Electrically Large Complex Objects Recognition Based on Gated Recurrent Residual Network (GRRNet)
In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering prope...
Saved in:
Published in | IEEE Open Journal of Antennas and Propagation Vol. 6; no. 2; pp. 365 - 371 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.04.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 2637-6431 2637-6431 |
DOI | 10.1109/OJAP.2024.3516835 |
Cover
Loading…
Abstract | In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering property measurements for electrically large objects are costly and time-consuming, affected by various environmental factors. The high-frequency approximate technique, namely the shooting and bouncing ray method (SBR), is introduced to quickly acquire high resolution one-dimensional range profile (HRRP) of electrically large complex objects. Both the corner reflector and the model car are measured to validate the accuracy of the SBR method. The method is employed to establish HRRP database for various vehicles in traffic scenarios. Deep learning can automatically study data deep features and show outstanding performance in various classification tasks. The residual network (ResNet) and gated recurrent unit (GRU) models are combined to capture and aggregate scattering information of objects. ResNet uses 1-D convolutional kernels and residual blocks to efficiently capture the scattering information within each distance cell while avoiding gradient vanishing or gradient explosion issue. GRU aggregates scattering information along the spatial dimension to construct object feature representations. The combination of them can take advantage of their respective strengths to fully mine the information of HRRPs. Compared with the conventional methods, the features extracted by the proposed model from each class are more concentrated shown in the result of t-distributed stochastic neighbor embedding. The deep model exhibits a superior average recognition rate up to 95.56%, significantly higher than existing methods. It shows robustness to noise, thereby showcasing good potential for practical applications within the Internet of Vehicles (IoVs). |
---|---|
AbstractList | In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering property measurements for electrically large objects are costly and time-consuming, affected by various environmental factors. The high-frequency approximate technique, namely the shooting and bouncing ray method (SBR), is introduced to quickly acquire high resolution one-dimensional range profile (HRRP) of electrically large complex objects. Both the corner reflector and the model car are measured to validate the accuracy of the SBR method. The method is employed to establish HRRP database for various vehicles in traffic scenarios. Deep learning can automatically study data deep features and show outstanding performance in various classification tasks. The residual network (ResNet) and gated recurrent unit (GRU) models are combined to capture and aggregate scattering information of objects. ResNet uses 1-D convolutional kernels and residual blocks to efficiently capture the scattering information within each distance cell while avoiding gradient vanishing or gradient explosion issue. GRU aggregates scattering information along the spatial dimension to construct object feature representations. The combination of them can take advantage of their respective strengths to fully mine the information of HRRPs. Compared with the conventional methods, the features extracted by the proposed model from each class are more concentrated shown in the result of t-distributed stochastic neighbor embedding. The deep model exhibits a superior average recognition rate up to 95.56%, significantly higher than existing methods. It shows robustness to noise, thereby showcasing good potential for practical applications within the Internet of Vehicles (IoVs). |
Author | Liu, Shangyin Hao, Xiaojun Xu, Qian Gong, Shuaige Qi, Wenjun Xing, Lei |
Author_xml | – sequence: 1 givenname: Shangyin orcidid: 0009-0009-6588-2474 surname: Liu fullname: Liu, Shangyin organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China – sequence: 2 givenname: Lei orcidid: 0000-0002-9719-6075 surname: Xing fullname: Xing, Lei email: xinglei@nuaa.edu.cn organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China – sequence: 3 givenname: Xiaojun orcidid: 0000-0002-6185-4320 surname: Hao fullname: Hao, Xiaojun organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China – sequence: 4 givenname: Shuaige orcidid: 0009-0008-3954-1409 surname: Gong fullname: Gong, Shuaige organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China – sequence: 5 givenname: Qian surname: Xu fullname: Xu, Qian organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China – sequence: 6 givenname: Wenjun orcidid: 0000-0002-1077-9877 surname: Qi fullname: Qi, Wenjun organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
BookMark | eNpNkEFPAjEQhRujiYj8ABMPe9QD2Gl32-WIBBFDxBA9N0M7SxbXrekuUf69RYzhNF_mzbzJvAt2WvuaGLsCPgDgw7vF0-hlILhIBzIDlcvshHWEkrqvUgmnR3zOek2z4ZyLDACE6jCcVGTbUFqsql0yx7CmZOw_Piv6TharTdSaZEnWr-uyLX2d3GNDLokwxTZClLYhUN1Gakq3xSp5pvbLh_fkZrpcRr69ZGcFVg31_mqXvT1MXseP_fliOhuP5n0rhW770toMnJNgVxqL1SqFDDMnpdJSZEpxgBRzAJQ8_leAzjWgU0OrHZJAELLLZgdf53FjPkP5gWFnPJbmt-HD2mBoS1uR4co5tJwT6SLVUg1BKyUKnRfOai73XnDwssE3TaDi3w-42Udu9pGbfeTmL_K4c33YKYnoaF4P83hD_gASnn2p |
CODEN | IJSTK4 |
Cites_doi | 10.1109/TAP.2012.2196963 10.3115/v1/D14-1179 10.1109/APS/URSI47566.2021.9704304 10.1109/CVPR.2016.90 10.1109/TSP.2006.873534 10.1109/TAP.2016.2633066 10.1016/j.sigpro.2018.09.041 10.23919/IRS.2017.8008207 10.3390/s18010173 10.1109/TIE.2017.2733438 10.1016/j.patcog.2016.08.012 10.1109/TSP.2011.2141664 10.4324/9781410605337-29 10.2528/PIERM16123002 10.1109/TGRS.2021.3055061 10.1109/ACCESS.2019.2909348 10.2528/PIER10041101 10.1109/ACCESS.2019.2891594 10.1109/ITNEC48623.2020.9084922 10.1109/LAWP.2023.3299990 10.1049/el.2016.3060 10.2528/PIER10083005 |
ContentType | Journal Article |
DBID | 97E ESBDL RIA RIE AAYXX CITATION DOA |
DOI | 10.1109/OJAP.2024.3516835 |
DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2637-6431 |
EndPage | 371 |
ExternalDocumentID | oai_doaj_org_article_06ddac00ee7f4736917662f78fdc7032 10_1109_OJAP_2024_3516835 10798473 |
Genre | orig-research |
GrantInformation_xml | – fundername: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics Information System (CEMEE) grantid: CEMEE2023K0203 |
GroupedDBID | 0R~ 97E AAJGR ABAZT ABVLG ALMA_UNASSIGNED_HOLDINGS BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD ESBDL GROUPED_DOAJ JAVBF M~E OCL OK1 RIA RIE AAYXX CITATION |
ID | FETCH-LOGICAL-c327t-3cc51dd31cb7afbb415a5d3367325660114a811a30835f17871ad69c7dae2a123 |
IEDL.DBID | RIE |
ISSN | 2637-6431 |
IngestDate | Wed Aug 27 01:23:59 EDT 2025 Tue Jul 01 05:13:35 EDT 2025 Wed Aug 27 02:03:23 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | https://creativecommons.org/licenses/by-nc-nd/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c327t-3cc51dd31cb7afbb415a5d3367325660114a811a30835f17871ad69c7dae2a123 |
ORCID | 0000-0002-6185-4320 0000-0002-1077-9877 0009-0008-3954-1409 0009-0009-6588-2474 0000-0002-9719-6075 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10798473 |
PageCount | 7 |
ParticipantIDs | ieee_primary_10798473 doaj_primary_oai_doaj_org_article_06ddac00ee7f4736917662f78fdc7032 crossref_primary_10_1109_OJAP_2024_3516835 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-04-01 |
PublicationDateYYYYMMDD | 2025-04-01 |
PublicationDate_xml | – month: 04 year: 2025 text: 2025-04-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | IEEE Open Journal of Antennas and Propagation |
PublicationTitleAbbrev | OJAP |
PublicationYear | 2025 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref13 ref12 ref15 ref14 ref11 ref10 ref2 ref1 ref17 ref19 ref18 ref24 ref23 ref20 ref22 van der Maaten (ref25) 2008; 9 ref21 Chung (ref16) 2014 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
References_xml | – year: 2014 ident: ref16 article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling publication-title: arXiv:1412.3555 – ident: ref1 doi: 10.1109/TAP.2012.2196963 – ident: ref22 doi: 10.3115/v1/D14-1179 – volume: 9 start-page: 2579 year: 2008 ident: ref25 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – ident: ref2 doi: 10.1109/APS/URSI47566.2021.9704304 – ident: ref20 doi: 10.1109/CVPR.2016.90 – ident: ref23 doi: 10.1109/TSP.2006.873534 – ident: ref4 doi: 10.1109/TAP.2016.2633066 – ident: ref15 doi: 10.1016/j.sigpro.2018.09.041 – ident: ref14 doi: 10.23919/IRS.2017.8008207 – ident: ref8 doi: 10.3390/s18010173 – ident: ref21 doi: 10.1109/TIE.2017.2733438 – ident: ref10 doi: 10.1016/j.patcog.2016.08.012 – ident: ref18 doi: 10.1109/TSP.2011.2141664 – ident: ref19 doi: 10.4324/9781410605337-29 – ident: ref13 doi: 10.2528/PIERM16123002 – ident: ref7 doi: 10.1109/TGRS.2021.3055061 – ident: ref12 doi: 10.1109/ACCESS.2019.2909348 – ident: ref3 doi: 10.2528/PIER10041101 – ident: ref6 doi: 10.1109/TSP.2011.2141664 – ident: ref11 doi: 10.1109/ACCESS.2019.2891594 – ident: ref24 doi: 10.1109/ITNEC48623.2020.9084922 – ident: ref5 doi: 10.1109/LAWP.2023.3299990 – ident: ref9 doi: 10.1049/el.2016.3060 – ident: ref17 doi: 10.2528/PIER10083005 |
SSID | ssj0002511126 |
Score | 2.2876403 |
Snippet | In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully... |
SourceID | doaj crossref ieee |
SourceType | Open Website Index Database Publisher |
StartPage | 365 |
SubjectTerms | Automobiles Computer architecture Convolutional neural networks Deep learning Deep learning (DL) electromagnetic scattering Feature extraction gated recurrent unit (GRU) high resolution range profile (HRRP) Internet of Vehicles (IoVs) Logic gates Radar residual network (ResNet) shooting and bouncing ray (SBR) method Solid modeling Target recognition Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIjyLKlzwwAFJoHCd2PLaopaqgRRWVukVObE9VimiR4N9z56QQJhY2K4mS6J3tu3e5vCPkSkShMTyH3c9pE8RxkgdprBhwHu1Uklhw8pgaeBqL4SwezZN5o9UX1oRV8sAVcJ1QGKOLMLRWulhyoVDRMHIydaaA2ep331CFDTKFezAGziwS9WdMFqrOZNR9BjoYxXc8YSL17d1-HJHX6__VYMX7l8E-2asDQ9qtXuiAbNnykOw25AKPiO77njUI6-KTPmINN8X1vLAfdJJjQmVFp5uCoGVJe-ChDIUBpsgMnqrEmGC08v9g0XFVBE6vH6ZTGN-0yGzQf7kfBnWLhKDgkVwHvCgSBmCzIpfa5Tm4Y50YzoXkEMsIZDs6ZUxzjLQcg9XJtBGqkEbbSIPXOibb5bK0J4Q645Ana200kD6wlOLMMiNzzazTqWuT2w1e2WulhJF5BhGqDMHNENysBrdNeojo94UoYu0PgGmz2rTZX6Ztkxbao_E0qcCZ8tP_uPkZ2Ymwla8vwjkn2-u3d3sB8cU6v_RT6Qt248pT priority: 102 providerName: Directory of Open Access Journals |
Title | Electrically Large Complex Objects Recognition Based on Gated Recurrent Residual Network (GRRNet) |
URI | https://ieeexplore.ieee.org/document/10798473 https://doaj.org/article/06ddac00ee7f4736917662f78fdc7032 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA_Okx58i_NFDh5U6GyaNm2Pm0xluE2GgreS58WxiW6gHvzb_b60m1MQvJSPtNCQX_K98j0IORFRaAxXwP2cNEEcJyrI4pyBzSNdniQWhDy6Bro9cfMQdx6TxypZ3efCWGt98JltIOnv8s1YT9FVBic8zYGb8hqpwT4rk7XmDhXUlVkkqptLFuYX_U7zDizAKG7whInMd3T7lj2-RP-PnipepFytk95sMmUkyVNjOlEN_fGrTuO_Z7tB1irlkjbL3bBJluxoi6wulBzcJrLt-94gNMN3eotx4BR5wtC-0b5Cp8wrHcyCisYj2gIpZygQ6GYz-Kos6ATUq8_jor0ykJyeXg8GQJ_tkIer9v3lTVC1WQg0j9JJwLVOGADGtEqlUwpEukwM5yLloA8JtJhkxpjkqK05BivPpBG5To20kQTJt0uWR-OR3SPUGYe2tpRGguEIaOecWWZSJZl1MnN1cj4DoHguq2kU3goJ8wLRKhCtokKrTloI0fxDLITtB2CVi-pcFaEwRuowtDZ1sNYix4KXkUszZzQws6hOdhCZhb-VoOz_MX5AViLs8Otjcw7J8uRlao9A7ZioY2-uw7P72T72W-8Lv6TW2A |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_a2GHjAGNjWhlsPuywTUoWx4mTHCmCdVACqkDiFvnzsqpFtJWAv37vOSmUSUi7PTmWYvlnvy-_D4CvMk2sFRq5n1c2yrJcR2VWcbR5lK_y3KGQJ9fAaS0Hl9nxVX7VJauHXBjnXAg-czGR4S3fTs2CXGV4w4sKual4Ca9Q8Gd5m6714FIhbZmnsnu75En18-x4_xxtwDSLRc5lGXq6PUqfUKT_SVeVIFSONqFeLqeNJfkTL-Y6Nvf_VGr87_W-hY1OvWT77XnYghdu8g7WV4oOvgd1GDrfEDjjOzakSHBGXGHsbtmZJrfMjI2WYUXTCeujnLMMCXK0WfrUlnRCahYyuVjdhpKzb79GI6S_b8Pl0eHFwSDqGi1ERqTFPBLG5Bwh40YXymuNQl3lVghZCNSIJNlMquRcCdLXPMc7zpWVlSmscqlC2fcB1ibTifsIzFtP1rZSVqHpiHhXgjtuC62486r0PfixBKC5butpNMEOSaqG0GoIraZDqwd9guhhIpXCDgO4y013s5pEWqtMkjhXeNxrWVHJy9QXpbcG2Vnag21CZuVvLSg7z4x_gdeDi9NhM_xdn3yCNyn1-w2ROruwNr9ZuD1UQub6czh6fwEGL9f_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+Large+Complex+Objects+Recognition+Based+on+Gated+Recurrent+Residual+Network+%28GRRNet%29&rft.jtitle=IEEE+Open+Journal+of+Antennas+and+Propagation&rft.au=Liu%2C+Shangyin&rft.au=Xing%2C+Lei&rft.au=Hao%2C+Xiaojun&rft.au=Gong%2C+Shuaige&rft.date=2025-04-01&rft.issn=2637-6431&rft.eissn=2637-6431&rft.volume=6&rft.issue=2&rft.spage=365&rft.epage=371&rft_id=info:doi/10.1109%2FOJAP.2024.3516835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJAP_2024_3516835 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6431&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6431&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6431&client=summon |