Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices
We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separ...
Saved in:
Published in | Applied physics letters Vol. 119; no. 21 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
22.11.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separately analyze forward and backward propagating waves and quantitatively evaluate the propagation loss. Our work provides insightful information on the propagation, diffraction, and attenuation in piezoelectric thin films, which is highly desirable for designing and optimizing phononic devices for microwave signal processing. |
---|---|
AbstractList | We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power flow angle and propagation loss, are measured by transmission-mode microwave impedance microscopy. Using a fast Fourier transform, we can separately analyze forward and backward propagating waves and quantitatively evaluate the propagation loss. Our work provides insightful information on the propagation, diffraction, and attenuation in piezoelectric thin films, which is highly desirable for designing and optimizing phononic devices for microwave signal processing. |
Author | Lee, Daehun Gong, Songbin Lu, Ruochen Meyer, Shawn Lai, Keji |
Author_xml | – sequence: 1 givenname: Daehun surname: Lee fullname: Lee, Daehun organization: Department of Physics, University of Texas at Austin – sequence: 2 givenname: Shawn surname: Meyer fullname: Meyer, Shawn organization: Department of Physics, University of Texas at Austin – sequence: 3 givenname: Songbin surname: Gong fullname: Gong, Songbin organization: Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign – sequence: 4 givenname: Ruochen surname: Lu fullname: Lu, Ruochen organization: Department of Electrical and Computer Engineering, University of Texas at Austin – sequence: 5 givenname: Keji surname: Lai fullname: Lai, Keji organization: Department of Physics, University of Texas at Austin |
BookMark | eNqdkE1LAzEQhoNUsK0e_AcBTwpb853uUYpfIHhRT0LI7iY0sk3WJNuiv97VVgTx5Glm4HnfmXknYOSDNwAcYzTDSNBzPkNIUk7RHhhjJGVBMZ6PwBghRAtRcnwAJim9DCMnlI7B85NLvW7du84ueBgs1HXoU3Y17MLGRGjbsIHOw9SnzvjGNDAvnS-sa1ewdUPfr6B3odLZwG4ZhnMGaWPWrjbpEOxb3SZztKtT8Hh1-bC4Ke7ur28XF3dFTYnMBSOsxJIhxhvOOUYlI6LUSMiKsYYLZCS2ZYNlJQiba2RxRUgthWBaV8ZoTqfgZOvbxfDam5TVS-ijH1YqIhAWcy4oHajzLVXHkFI0VtUuf72do3atwkh9Rqi42kU4KE5_KbroVjq-_cmebdn07fo_eB3iD6i6xtIPNYmOEw |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1103_RevModPhys_95_025003 crossref_primary_10_1088_1361_6463_ac855b crossref_primary_10_1063_5_0227921 crossref_primary_10_1038_s41467_023_36936_9 crossref_primary_10_1063_5_0143247 |
Cites_doi | 10.1016/j.rinp.2020.103082 10.1038/299044a0 10.1063/1.5126428 10.1364/OL.420250 10.1109/JMEMS.2019.2922935 10.1103/PhysRevApplied.16.034047 10.1063/1.107016 10.1109/JMEMS.2021.3092724 10.1109/TUFFC.889 10.1109/TMTT.2020.3027694 10.1063/1.111552 10.1109/JMW.2021.3064825 10.1063/1.4995008 10.1063/1.2840183 10.1063/1.3563707 10.1063/1.121701 10.1063/1.5013161 10.1109/MMM.2020.3008240 10.1103/PhysRevApplied.9.061002 10.1109/MMM.2015.2429513 10.1109/MMM.2015.2429512 10.1109/ACCESS.2019.2939938 10.1007/BF00614817 |
ContentType | Journal Article |
Copyright | Author(s) 2021 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2021 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0073530 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0073530 apl |
GrantInformation_xml | – fundername: Welch Foundation grantid: F-1814 funderid: https://doi.org/10.13039/100000928 – fundername: Division of Materials Research grantid: DMR-2004536 funderid: https://doi.org/10.13039/100000078 – fundername: Defense Advanced Research Projects Agency grantid: N-ZERO funderid: https://doi.org/10.13039/100000185 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-4249174045d5551094269a067b44d560e71f9d17b6248a0f1b22c7664aabeea53 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 04:15:50 EDT 2025 Tue Jul 01 01:08:12 EDT 2025 Thu Apr 24 23:05:10 EDT 2025 Thu Jun 23 13:36:14 EDT 2022 Fri Jun 21 00:13:53 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-4249174045d5551094269a067b44d560e71f9d17b6248a0f1b22c7664aabeea53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0025-3924 0000-0002-4218-0201 0000-0002-4297-0393 0000-0001-8147-1282 |
PQID | 2601685633 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0073530 crossref_citationtrail_10_1063_5_0073530 crossref_primary_10_1063_5_0073530 proquest_journals_2601685633 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20211122 2021-11-22 |
PublicationDateYYYYMMDD | 2021-11-22 |
PublicationDate_xml | – month: 11 year: 2021 text: 20211122 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2021 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Chen, Xu, Zhang, Wong, Zhang, Pun, Wang (c13) 2021 Roshchupkin, Fournier, Brunel, Plotitsyna, Sorokin (c21) 1992 Lu, Yang, Gong (c29) 2021 Kokkonen, Kaivola (c17) 2008 Ghosh, Maeder, Baker, Chandramouli (c3) 2019 Bauer, Eggs, Wagner, Hagn (c2) 2015 Whatmore, Goddard, Tanner, Clark (c19) 1982 Kuznetsova, Zaitsev, Teplykh, Joshi, Kuznetsova (c27) 2008 Yang, Lu, Gao, Gong (c11) 2019 Sarabalis, Dahmani, Cleland, Safavi-Naeini (c12) 2020 Zheng, Wu, Wu, Lai (c23) 2018 Ruby (c1) 2015 Weis, Gaylord (c26) 1985 Yang, Lu, Gao, Gong (c9) 2020 Shen, Han, Zou, Tang (c18) 2017 Roshchupkin, Brunel, Tucoulou, Bigler, Sorokin (c22) 1994 Mahjoubfar, Goda, Ayazi, Fard, Kim, Jalali (c15) 2011 Lee, Liu, Zheng, Ma, Li, Li, Lai (c25) 2021 Yao, Liu, Zhang, Liu, Liu (c10) 2020 Zolotoyabko, Shilo, Sauer, Pernot, Baruchel (c20) 1998 Gong, Lu, Yang, Gao, Hassanien (c7) 2021 Xu, Fu, Zou, Shen, Tang (c16) 2018 Zheng, Shao, Loncar, Lai (c24) 2020 (2023061814510224400_c27) 2008; 55 (2023061814510224400_c19) 1982; 299 (2023061814510224400_c3) 2019; 7 (2023061814510224400_c24) 2020; 21 (2023061814510224400_c2) 2015; 16 (2023061814510224400_c12) 2020; 127 (2023061814510224400_c4) 2000 (2023061814510224400_c5) 2009 (2023061814510224400_c10) 2020; 17 (2023061814510224400_c11) 2019; 28 (2023061814510224400_c6) 1988 (2023061814510224400_c23) 2018; 9 (2023061814510224400_c8) 2008 (2023061814510224400_c9) 2020; 68 (2023061814510224400_c26) 1985; 37 (2023061814510224400_c15) 2011; 98 (2023061814510224400_c17) 2008; 92 (2023061814510224400_c29) 2021; 30 (2023061814510224400_c20) 1998; 73 (2023061814510224400_c1) 2015; 16 (2023061814510224400_c18) 2017; 88 (2023061814510224400_c28) 2021 (2023061814510224400_c14) 1996 (2023061814510224400_c21) 1992; 60 (2023061814510224400_c13) 2021; 46 (2023061814510224400_c22) 1994; 64 (2023061814510224400_c16) 2018; 112 (2023061814510224400_c7) 2021; 1 (2023061814510224400_c25) 2021; 16 |
References_xml | – start-page: 103082 year: 2020 ident: c10 article-title: Design of thin-film lithium niobate structure for integrated filtering and sensing applications publication-title: Results Phys. – start-page: 575 year: 2019 ident: c11 article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends publication-title: J. Microelectromech. Syst. – start-page: 191 year: 1985 ident: c26 article-title: Lithium niobate: Summary of physical properties and crystal structure publication-title: Appl. Phys. A – start-page: 127639 year: 2019 ident: c3 article-title: 5G evolution: A view on 5G cellular technology beyond 3GPP release 15 publication-title: IEEE Access – start-page: 2330 year: 1992 ident: c21 article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO crystals publication-title: Appl. Phys. Lett. – start-page: 034047 year: 2021 ident: c25 article-title: Direct visualization of gigahertz acoustic wave propagation in suspended phononic circuits publication-title: Phys. Rev. Appl. – start-page: 46 year: 2015 ident: c1 article-title: A snapshot in time: The future in filters for cell phones publication-title: IEEE Microwave Mag. – start-page: 44 year: 1982 ident: c19 article-title: Direct imaging of travelling Rayleigh waves by stroboscopic x-ray topography publication-title: Nature – start-page: 5 year: 2021 ident: c13 article-title: Efficient erbium-doped thin-film lithium niobate waveguide amplifiers publication-title: Opt. Lett. – start-page: 2278 year: 1998 ident: c20 article-title: Visualization of 10 m surface acoustic waves by stroboscopic x-ray topography publication-title: Appl. Phys. Lett. – start-page: 9 year: 2008 ident: c27 article-title: The power flow angle of acoustic waves in thin piezoelectric plates publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control – start-page: 73 year: 2015 ident: c2 article-title: A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration publication-title: IEEE Microwave Mag. – start-page: 164 year: 1994 ident: c22 article-title: Reflection of surface acoustic waves on domain walls in a LiNbO crystal publication-title: Appl. Phys. Lett. – start-page: 061002 year: 2018 ident: c23 article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy publication-title: Phys. Rev. Appl. – start-page: 101107 year: 2011 ident: c15 article-title: High-speed nanometer-resolved imaging vibrometer and velocimeter publication-title: Appl. Phys. Lett. – start-page: 073505 year: 2018 ident: c16 article-title: High quality factor surface Fabry–Pérot cavity of acoustic waves publication-title: Appl. Phys. Lett. – start-page: 123709 year: 2017 ident: c18 article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator publication-title: Rev. Sci. Instrum. – start-page: 632 year: 2021 ident: c29 article-title: Acoustic loss in thin-film lithium niobate: An experimental study publication-title: IEEE J. Microelectromech. Syst. – start-page: 054501 year: 2020 ident: c12 article-title: S-band delay lines in suspended lithium niobate publication-title: J. Appl. Phys. – start-page: 601 year: 2021 ident: c7 article-title: Microwave acoustic devices: Recent advances and outlook publication-title: IEEE J. Microwaves – start-page: 5211 year: 2020 ident: c9 article-title: 10–60-GHz electromechanical resonators using thin-film lithium niobate publication-title: IEEE Trans. Microwave Theory Tech. – start-page: 063502 year: 2008 ident: c17 article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations publication-title: Appl. Phys. Lett. – start-page: 60 year: 2020 ident: c24 article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves publication-title: IEEE Microwave Mag. – volume: 17 start-page: 103082 year: 2020 ident: 2023061814510224400_c10 article-title: Design of thin-film lithium niobate structure for integrated filtering and sensing applications publication-title: Results Phys. doi: 10.1016/j.rinp.2020.103082 – volume: 299 start-page: 44 year: 1982 ident: 2023061814510224400_c19 article-title: Direct imaging of travelling Rayleigh waves by stroboscopic x-ray topography publication-title: Nature doi: 10.1038/299044a0 – volume: 127 start-page: 054501 year: 2020 ident: 2023061814510224400_c12 article-title: S-band delay lines in suspended lithium niobate publication-title: J. Appl. Phys. doi: 10.1063/1.5126428 – volume: 46 start-page: 5 year: 2021 ident: 2023061814510224400_c13 article-title: Efficient erbium-doped thin-film lithium niobate waveguide amplifiers publication-title: Opt. Lett. doi: 10.1364/OL.420250 – volume: 28 start-page: 575 year: 2019 ident: 2023061814510224400_c11 article-title: 4.5 GHz lithium niobate MEMS filters with 10% fractional bandwidth for 5G front-ends publication-title: J. Microelectromech. Syst. doi: 10.1109/JMEMS.2019.2922935 – volume-title: RF Bulk Acoustic Filters for Communications year: 2009 ident: 2023061814510224400_c5 – volume: 16 start-page: 034047 year: 2021 ident: 2023061814510224400_c25 article-title: Direct visualization of gigahertz acoustic wave propagation in suspended phononic circuits publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.16.034047 – volume-title: Elastic Waves in Solids I year: 1996 ident: 2023061814510224400_c14 – volume: 60 start-page: 2330 year: 1992 ident: 2023061814510224400_c21 article-title: Scanning electron microscopy observation of excitation of the surface acoustic waves by the regular domain structures in the LiNbO3 crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.107016 – volume: 30 start-page: 632 year: 2021 ident: 2023061814510224400_c29 article-title: Acoustic loss in thin-film lithium niobate: An experimental study publication-title: IEEE J. Microelectromech. Syst. doi: 10.1109/JMEMS.2021.3092724 – volume: 55 start-page: 9 year: 2008 ident: 2023061814510224400_c27 article-title: The power flow angle of acoustic waves in thin piezoelectric plates publication-title: IEEE Trans. Ultrason., Ferroelectr., Freq. Control doi: 10.1109/TUFFC.889 – volume-title: IEEE Standard on Piezoelectricity, ANSI/IEEE Std 176-1987, 1-1988 year: 1988 ident: 2023061814510224400_c6 – volume: 68 start-page: 5211 year: 2020 ident: 2023061814510224400_c9 article-title: 10–60-GHz electromechanical resonators using thin-film lithium niobate publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.2020.3027694 – volume: 64 start-page: 164 year: 1994 ident: 2023061814510224400_c22 article-title: Reflection of surface acoustic waves on domain walls in a LiNbO3 crystal publication-title: Appl. Phys. Lett. doi: 10.1063/1.111552 – volume: 1 start-page: 601 year: 2021 ident: 2023061814510224400_c7 article-title: Microwave acoustic devices: Recent advances and outlook publication-title: IEEE J. Microwaves doi: 10.1109/JMW.2021.3064825 – volume: 88 start-page: 123709 year: 2017 ident: 2023061814510224400_c18 article-title: Phase sensitive imaging of 10 GHz vibrations in an AlN microdisk resonator publication-title: Rev. Sci. Instrum. doi: 10.1063/1.4995008 – volume: 92 start-page: 063502 year: 2008 ident: 2023061814510224400_c17 article-title: Scanning heterodyne laser interferometer for phase-sensitive absolute-amplitude measurements of surface vibrations publication-title: Appl. Phys. Lett. doi: 10.1063/1.2840183 – volume-title: Surface Acoustic Wave Devices in Telecommunications: Modeling and Simulation year: 2000 ident: 2023061814510224400_c4 – year: 2021 ident: 2023061814510224400_c28 article-title: Power flow angles of GHz propagating acoustic waves in thin-film lithium niobate – start-page: 201 year: 2008 ident: 2023061814510224400_c8 article-title: Large Q × f product for HBAR using Smart Cut ™ transfer of LiNbO3 thin layers onto LiNbO3 substrate – volume: 98 start-page: 101107 year: 2011 ident: 2023061814510224400_c15 article-title: High-speed nanometer-resolved imaging vibrometer and velocimeter publication-title: Appl. Phys. Lett. doi: 10.1063/1.3563707 – volume: 73 start-page: 2278 year: 1998 ident: 2023061814510224400_c20 article-title: Visualization of 10 μm surface acoustic waves by stroboscopic x-ray topography publication-title: Appl. Phys. Lett. doi: 10.1063/1.121701 – volume: 112 start-page: 073505 year: 2018 ident: 2023061814510224400_c16 article-title: High quality factor surface Fabry–Pérot cavity of acoustic waves publication-title: Appl. Phys. Lett. doi: 10.1063/1.5013161 – volume: 21 start-page: 60 year: 2020 ident: 2023061814510224400_c24 article-title: Imaging acoustic waves by microwave microscopy: Microwave impedance microscopy for visualizing gigahertz acoustic waves publication-title: IEEE Microwave Mag. doi: 10.1109/MMM.2020.3008240 – volume: 9 start-page: 061002 year: 2018 ident: 2023061814510224400_c23 article-title: Visualization of surface-acoustic-wave potential by transmission-mode microwave impedance microscopy publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.9.061002 – volume: 16 start-page: 46 year: 2015 ident: 2023061814510224400_c1 article-title: A snapshot in time: The future in filters for cell phones publication-title: IEEE Microwave Mag. doi: 10.1109/MMM.2015.2429513 – volume: 16 start-page: 73 year: 2015 ident: 2023061814510224400_c2 article-title: A bright outlook for acoustic filtering: A new generation of very low-profile SAW, TC SAW, and BAW devices for module integration publication-title: IEEE Microwave Mag. doi: 10.1109/MMM.2015.2429512 – volume: 7 start-page: 127639 year: 2019 ident: 2023061814510224400_c3 article-title: 5G evolution: A view on 5G cellular technology beyond 3GPP release 15 publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2939938 – volume: 37 start-page: 191 year: 1985 ident: 2023061814510224400_c26 article-title: Lithium niobate: Summary of physical properties and crystal structure publication-title: Appl. Phys. A doi: 10.1007/BF00614817 |
SSID | ssj0005233 |
Score | 2.4161777 |
Snippet | We report direct visualization of gigahertz-frequency acoustic waves in lithium niobate phononic circuits. Primary propagation parameters, such as the power... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Acoustic propagation Acoustic waves Applied physics Attenuation Fast Fourier transformations Fourier transforms Lithium niobates Piezoelectricity Power flow Propagation Signal processing Thin films Visualization Wave propagation |
Title | Visualization of acoustic power flow in suspended thin-film lithium niobate phononic devices |
URI | http://dx.doi.org/10.1063/5.0073530 https://www.proquest.com/docview/2601685633 |
Volume | 119 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3va9QwGA66IeoH0al4c0pQPwilek2atP04nDrEE2Gb7INQmjTlCrfesbYb7q_3TZqmPXfI9EvvCLm29Hny3vOm7w-E3rCECBkL4cucS3BQqPKTSBZ-HDNBFCGCmzoFs2_88CT8cspOh_h5k13SiHfyamNeyf-gCmOAq86S_Qdk3UlhAL4DvnAEhOF4I4x_lLXOibxysg_Mm-nO5a108zOvWCwv9YZG3dam1a2OlSwrvygXZzr3eF62Z15VwopulKdj1E03nFwZ4zFWrb1U7bZBam9hcoCcGrfBPAeZmreOazP1y_b0mmeXbvSzjQA-gk9RDuFArYG61e27qvFGBAl0Rh4ha8aV-jyx9WNVZ0-nkd4GtSa2N7jWSHbM6hKkr1lykE7w-PWGV0SZfXWzVi37j38xF1to3qpzmrLU_vQ22ibgQ4AR3N4_mH09GkUAUdo3VNT33Ree4vS9u-66XBl8kLsgULpYiZEcOX6IHlg_Au93pHiEbqlqB90fVZfcQXe-d3A9Rj_XiIKXBe6Jgg1RsCYKLivsiIIdUbAlCrZEwT1RsCXKE3Ty6ePxh0PfttXwJSVR44fgcYMfClo-Z6CXwb8nPMlAtYgwzEEAqygokjyIBCdhnE2LQBAiI87DLBNKZYw-RVtwHfUMYUk4ETTMOZEiJDIUkYimRRYwWPgsJ3KC3vZPL-2fl259skivoTRBr9zUVVdoZdOkvR6C1K7DOjVF8WLGKZ2g1w6Wv51kw6yL5fkwI13lxe5N7uc5ujeshD201Zy36gWI1Ea8tGT7Dagnke0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualization+of+acoustic+power+flow+in+suspended+thin-film+lithium+niobate+phononic+devices&rft.jtitle=Applied+physics+letters&rft.au=Lee%2C+Daehun&rft.au=Meyer%2C+Shawn&rft.au=Gong%2C+Songbin&rft.au=Lu%2C+Ruochen&rft.date=2021-11-22&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=119&rft.issue=21&rft_id=info:doi/10.1063%2F5.0073530&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0073530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |