Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices

We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separ...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 119; no. 21
Main Authors Lee, Daehun, Meyer, Shawn, Gong, Songbin, Lu, Ruochen, Lai, Keji
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 22.11.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separately analyze forward and backward propagating waves and quantitatively evaluate the propagation loss. Our work provides insightful information on the propagation, diffraction, and attenuation in piezoelectric thin films, which is highly desirable for designing and optimizing phononic devices for microwave signal processing.
AbstractList We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separately analyze forward and backward propagating waves and quantitatively evaluate the propagation loss. Our work provides insightful information on the propagation, diffraction, and attenuation in piezoelectric thin films, which is highly desirable for designing and optimizing phononic devices for microwave signal processing.
Author Lee, Daehun
Gong, Songbin
Lu, Ruochen
Meyer, Shawn
Lai, Keji
Author_xml – sequence: 1
  givenname: Daehun
  surname: Lee
  fullname: Lee, Daehun
  organization: Department of Physics, University of Texas at Austin
– sequence: 2
  givenname: Shawn
  surname: Meyer
  fullname: Meyer, Shawn
  organization: Department of Physics, University of Texas at Austin
– sequence: 3
  givenname: Songbin
  surname: Gong
  fullname: Gong, Songbin
  organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign
– sequence: 4
  givenname: Ruochen
  surname: Lu
  fullname: Lu, Ruochen
  organization: Department of Electrical and Computer Engineering, University of Texas at Austin
– sequence: 5
  givenname: Keji
  surname: Lai
  fullname: Lai, Keji
  organization: Department of Physics, University of Texas at Austin
BookMark eNqdkE1LAzEQhoNUsK0e_AcBTwpb853uUYpfIHhRT0LI7iY0sk3WJNuiv97VVgTx5Glm4HnfmXknYOSDNwAcYzTDSNBzPkNIUk7RHhhjJGVBMZ6PwBghRAtRcnwAJim9DCMnlI7B85NLvW7du84ueBgs1HXoU3Y17MLGRGjbsIHOw9SnzvjGNDAvnS-sa1ewdUPfr6B3odLZwG4ZhnMGaWPWrjbpEOxb3SZztKtT8Hh1-bC4Ke7ur28XF3dFTYnMBSOsxJIhxhvOOUYlI6LUSMiKsYYLZCS2ZYNlJQiba2RxRUgthWBaV8ZoTqfgZOvbxfDam5TVS-ijH1YqIhAWcy4oHajzLVXHkFI0VtUuf72do3atwkh9Rqi42kU4KE5_KbroVjq-_cmebdn07fo_eB3iD6i6xtIPNYmOEw
CODEN APPLAB
CitedBy_id crossref_primary_10_1103_RevModPhys_95_025003
crossref_primary_10_1088_1361_6463_ac855b
crossref_primary_10_1063_5_0227921
crossref_primary_10_1038_s41467_023_36936_9
crossref_primary_10_1063_5_0143247
Cites_doi 10.1016/j.rinp.2020.103082
10.1038/299044a0
10.1063/1.5126428
10.1364/OL.420250
10.1109/JMEMS.2019.2922935
10.1103/PhysRevApplied.16.034047
10.1063/1.107016
10.1109/JMEMS.2021.3092724
10.1109/TUFFC.889
10.1109/TMTT.2020.3027694
10.1063/1.111552
10.1109/JMW.2021.3064825
10.1063/1.4995008
10.1063/1.2840183
10.1063/1.3563707
10.1063/1.121701
10.1063/1.5013161
10.1109/MMM.2020.3008240
10.1103/PhysRevApplied.9.061002
10.1109/MMM.2015.2429513
10.1109/MMM.2015.2429512
10.1109/ACCESS.2019.2939938
10.1007/BF00614817
ContentType Journal Article
Copyright Author(s)
2021 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2021 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0073530
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0073530
apl
GrantInformation_xml – fundername: Welch Foundation
  grantid: F-1814
  funderid: https://doi.org/10.13039/100000928
– fundername: Division of Materials Research
  grantid: DMR-2004536
  funderid: https://doi.org/10.13039/100000078
– fundername: Defense Advanced Research Projects Agency
  grantid: N-ZERO
  funderid: https://doi.org/10.13039/100000185
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-4249174045d5551094269a067b44d560e71f9d17b6248a0f1b22c7664aabeea53
ISSN 0003-6951
IngestDate Mon Jun 30 04:15:50 EDT 2025
Tue Jul 01 01:08:12 EDT 2025
Thu Apr 24 23:05:10 EDT 2025
Thu Jun 23 13:36:14 EDT 2022
Fri Jun 21 00:13:53 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-4249174045d5551094269a067b44d560e71f9d17b6248a0f1b22c7664aabeea53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0025-3924
0000-0002-4218-0201
0000-0002-4297-0393
0000-0001-8147-1282
PQID 2601685633
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0073530
crossref_citationtrail_10_1063_5_0073530
crossref_primary_10_1063_5_0073530
proquest_journals_2601685633
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20211122
2021-11-22
PublicationDateYYYYMMDD 2021-11-22
PublicationDate_xml – month: 11
  year: 2021
  text: 20211122
  day: 22
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2021
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chen, Xu, Zhang, Wong, Zhang, Pun, Wang (c13) 2021
Roshchupkin, Fournier, Brunel, Plotitsyna, Sorokin (c21) 1992
Lu, Yang, Gong (c29) 2021
Kokkonen, Kaivola (c17) 2008
Ghosh, Maeder, Baker, Chandramouli (c3) 2019
Bauer, Eggs, Wagner, Hagn (c2) 2015
Whatmore, Goddard, Tanner, Clark (c19) 1982
Kuznetsova, Zaitsev, Teplykh, Joshi, Kuznetsova (c27) 2008
Yang, Lu, Gao, Gong (c11) 2019
Sarabalis, Dahmani, Cleland, Safavi-Naeini (c12) 2020
Zheng, Wu, Wu, Lai (c23) 2018
Ruby (c1) 2015
Weis, Gaylord (c26) 1985
Yang, Lu, Gao, Gong (c9) 2020
Shen, Han, Zou, Tang (c18) 2017
Roshchupkin, Brunel, Tucoulou, Bigler, Sorokin (c22) 1994
Mahjoubfar, Goda, Ayazi, Fard, Kim, Jalali (c15) 2011
Lee, Liu, Zheng, Ma, Li, Li, Lai (c25) 2021
Yao, Liu, Zhang, Liu, Liu (c10) 2020
Zolotoyabko, Shilo, Sauer, Pernot, Baruchel (c20) 1998
Gong, Lu, Yang, Gao, Hassanien (c7) 2021
Xu, Fu, Zou, Shen, Tang (c16) 2018
Zheng, Shao, Loncar, Lai (c24) 2020
(2023061814510224400_c27) 2008; 55
(2023061814510224400_c19) 1982; 299
(2023061814510224400_c3) 2019; 7
(2023061814510224400_c24) 2020; 21
(2023061814510224400_c2) 2015; 16
(2023061814510224400_c12) 2020; 127
(2023061814510224400_c4) 2000
(2023061814510224400_c5) 2009
(2023061814510224400_c10) 2020; 17
(2023061814510224400_c11) 2019; 28
(2023061814510224400_c6) 1988
(2023061814510224400_c23) 2018; 9
(2023061814510224400_c8) 2008
(2023061814510224400_c9) 2020; 68
(2023061814510224400_c26) 1985; 37
(2023061814510224400_c15) 2011; 98
(2023061814510224400_c17) 2008; 92
(2023061814510224400_c29) 2021; 30
(2023061814510224400_c20) 1998; 73
(2023061814510224400_c1) 2015; 16
(2023061814510224400_c18) 2017; 88
(2023061814510224400_c28) 2021
(2023061814510224400_c14) 1996
(2023061814510224400_c21) 1992; 60
(2023061814510224400_c13) 2021; 46
(2023061814510224400_c22) 1994; 64
(2023061814510224400_c16) 2018; 112
(2023061814510224400_c7) 2021; 1
(2023061814510224400_c25) 2021; 16
References_xml – start-page: 103082
  year: 2020
  ident: c10
  article-title: Design of thin-film lithium niobate structure for integrated filtering and sensing applications
  publication-title: Results Phys.
– start-page: 575
  year: 2019
  ident: c11
  article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends
  publication-title: J. Microelectromech. Syst.
– start-page: 191
  year: 1985
  ident: c26
  article-title: Lithium niobate: Summary of physical properties and crystal structure
  publication-title: Appl. Phys. A
– start-page: 127639
  year: 2019
  ident: c3
  article-title: 5G evolution: A view on 5G cellular technology beyond 3GPP release 15
  publication-title: IEEE Access
– start-page: 2330
  year: 1992
  ident: c21
  article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO crystals
  publication-title: Appl. Phys. Lett.
– start-page: 034047
  year: 2021
  ident: c25
  article-title: Direct visualization of gigahertz acoustic wave propagation in suspended phononic circuits
  publication-title: Phys. Rev. Appl.
– start-page: 46
  year: 2015
  ident: c1
  article-title: A snapshot in time: The future in filters for cell phones
  publication-title: IEEE Microwave Mag.
– start-page: 44
  year: 1982
  ident: c19
  article-title: Direct imaging of travelling Rayleigh waves by stroboscopic x-ray topography
  publication-title: Nature
– start-page: 5
  year: 2021
  ident: c13
  article-title: Efficient erbium-doped thin-film lithium niobate waveguide amplifiers
  publication-title: Opt. Lett.
– start-page: 2278
  year: 1998
  ident: c20
  article-title: Visualization of 10 m surface acoustic waves by stroboscopic x-ray topography
  publication-title: Appl. Phys. Lett.
– start-page: 9
  year: 2008
  ident: c27
  article-title: The power flow angle of acoustic waves in thin piezoelectric plates
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
– start-page: 73
  year: 2015
  ident: c2
  article-title: A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration
  publication-title: IEEE Microwave Mag.
– start-page: 164
  year: 1994
  ident: c22
  article-title: Reflection of surface acoustic waves on domain walls in a LiNbO crystal
  publication-title: Appl. Phys. Lett.
– start-page: 061002
  year: 2018
  ident: c23
  article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy
  publication-title: Phys. Rev. Appl.
– start-page: 101107
  year: 2011
  ident: c15
  article-title: High-speed nanometer-resolved imaging vibrometer and velocimeter
  publication-title: Appl. Phys. Lett.
– start-page: 073505
  year: 2018
  ident: c16
  article-title: High quality factor surface Fabry–Pérot cavity of acoustic waves
  publication-title: Appl. Phys. Lett.
– start-page: 123709
  year: 2017
  ident: c18
  article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator
  publication-title: Rev. Sci. Instrum.
– start-page: 632
  year: 2021
  ident: c29
  article-title: Acoustic loss in thin-film lithium niobate: An experimental study
  publication-title: IEEE J. Microelectromech. Syst.
– start-page: 054501
  year: 2020
  ident: c12
  article-title: S-band delay lines in suspended lithium niobate
  publication-title: J. Appl. Phys.
– start-page: 601
  year: 2021
  ident: c7
  article-title: Microwave acoustic devices: Recent advances and outlook
  publication-title: IEEE J. Microwaves
– start-page: 5211
  year: 2020
  ident: c9
  article-title: 10–60-GHz electromechanical resonators using thin-film lithium niobate
  publication-title: IEEE Trans. Microwave Theory Tech.
– start-page: 063502
  year: 2008
  ident: c17
  article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations
  publication-title: Appl. Phys. Lett.
– start-page: 60
  year: 2020
  ident: c24
  article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves
  publication-title: IEEE Microwave Mag.
– volume: 17
  start-page: 103082
  year: 2020
  ident: 2023061814510224400_c10
  article-title: Design of thin-film lithium niobate structure for integrated filtering and sensing applications
  publication-title: Results Phys.
  doi: 10.1016/j.rinp.2020.103082
– volume: 299
  start-page: 44
  year: 1982
  ident: 2023061814510224400_c19
  article-title: Direct imaging of travelling Rayleigh waves by stroboscopic x-ray topography
  publication-title: Nature
  doi: 10.1038/299044a0
– volume: 127
  start-page: 054501
  year: 2020
  ident: 2023061814510224400_c12
  article-title: S-band delay lines in suspended lithium niobate
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5126428
– volume: 46
  start-page: 5
  year: 2021
  ident: 2023061814510224400_c13
  article-title: Efficient erbium-doped thin-film lithium niobate waveguide amplifiers
  publication-title: Opt. Lett.
  doi: 10.1364/OL.420250
– volume: 28
  start-page: 575
  year: 2019
  ident: 2023061814510224400_c11
  article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends
  publication-title: J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2019.2922935
– volume-title: RF Bulk Acoustic Filters for Communications
  year: 2009
  ident: 2023061814510224400_c5
– volume: 16
  start-page: 034047
  year: 2021
  ident: 2023061814510224400_c25
  article-title: Direct visualization of gigahertz acoustic wave propagation in suspended phononic circuits
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.16.034047
– volume-title: Elastic Waves in Solids I
  year: 1996
  ident: 2023061814510224400_c14
– volume: 60
  start-page: 2330
  year: 1992
  ident: 2023061814510224400_c21
  article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO3 crystals
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.107016
– volume: 30
  start-page: 632
  year: 2021
  ident: 2023061814510224400_c29
  article-title: Acoustic loss in thin-film lithium niobate: An experimental study
  publication-title: IEEE J. Microelectromech. Syst.
  doi: 10.1109/JMEMS.2021.3092724
– volume: 55
  start-page: 9
  year: 2008
  ident: 2023061814510224400_c27
  article-title: The power flow angle of acoustic waves in thin piezoelectric plates
  publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control
  doi: 10.1109/TUFFC.889
– volume-title: IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, 1-1988
  year: 1988
  ident: 2023061814510224400_c6
– volume: 68
  start-page: 5211
  year: 2020
  ident: 2023061814510224400_c9
  article-title: 10–60-GHz electromechanical resonators using thin-film lithium niobate
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.2020.3027694
– volume: 64
  start-page: 164
  year: 1994
  ident: 2023061814510224400_c22
  article-title: Reflection of surface acoustic waves on domain walls in a LiNbO3 crystal
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.111552
– volume: 1
  start-page: 601
  year: 2021
  ident: 2023061814510224400_c7
  article-title: Microwave acoustic devices: Recent advances and outlook
  publication-title: IEEE J. Microwaves
  doi: 10.1109/JMW.2021.3064825
– volume: 88
  start-page: 123709
  year: 2017
  ident: 2023061814510224400_c18
  article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4995008
– volume: 92
  start-page: 063502
  year: 2008
  ident: 2023061814510224400_c17
  article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2840183
– volume-title: Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation
  year: 2000
  ident: 2023061814510224400_c4
– year: 2021
  ident: 2023061814510224400_c28
  article-title: Power flow angles of GHz propagating acoustic waves in thin-film lithium niobate
– start-page: 201
  year: 2008
  ident: 2023061814510224400_c8
  article-title: Large Q × f product for HBAR using Smart Cut ™ transfer of LiNbO3 thin layers onto LiNbO3 substrate
– volume: 98
  start-page: 101107
  year: 2011
  ident: 2023061814510224400_c15
  article-title: High-speed nanometer-resolved imaging vibrometer and velocimeter
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3563707
– volume: 73
  start-page: 2278
  year: 1998
  ident: 2023061814510224400_c20
  article-title: Visualization of 10 μm surface acoustic waves by stroboscopic x-ray topography
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.121701
– volume: 112
  start-page: 073505
  year: 2018
  ident: 2023061814510224400_c16
  article-title: High quality factor surface Fabry–Pérot cavity of acoustic waves
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5013161
– volume: 21
  start-page: 60
  year: 2020
  ident: 2023061814510224400_c24
  article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves
  publication-title: IEEE Microwave Mag.
  doi: 10.1109/MMM.2020.3008240
– volume: 9
  start-page: 061002
  year: 2018
  ident: 2023061814510224400_c23
  article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.9.061002
– volume: 16
  start-page: 46
  year: 2015
  ident: 2023061814510224400_c1
  article-title: A snapshot in time: The future in filters for cell phones
  publication-title: IEEE Microwave Mag.
  doi: 10.1109/MMM.2015.2429513
– volume: 16
  start-page: 73
  year: 2015
  ident: 2023061814510224400_c2
  article-title: A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration
  publication-title: IEEE Microwave Mag.
  doi: 10.1109/MMM.2015.2429512
– volume: 7
  start-page: 127639
  year: 2019
  ident: 2023061814510224400_c3
  article-title: 5G evolution: A view on 5G cellular technology beyond 3GPP release 15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939938
– volume: 37
  start-page: 191
  year: 1985
  ident: 2023061814510224400_c26
  article-title: Lithium niobate: Summary of physical properties and crystal structure
  publication-title: Appl. Phys. A
  doi: 10.1007/BF00614817
SSID ssj0005233
Score 2.4161777
Snippet We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustic propagation
Acoustic waves
Applied physics
Attenuation
Fast Fourier transformations
Fourier transforms
Lithium niobates
Piezoelectricity
Power flow
Propagation
Signal processing
Thin films
Visualization
Wave propagation
Title Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices
URI http://dx.doi.org/10.1063/5.0073530
https://www.proquest.com/docview/2601685633
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3va9QwGA66IeoH0al4c0pQPwilek2atP04nDrEE2Gb7INQmjTlCrfesbYb7q_3TZqmPXfI9EvvCLm29Hny3vOm7w-E3rCECBkL4cucS3BQqPKTSBZ-HDNBFCGCmzoFs2_88CT8cspOh_h5k13SiHfyamNeyf-gCmOAq86S_Qdk3UlhAL4DvnAEhOF4I4x_lLXOibxysg_Mm-nO5a108zOvWCwv9YZG3dam1a2OlSwrvygXZzr3eF62Z15VwopulKdj1E03nFwZ4zFWrb1U7bZBam9hcoCcGrfBPAeZmreOazP1y_b0mmeXbvSzjQA-gk9RDuFArYG61e27qvFGBAl0Rh4ha8aV-jyx9WNVZ0-nkd4GtSa2N7jWSHbM6hKkr1lykE7w-PWGV0SZfXWzVi37j38xF1to3qpzmrLU_vQ22ibgQ4AR3N4_mH09GkUAUdo3VNT33Ree4vS9u-66XBl8kLsgULpYiZEcOX6IHlg_Au93pHiEbqlqB90fVZfcQXe-d3A9Rj_XiIKXBe6Jgg1RsCYKLivsiIIdUbAlCrZEwT1RsCXKE3Ty6ePxh0PfttXwJSVR44fgcYMfClo-Z6CXwb8nPMlAtYgwzEEAqygokjyIBCdhnE2LQBAiI87DLBNKZYw-RVtwHfUMYUk4ETTMOZEiJDIUkYimRRYwWPgsJ3KC3vZPL-2fl259skivoTRBr9zUVVdoZdOkvR6C1K7DOjVF8WLGKZ2g1w6Wv51kw6yL5fkwI13lxe5N7uc5ujeshD201Zy36gWI1Ea8tGT7Dagnke0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+acoustic+power+flow+in+suspended+thin-film+lithium+niobate+phononic+devices&rft.jtitle=Applied+physics+letters&rft.au=Lee%2C+Daehun&rft.au=Meyer%2C+Shawn&rft.au=Gong%2C+Songbin&rft.au=Lu%2C+Ruochen&rft.date=2021-11-22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=119&rft.issue=21&rft_id=info:doi/10.1063%2F5.0073530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0073530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon