iRb2Jvv4Bv6JG5pVVBxLsMMv_kN_AegZ53VAJxjNMKI0zEbIcwox_wI9DHKsoRinPdAHyFEEz5h-AQMQlh1IyOU9sFi6mz0bg1dBTdy0dneX9_qpYvOQuWaem3sAhYtlLA0XqsIVeO9thEa2-3m7Xgek9DU2itny0bFHa7k1sQWLtvCmxKGNkS9OQXHlVwHfXboQ_B8e_M0vU9mj3cP0-tZoijJYpJyjdJUl7igTKaU8QlBOVelTCtelGlFMEsnOaccMY6KvOK6yDNVUsIJzwpU0SG42Htr714aHaJYucbb7qUgOcEZ6Yp21OWeUt6F4HUlam820rcCI7HLUTBxyLFjxz9YZaKMZpebNOs_L672F-GT_NJvnf8GRV1W_8G_zR_6DpMc |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1002_qute_202300420 crossref_primary_10_1088_2515_7639_ad2984 |
Cites_doi | 10.1103/PhysRevResearch.2.013154 10.1103/PhysRevLett.123.127202 10.1038/ncomms9914 10.1103/PhysRevApplied.20.024039 10.1103/PhysRevB.99.224408 10.1063/1.4959140 10.1038/s41534-021-00445-8 10.1103/PhysRevB.95.214411 10.1103/PhysRevLett.113.083603 10.1103/PhysRevB.99.024432 10.1016/j.jmmm.2019.166319 10.1063/1.4961052 10.1103/PhysRevB.96.064407 10.1103/PhysRevLett.94.117201 10.1103/PhysRevB.94.054403 10.1063/5.0054837 10.1103/PhysRevLett.123.107701 10.1103/PhysRevLett.114.227201 10.1063/1.4939134 10.1103/PhysRevLett.121.137203 10.1103/PhysRevLett.106.036601 10.1103/PhysRevLett.123.107702 10.1103/PhysRevB.99.134426 10.1103/PhysRevLett.101.036601 10.1103/PhysRevLett.107.220501 10.1103/PhysRevLett.98.127601 10.1103/PhysRevB.98.024406 10.1038/srep22890 10.1103/PhysRevLett.113.156401 10.1038/s42005-019-0266-x 10.1126/science.aaa3693 10.1103/PhysRevLett.128.047701 10.1088/1361-6463/ab1f42 10.1103/PhysRevB.94.054433 10.1103/PhysRevApplied.11.054023 10.1103/PhysRevB.91.094423 10.1109/TMAG.2016.2527691 10.1103/PhysRevLett.111.127003 10.1063/1.4904857 10.1088/1367-2630/ab2482 10.1103/PhysRevApplied.2.054002 10.7567/1882-0786/ab248d |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0153616 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0153616 apl |
GrantInformation_xml | – fundername: National Natural Science Foundation of China-Shandong Joint Fund grantid: NSFC No. 12274260 funderid: 10.13039/100017055 – fundername: The Shandong Provincial Natural Science Foundation (No. ZR2019JQ02) |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-46e044ed1b35a435692086cda4f6bd4f2154986360560b8f6eb87cd326267b0f3 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 15:39:30 EDT 2025 Tue Jul 01 01:08:31 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Tue Jul 04 19:18:46 EDT 2023 Fri Jun 21 00:12:32 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 22 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-46e044ed1b35a435692086cda4f6bd4f2154986360560b8f6eb87cd326267b0f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-7327-9968 0000-0001-8979-3577 0000-0002-9006-9575 0000-0003-4934-1167 0000-0003-0791-1635 |
PQID | 2821722223 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | crossref_citationtrail_10_1063_5_0153616 proquest_journals_2821722223 scitation_primary_10_1063_5_0153616 crossref_primary_10_1063_5_0153616 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230529 2023-05-29 |
PublicationDateYYYYMMDD | 2023-05-29 |
PublicationDate_xml | – month: 05 year: 2023 text: 20230529 day: 29 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Zhao, Song, Yang, Su, Yuan, Parkin, Shi, Han (c39) 2016 Martín-Rio, Pomar, Balcells, Bozzo, Frontera, Martínez (c40) 2020 Tabuchi, Ishino, Noguchi, Ishikawa, Yamazaki, Usami, Nakamura (c16) 2015 Liu, Moriyama, Ralph, Buhrman (c42) 2011 Asami, An, Musha, Gao, Kuroda, Ando (c32) 2019 Harder, Yang, Yao, Yu, Rao, Gui, Stamps, Hu (c3) 2018 Maier-Flaig, Harder, Gross, Huebl, Gönnenwein (c6) 2016 Gollwitzer, Bocklage, Röhlsberger, Meier (c35) 2021 Tabuchi, Ishino, Ishikawa, Yamazaki, Usami, Nakamura (c4) 2014 Goryachev, Farr, Creedon, Fan, Kostylev, Tobar (c12) 2014 Zhang, Zou, Zhu, Marquardt, Jiang, Tang (c9) 2015 Huebl, Zollitsch, Lotze, Hocke, Greifenstein, Marx, Gross, Goennenwein (c1) 2013 Zhang, Zou, Jiang, Tang (c2) 2014 Klingler, Maier-Flaig, Gross, Hu, Huebl, Gönnenwein, Weiler (c7) 2016 Castel, Jeunehomme, Youssef, Vukadinovic, Manchec, Dejene, Bauer (c25) 2017 Ando, Takahashi, Harii, Sasage, Ieda, Maekawa, Saitoh (c41) 2008 Lachance-Quirion, Tabuchi, Gloppe, Usami, Nakamura (c10) 2019 Grigoryan, Xia (c26) 2019 De Loubens, Naletov, Klein, Youssef, Boust, Vukadinovic (c31) 2007 Bai, Blanchette, Harder, Chen, Fan, Xiao, Hu (c38) 2016 Cao, Yan, Huebl, Goennenwein, Bauer (c13) 2015 Baity, Bozhko, Macêdo, Smith, Holland, Danilin, Seferai, Barbosa, Peroor, Goldman (c21) 2021 Li, Yefremenko, Lisovenko, Trevillian, Polakovic, Cecil, Barry, Pearson, Divan, Tyberkevych (c22) 2022 Wolz, Stehli, Schneider, Boventer, Macêdo, Ustinov, Kläui, Weides (c5) 2020 Wang, Rao, Yang, Xu, Gui, Yao, You, Hu (c8) 2019 Boventer, Dörflinger, Wolz, Macêdo, Lebrun, Kläui, Weides (c28) 2020 Hou, Liu (c34) 2019 Bhoi, Cliff, Maksymov, Kostylev, Aiyar, Venkataramani, Prasad, Stamps (c18) 2014 Kubo, Grezes, Dewes, Umeda, Isoya, Sumiya, Morishita, Abe, Onoda, Ohshima (c11) 2011 Rao, Yu, Zhao, Gui, Fan, Xue, Hu (c19) 2019 Baltz, Sort, Landis, Rodmacq, Dieny (c30) 2005 Harder, Hyde, Bai, Match, Hu (c20) 2016 Shi, Zhang, Zhang, Jiang, Chai (c27) 2019 Yang, Rao, Gui, Yao, Lu, Hu (c17) 2019 Li, Polakovic, Wang, Xu, Lendinez, Zhang, Ding, Khaire, Saglam, Divan (c33) 2019 Bhoi, Kim, Jang, Kim, Yang, Cho, Kim (c15) 2019 Zhang, Zou, Jiang, Tang (c14) 2016 Kaur, Yao, Rao, Gui, Hu (c24) 2016 Harder, Bai, Hyde, Hu (c36) 2017 Bai, Harder, Chen, Fan, Xiao, Hu (c37) 2015 Grigoryan, Shen, Xia (c29) 2018 (2023081121372705000_c7) 2016; 109 (2023081121372705000_c38) 2016; 52 (2023081121372705000_c42) 2011; 106 (2023081121372705000_c33) 2019; 123 (2023081121372705000_c4) 2014; 113 (2023081121372705000_c31) 2007; 98 (2023081121372705000_c19) 2019; 21 (2023081121372705000_c1) 2013; 111 2023081121372705000_c23 (2023081121372705000_c39) 2016; 6 (2023081121372705000_c24) 2016; 109 (2023081121372705000_c28) 2020; 2 (2023081121372705000_c9) 2015; 6 (2023081121372705000_c27) 2019; 52 (2023081121372705000_c3) 2018; 121 (2023081121372705000_c5) 2020; 3 (2023081121372705000_c29) 2018; 98 (2023081121372705000_c14) 2016; 119 (2023081121372705000_c17) 2019; 11 (2023081121372705000_c30) 2005; 94 (2023081121372705000_c13) 2015; 91 (2023081121372705000_c41) 2008; 101 (2023081121372705000_c10) 2019; 12 (2023081121372705000_c2) 2014; 113 (2023081121372705000_c15) 2019; 99 (2023081121372705000_c16) 2015; 349 (2023081121372705000_c11) 2011; 107 (2023081121372705000_c32) 2019; 99 (2023081121372705000_c25) 2017; 96 (2023081121372705000_c35) 2021; 7 (2023081121372705000_c20) 2016; 94 (2023081121372705000_c26) 2019; 99 (2023081121372705000_c37) 2015; 114 (2023081121372705000_c36) 2017; 95 (2023081121372705000_c12) 2014; 2 (2023081121372705000_c40) 2020; 500 (2023081121372705000_c34) 2019; 123 (2023081121372705000_c6) 2016; 94 (2023081121372705000_c8) 2019; 123 (2023081121372705000_c21) 2021; 119 (2023081121372705000_c18) 2014; 116 (2023081121372705000_c22) 2022; 128 |
References_xml | – start-page: 114 year: 2021 ident: c35 article-title: Connecting fano interference and the Jaynes-Cummings model in cavity magnonics publication-title: npj Quantum Inf. – start-page: 047701 year: 2022 ident: c22 article-title: Coherent coupling of two remote magnonic resonators mediated by superconducting circuits publication-title: Phys. Rev. Lett. – start-page: 054403 year: 2016 ident: c20 article-title: Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system publication-title: Phys. Rev. B – start-page: 166319 year: 2020 ident: c40 article-title: Temperature dependence of spin pumping and inverse spin hall effect in Permalloy/Pt bilayers publication-title: J. Magn. Magn. Mater. – start-page: 054002 year: 2014 ident: c12 article-title: High-cooperativity cavity QED with magnons at microwave frequencies publication-title: Phys. Rev. Appl. – start-page: 3 year: 2020 ident: c5 article-title: Introducing coherent time control to cavity magnon-polariton modes publication-title: Commun. Phys. – start-page: 227201 year: 2015 ident: c37 article-title: Spin pumping in electrodynamically coupled magnon-photon systems publication-title: Phys. Rev. Lett. – start-page: 34426 year: 2019 ident: c15 article-title: Abnormal anticrossing effect in photon-magnon coupling publication-title: Phys. Rev. B – start-page: 064407 year: 2017 ident: c25 article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system publication-title: Phys. Rev. B – start-page: 137203 year: 2018 ident: c3 article-title: Level attraction due to dissipative magnon-photon coupling publication-title: Phys. Rev. Lett. – start-page: 405 year: 2015 ident: c16 article-title: Coherent coupling between a ferromagnetic magnon and a superconducting qubit publication-title: Science – start-page: 065001 year: 2019 ident: c19 article-title: Level attraction and level repulsion of magnon coupled with a cavity anti-resonance publication-title: New J. Phys. – start-page: 032404 year: 2016 ident: c24 article-title: Voltage control of cavity magnon polariton publication-title: Appl. Phys. Lett. – start-page: 070101 year: 2019 ident: c10 article-title: Hybrid quantum systems based on magnonics publication-title: Appl. Phys. Express – start-page: 036601 year: 2008 ident: c41 article-title: Electric manipulation of spin relaxation using the spin Hall effect publication-title: Phys. Rev. Lett. – start-page: 107701 year: 2019 ident: c33 article-title: Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices publication-title: Phys. Rev. Lett. – start-page: 127601 year: 2007 ident: c31 article-title: Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks publication-title: Phys. Rev. Lett. – start-page: 224408 year: 2019 ident: c26 article-title: Thermally induced monochromatic microwave generation in magnon polaritons publication-title: Phys. Rev. B – start-page: 036601 year: 2011 ident: c42 article-title: Spin-torque ferromagnetic resonance induced by the spin Hall effect publication-title: Phys. Rev. Lett. – start-page: 083603 year: 2014 ident: c4 article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit publication-title: Phys. Rev. Lett. – start-page: 013154 year: 2020 ident: c28 article-title: Control of the coupling strength and linewidth of a cavity magnon-polariton publication-title: Phys. Rev. Res. – start-page: 117201 year: 2005 ident: c30 article-title: Tailoring size effects on the exchange bias in ferromagnetic-antiferromagnetic < 100 nm nanostructures publication-title: Phys. Rev. Lett. – start-page: 127202 year: 2019 ident: c8 article-title: Nonreciprocity and unidirectional invisibility in cavity magnonics publication-title: Phys. Rev. Lett. – start-page: 054023 year: 2019 ident: c17 article-title: Control of the magnon-photon level attraction in a planar cavity publication-title: Phys. Rev. Appl. – start-page: 024432 year: 2019 ident: c32 article-title: Spin absorption at a ferromagnetic-metal/platinum-oxide interface publication-title: Phys. Rev. B – start-page: 8914 year: 2015 ident: c9 article-title: Magnon dark modes and gradient memory publication-title: Nat. Commun. – start-page: 024406 year: 2018 ident: c29 article-title: Synchronized spin-photon coupling in a microwave cavity publication-title: Phys. Rev. B – start-page: 127003 year: 2013 ident: c1 article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids publication-title: Phys. Rev. Lett. – start-page: 220501 year: 2011 ident: c11 article-title: Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble publication-title: Phys. Rev. Lett. – start-page: 023905 year: 2016 ident: c14 article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity publication-title: J. Appl. Phys. – start-page: 072402 year: 2016 ident: c7 article-title: Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system publication-title: Appl. Phys. Lett. – start-page: 033502 year: 2021 ident: c21 article-title: Strong magnon–photon coupling with chip-integrated yig in the zero-temperature limit publication-title: Appl. Phys. Lett. – start-page: 243906 year: 2014 ident: c18 article-title: Study of photon–magnon coupling in a YIG-film split-ring resonant system publication-title: J. Appl. Phys. – start-page: 054433 year: 2016 ident: c6 article-title: Spin pumping in strongly coupled magnon-photon systems publication-title: Phys. Rev. B – start-page: 214411 year: 2017 ident: c36 article-title: Topological properties of a coupled spin-photon system induced by damping publication-title: Phys. Rev. B – start-page: 156401 year: 2014 ident: c2 article-title: Strongly coupled magnons and cavity microwave photons publication-title: Phys. Rev. Lett. – start-page: 094423 year: 2015 ident: c13 article-title: Exchange magnon-polaritons in microwave cavities publication-title: Phys. Rev. B – start-page: 305003 year: 2019 ident: c27 article-title: Control of photon-magnon coupling with a nonuniform microwave magnetic field publication-title: J. Phys. D: Appl. Phys. – start-page: 1 year: 2016 ident: c39 article-title: Experimental investigation of temperature-dependent gilbert damping in Permalloy thin films publication-title: Sci. Rep. – start-page: 107702 year: 2019 ident: c34 article-title: Strong coupling between microwave photons and nanomagnet magnons publication-title: Phys. Rev. Lett. – start-page: 1 year: 2016 ident: c38 article-title: Control of the magnon–photon coupling publication-title: IEEE Trans. Magn. – volume: 2 start-page: 013154 year: 2020 ident: 2023081121372705000_c28 article-title: Control of the coupling strength and linewidth of a cavity magnon-polariton publication-title: Phys. Rev. Res. doi: 10.1103/PhysRevResearch.2.013154 – volume: 123 start-page: 127202 year: 2019 ident: 2023081121372705000_c8 article-title: Nonreciprocity and unidirectional invisibility in cavity magnonics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.127202 – volume: 6 start-page: 8914 year: 2015 ident: 2023081121372705000_c9 article-title: Magnon dark modes and gradient memory publication-title: Nat. Commun. doi: 10.1038/ncomms9914 – ident: 2023081121372705000_c23 doi: 10.1103/PhysRevApplied.20.024039 – volume: 99 start-page: 224408 year: 2019 ident: 2023081121372705000_c26 article-title: Thermally induced monochromatic microwave generation in magnon polaritons publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.224408 – volume: 109 start-page: 032404 year: 2016 ident: 2023081121372705000_c24 article-title: Voltage control of cavity magnon polariton publication-title: Appl. Phys. Lett. doi: 10.1063/1.4959140 – volume: 7 start-page: 114 year: 2021 ident: 2023081121372705000_c35 article-title: Connecting fano interference and the Jaynes-Cummings model in cavity magnonics publication-title: npj Quantum Inf. doi: 10.1038/s41534-021-00445-8 – volume: 95 start-page: 214411 year: 2017 ident: 2023081121372705000_c36 article-title: Topological properties of a coupled spin-photon system induced by damping publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.214411 – volume: 113 start-page: 083603 year: 2014 ident: 2023081121372705000_c4 article-title: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.083603 – volume: 99 start-page: 024432 year: 2019 ident: 2023081121372705000_c32 article-title: Spin absorption at a ferromagnetic-metal/platinum-oxide interface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.024432 – volume: 500 start-page: 166319 year: 2020 ident: 2023081121372705000_c40 article-title: Temperature dependence of spin pumping and inverse spin hall effect in Permalloy/Pt bilayers publication-title: J. Magn. Magn. Mater. doi: 10.1016/j.jmmm.2019.166319 – volume: 109 start-page: 072402 year: 2016 ident: 2023081121372705000_c7 article-title: Combined Brillouin light scattering and microwave absorption study of magnon-photon coupling in a split-ring resonator/YIG film system publication-title: Appl. Phys. Lett. doi: 10.1063/1.4961052 – volume: 96 start-page: 064407 year: 2017 ident: 2023081121372705000_c25 article-title: Thermal control of the magnon-photon coupling in a notch filter coupled to a yttrium iron garnet/platinum system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.064407 – volume: 94 start-page: 117201 year: 2005 ident: 2023081121372705000_c30 article-title: Tailoring size effects on the exchange bias in ferromagnetic-antiferromagnetic < 100 nm nanostructures publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.94.117201 – volume: 94 start-page: 054403 year: 2016 ident: 2023081121372705000_c20 article-title: Spin dynamical phase and antiresonance in a strongly coupled magnon-photon system publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.054403 – volume: 119 start-page: 033502 year: 2021 ident: 2023081121372705000_c21 article-title: Strong magnon–photon coupling with chip-integrated yig in the zero-temperature limit publication-title: Appl. Phys. Lett. doi: 10.1063/5.0054837 – volume: 123 start-page: 107701 year: 2019 ident: 2023081121372705000_c33 article-title: Strong coupling between magnons and microwave photons in on-chip ferromagnet-superconductor thin-film devices publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.107701 – volume: 114 start-page: 227201 year: 2015 ident: 2023081121372705000_c37 article-title: Spin pumping in electrodynamically coupled magnon-photon systems publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.227201 – volume: 119 start-page: 023905 year: 2016 ident: 2023081121372705000_c14 article-title: Superstrong coupling of thin film magnetostatic waves with microwave cavity publication-title: J. Appl. Phys. doi: 10.1063/1.4939134 – volume: 121 start-page: 137203 year: 2018 ident: 2023081121372705000_c3 article-title: Level attraction due to dissipative magnon-photon coupling publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.137203 – volume: 106 start-page: 036601 year: 2011 ident: 2023081121372705000_c42 article-title: Spin-torque ferromagnetic resonance induced by the spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.036601 – volume: 123 start-page: 107702 year: 2019 ident: 2023081121372705000_c34 article-title: Strong coupling between microwave photons and nanomagnet magnons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.107702 – volume: 99 start-page: 34426 year: 2019 ident: 2023081121372705000_c15 article-title: Abnormal anticrossing effect in photon-magnon coupling publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.134426 – volume: 101 start-page: 036601 year: 2008 ident: 2023081121372705000_c41 article-title: Electric manipulation of spin relaxation using the spin Hall effect publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.036601 – volume: 107 start-page: 220501 year: 2011 ident: 2023081121372705000_c11 article-title: Hybrid quantum circuit with a superconducting qubit coupled to a spin ensemble publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.220501 – volume: 98 start-page: 127601 year: 2007 ident: 2023081121372705000_c31 article-title: Magnetic resonance studies of the fundamental spin-wave modes in individual submicron Cu/NiFe/Cu perpendicularly magnetized disks publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.98.127601 – volume: 98 start-page: 024406 year: 2018 ident: 2023081121372705000_c29 article-title: Synchronized spin-photon coupling in a microwave cavity publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.024406 – volume: 6 start-page: 1 year: 2016 ident: 2023081121372705000_c39 article-title: Experimental investigation of temperature-dependent gilbert damping in Permalloy thin films publication-title: Sci. Rep. doi: 10.1038/srep22890 – volume: 113 start-page: 156401 year: 2014 ident: 2023081121372705000_c2 article-title: Strongly coupled magnons and cavity microwave photons publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.156401 – volume: 3 start-page: 3 year: 2020 ident: 2023081121372705000_c5 article-title: Introducing coherent time control to cavity magnon-polariton modes publication-title: Commun. Phys. doi: 10.1038/s42005-019-0266-x – volume: 349 start-page: 405 year: 2015 ident: 2023081121372705000_c16 article-title: Coherent coupling between a ferromagnetic magnon and a superconducting qubit publication-title: Science doi: 10.1126/science.aaa3693 – volume: 128 start-page: 047701 year: 2022 ident: 2023081121372705000_c22 article-title: Coherent coupling of two remote magnonic resonators mediated by superconducting circuits publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.047701 – volume: 52 start-page: 305003 year: 2019 ident: 2023081121372705000_c27 article-title: Control of photon-magnon coupling with a nonuniform microwave magnetic field publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/1361-6463/ab1f42 – volume: 94 start-page: 054433 year: 2016 ident: 2023081121372705000_c6 article-title: Spin pumping in strongly coupled magnon-photon systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.054433 – volume: 11 start-page: 054023 year: 2019 ident: 2023081121372705000_c17 article-title: Control of the magnon-photon level attraction in a planar cavity publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.11.054023 – volume: 91 start-page: 094423 year: 2015 ident: 2023081121372705000_c13 article-title: Exchange magnon-polaritons in microwave cavities publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.91.094423 – volume: 52 start-page: 1 year: 2016 ident: 2023081121372705000_c38 article-title: Control of the magnon–photon coupling publication-title: IEEE Trans. Magn. doi: 10.1109/TMAG.2016.2527691 – volume: 111 start-page: 127003 year: 2013 ident: 2023081121372705000_c1 article-title: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.111.127003 – volume: 116 start-page: 243906 year: 2014 ident: 2023081121372705000_c18 article-title: Study of photon–magnon coupling in a YIG-film split-ring resonant system publication-title: J. Appl. Phys. doi: 10.1063/1.4904857 – volume: 21 start-page: 065001 year: 2019 ident: 2023081121372705000_c19 article-title: Level attraction and level repulsion of magnon coupled with a cavity anti-resonance publication-title: New J. Phys. doi: 10.1088/1367-2630/ab2482 – volume: 2 start-page: 054002 year: 2014 ident: 2023081121372705000_c12 article-title: High-cooperativity cavity QED with magnons at microwave frequencies publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.2.054002 – volume: 12 start-page: 070101 year: 2019 ident: 2023081121372705000_c10 article-title: Hybrid quantum systems based on magnonics publication-title: Appl. Phys. Express doi: 10.7567/1882-0786/ab248d |
SSID | ssj0005233 |
Score | 2.4447045 |
Snippet | In this work, using a Permalloy film and a superconducting cavity, we highlight the unique dispersion in the microwave transmission properties of the... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Coupling Direct current Dispersion Dissipation Ferrous alloys Hybrid systems Magnetic alloys Magnons Microwave transmission Modulation Photons Superconductivity Temperature effects |
Title | Control of magnon–photon coupling by a direct current in a Py/Pt-superconducting cavity hybrid system |
URI | http://dx.doi.org/10.1063/5.0153616 https://www.proquest.com/docview/2821722223 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60RbQPolVxa5VBfRCW2CQzmU0eS7UUqbLgFra-hExmpruwbMJuIqxP_gf_ob_EM5dctItUX8LuYRjCnC8n3zk5F4ReZ6BmRRLqJQJ8Eyp93-O51NPcBRWZkHrcsc62-MTOLuiHaTTtZmya6pKKv82_ba0r-R-tggz0qqtk_0Gz7aYggN-gX7iChuF6Ix2fuDxz_Y1cZ8wtm9QFUs4K3S8jL-rS1JsDycyG9vU1zF1LpvkSZGM45NNx5a3rUq7AN9btX00dbmaGSsw2uqLL9XvuE9mGvdrIyHq4MGVBLUH_MstMDPay7r79uMj0uRSFe10ay2fM3hRQ2somcyu8rJV0UheXCE0WoAteNLaWeCxx7WSlNa_-SEdFncVt7G8Y9oBm_1wz7MCk4Dh0i9WIsOCP5tnmdZyVi9toNwRvAczd7vG7j-efe7k-hDSjE_UtNS2mGDlqt_ydmHTexl2gIjYrokc8Jg_Qfecx4GOr_ofollzuo71eH8l9dGdstfAIXTlI4EJhC4mf339YMOAGDJhvcIYtGLADA54vQTbeHF2HArZQwBYK2ELhMbo4fT85OfPcLA0vJ-Go8iiTPqVSBJxEGVBkloTgzOYio4pxQVWoW_XFunkcUGAeKyZ5PMoFkPuQjbivyBO0A_csnyIcKJXkuTT0nNJMxiISeRyzKFCjkAd8gN40B5k2R6fnnSxSk_DASBql7swH6GW7tLTdVbYtOmy0kbqHb52GsZ6spsntAL1qNfS3Tbas-lqsuhVpKdTBjfZ6hu51gD9EO9Wqls-Bmlb8hQPeL490j-o |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Control+of+magnon%E2%80%93photon+coupling+by+a+direct+current+in+a+Py%2FPt-superconducting+cavity+hybrid+system&rft.jtitle=Applied+physics+letters&rft.au=Zhao%2C+Yue&rft.au=Wang%2C+Ledong&rft.au=Han%2C+Xiang&rft.au=Tian%2C+Yufeng&rft.date=2023-05-29&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=22&rft_id=info:doi/10.1063%2F5.0153616&rft.externalDocID=apl |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |