Electrically Large Complex Objects Recognition Based on Gated Recurrent Residual Network (GRRNet)

In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering prope...

Full description

Saved in:
Bibliographic Details
Published inIEEE Open Journal of Antennas and Propagation Vol. 6; no. 2; pp. 365 - 371
Main Authors Liu, Shangyin, Xing, Lei, Hao, Xiaojun, Gong, Shuaige, Xu, Qian, Qi, Wenjun
Format Journal Article
LanguageEnglish
Published IEEE 01.04.2025
Subjects
Online AccessGet full text
ISSN2637-6431
2637-6431
DOI10.1109/OJAP.2024.3516835

Cover

Loading…
Abstract In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering property measurements for electrically large objects are costly and time-consuming, affected by various environmental factors. The high-frequency approximate technique, namely the shooting and bouncing ray method (SBR), is introduced to quickly acquire high resolution one-dimensional range profile (HRRP) of electrically large complex objects. Both the corner reflector and the model car are measured to validate the accuracy of the SBR method. The method is employed to establish HRRP database for various vehicles in traffic scenarios. Deep learning can automatically study data deep features and show outstanding performance in various classification tasks. The residual network (ResNet) and gated recurrent unit (GRU) models are combined to capture and aggregate scattering information of objects. ResNet uses 1-D convolutional kernels and residual blocks to efficiently capture the scattering information within each distance cell while avoiding gradient vanishing or gradient explosion issue. GRU aggregates scattering information along the spatial dimension to construct object feature representations. The combination of them can take advantage of their respective strengths to fully mine the information of HRRPs. Compared with the conventional methods, the features extracted by the proposed model from each class are more concentrated shown in the result of t-distributed stochastic neighbor embedding. The deep model exhibits a superior average recognition rate up to 95.56%, significantly higher than existing methods. It shows robustness to noise, thereby showcasing good potential for practical applications within the Internet of Vehicles (IoVs).
AbstractList In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully exploit the data envelope information and temporal correlation to improve the system recognition performance. Electromagnetic (EM) scattering property measurements for electrically large objects are costly and time-consuming, affected by various environmental factors. The high-frequency approximate technique, namely the shooting and bouncing ray method (SBR), is introduced to quickly acquire high resolution one-dimensional range profile (HRRP) of electrically large complex objects. Both the corner reflector and the model car are measured to validate the accuracy of the SBR method. The method is employed to establish HRRP database for various vehicles in traffic scenarios. Deep learning can automatically study data deep features and show outstanding performance in various classification tasks. The residual network (ResNet) and gated recurrent unit (GRU) models are combined to capture and aggregate scattering information of objects. ResNet uses 1-D convolutional kernels and residual blocks to efficiently capture the scattering information within each distance cell while avoiding gradient vanishing or gradient explosion issue. GRU aggregates scattering information along the spatial dimension to construct object feature representations. The combination of them can take advantage of their respective strengths to fully mine the information of HRRPs. Compared with the conventional methods, the features extracted by the proposed model from each class are more concentrated shown in the result of t-distributed stochastic neighbor embedding. The deep model exhibits a superior average recognition rate up to 95.56%, significantly higher than existing methods. It shows robustness to noise, thereby showcasing good potential for practical applications within the Internet of Vehicles (IoVs).
Author Liu, Shangyin
Hao, Xiaojun
Xu, Qian
Gong, Shuaige
Qi, Wenjun
Xing, Lei
Author_xml – sequence: 1
  givenname: Shangyin
  orcidid: 0009-0009-6588-2474
  surname: Liu
  fullname: Liu, Shangyin
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China
– sequence: 2
  givenname: Lei
  orcidid: 0000-0002-9719-6075
  surname: Xing
  fullname: Xing, Lei
  email: xinglei@nuaa.edu.cn
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
– sequence: 3
  givenname: Xiaojun
  orcidid: 0000-0002-6185-4320
  surname: Hao
  fullname: Hao, Xiaojun
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China
– sequence: 4
  givenname: Shuaige
  orcidid: 0009-0008-3954-1409
  surname: Gong
  fullname: Gong, Shuaige
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China
– sequence: 5
  givenname: Qian
  surname: Xu
  fullname: Xu, Qian
  organization: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics and Information System, Luoyang, China
– sequence: 6
  givenname: Wenjun
  orcidid: 0000-0002-1077-9877
  surname: Qi
  fullname: Qi, Wenjun
  organization: College of Electronic and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNpNkEFPAjEQhRujiYj8ABMPe9QD2Gl32-WIBBFDxBA9N0M7SxbXrekuUf69RYzhNF_mzbzJvAt2WvuaGLsCPgDgw7vF0-hlILhIBzIDlcvshHWEkrqvUgmnR3zOek2z4ZyLDACE6jCcVGTbUFqsql0yx7CmZOw_Piv6TharTdSaZEnWr-uyLX2d3GNDLokwxTZClLYhUN1Gakq3xSp5pvbLh_fkZrpcRr69ZGcFVg31_mqXvT1MXseP_fliOhuP5n0rhW770toMnJNgVxqL1SqFDDMnpdJSZEpxgBRzAJQ8_leAzjWgU0OrHZJAELLLZgdf53FjPkP5gWFnPJbmt-HD2mBoS1uR4co5tJwT6SLVUg1BKyUKnRfOai73XnDwssE3TaDi3w-42Udu9pGbfeTmL_K4c33YKYnoaF4P83hD_gASnn2p
CODEN IJSTK4
Cites_doi 10.1109/TAP.2012.2196963
10.3115/v1/D14-1179
10.1109/APS/URSI47566.2021.9704304
10.1109/CVPR.2016.90
10.1109/TSP.2006.873534
10.1109/TAP.2016.2633066
10.1016/j.sigpro.2018.09.041
10.23919/IRS.2017.8008207
10.3390/s18010173
10.1109/TIE.2017.2733438
10.1016/j.patcog.2016.08.012
10.1109/TSP.2011.2141664
10.4324/9781410605337-29
10.2528/PIERM16123002
10.1109/TGRS.2021.3055061
10.1109/ACCESS.2019.2909348
10.2528/PIER10041101
10.1109/ACCESS.2019.2891594
10.1109/ITNEC48623.2020.9084922
10.1109/LAWP.2023.3299990
10.1049/el.2016.3060
10.2528/PIER10083005
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
DOA
DOI 10.1109/OJAP.2024.3516835
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2637-6431
EndPage 371
ExternalDocumentID oai_doaj_org_article_06ddac00ee7f4736917662f78fdc7032
10_1109_OJAP_2024_3516835
10798473
Genre orig-research
GrantInformation_xml – fundername: State Key Laboratory of Complex Electromagnetic Environment Effects on Electronics Information System (CEMEE)
  grantid: CEMEE2023K0203
GroupedDBID 0R~
97E
AAJGR
ABAZT
ABVLG
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
ESBDL
GROUPED_DOAJ
JAVBF
M~E
OCL
OK1
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c327t-3cc51dd31cb7afbb415a5d3367325660114a811a30835f17871ad69c7dae2a123
IEDL.DBID RIE
ISSN 2637-6431
IngestDate Wed Aug 27 01:23:59 EDT 2025
Tue Jul 01 05:13:35 EDT 2025
Wed Aug 27 02:03:23 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-3cc51dd31cb7afbb415a5d3367325660114a811a30835f17871ad69c7dae2a123
ORCID 0000-0002-6185-4320
0000-0002-1077-9877
0009-0008-3954-1409
0009-0009-6588-2474
0000-0002-9719-6075
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10798473
PageCount 7
ParticipantIDs ieee_primary_10798473
doaj_primary_oai_doaj_org_article_06ddac00ee7f4736917662f78fdc7032
crossref_primary_10_1109_OJAP_2024_3516835
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE Open Journal of Antennas and Propagation
PublicationTitleAbbrev OJAP
PublicationYear 2025
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref11
ref10
ref2
ref1
ref17
ref19
ref18
ref24
ref23
ref20
ref22
van der Maaten (ref25) 2008; 9
ref21
Chung (ref16) 2014
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – year: 2014
  ident: ref16
  article-title: Empirical evaluation of gated recurrent neural networks on sequence modeling
  publication-title: arXiv:1412.3555
– ident: ref1
  doi: 10.1109/TAP.2012.2196963
– ident: ref22
  doi: 10.3115/v1/D14-1179
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref25
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref2
  doi: 10.1109/APS/URSI47566.2021.9704304
– ident: ref20
  doi: 10.1109/CVPR.2016.90
– ident: ref23
  doi: 10.1109/TSP.2006.873534
– ident: ref4
  doi: 10.1109/TAP.2016.2633066
– ident: ref15
  doi: 10.1016/j.sigpro.2018.09.041
– ident: ref14
  doi: 10.23919/IRS.2017.8008207
– ident: ref8
  doi: 10.3390/s18010173
– ident: ref21
  doi: 10.1109/TIE.2017.2733438
– ident: ref10
  doi: 10.1016/j.patcog.2016.08.012
– ident: ref18
  doi: 10.1109/TSP.2011.2141664
– ident: ref19
  doi: 10.4324/9781410605337-29
– ident: ref13
  doi: 10.2528/PIERM16123002
– ident: ref7
  doi: 10.1109/TGRS.2021.3055061
– ident: ref12
  doi: 10.1109/ACCESS.2019.2909348
– ident: ref3
  doi: 10.2528/PIER10041101
– ident: ref6
  doi: 10.1109/TSP.2011.2141664
– ident: ref11
  doi: 10.1109/ACCESS.2019.2891594
– ident: ref24
  doi: 10.1109/ITNEC48623.2020.9084922
– ident: ref5
  doi: 10.1109/LAWP.2023.3299990
– ident: ref9
  doi: 10.1049/el.2016.3060
– ident: ref17
  doi: 10.2528/PIER10083005
SSID ssj0002511126
Score 2.2876403
Snippet In this paper, a novel deep model based on gated recurrent residual network for electrically large complex objects recognition is proposed. It can fully...
SourceID doaj
crossref
ieee
SourceType Open Website
Index Database
Publisher
StartPage 365
SubjectTerms Automobiles
Computer architecture
Convolutional neural networks
Deep learning
Deep learning (DL)
electromagnetic scattering
Feature extraction
gated recurrent unit (GRU)
high resolution range profile (HRRP)
Internet of Vehicles (IoVs)
Logic gates
Radar
residual network (ResNet)
shooting and bouncing ray (SBR) method
Solid modeling
Target recognition
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELUQEwyIjyLKlzwwAFJoHCd2PLaopaqgRRWVukVObE9VimiR4N9z56QQJhY2K4mS6J3tu3e5vCPkSkShMTyH3c9pE8RxkgdprBhwHu1Uklhw8pgaeBqL4SwezZN5o9UX1oRV8sAVcJ1QGKOLMLRWulhyoVDRMHIydaaA2ep331CFDTKFezAGziwS9WdMFqrOZNR9BjoYxXc8YSL17d1-HJHX6__VYMX7l8E-2asDQ9qtXuiAbNnykOw25AKPiO77njUI6-KTPmINN8X1vLAfdJJjQmVFp5uCoGVJe-ChDIUBpsgMnqrEmGC08v9g0XFVBE6vH6ZTGN-0yGzQf7kfBnWLhKDgkVwHvCgSBmCzIpfa5Tm4Y50YzoXkEMsIZDs6ZUxzjLQcg9XJtBGqkEbbSIPXOibb5bK0J4Q645Ana200kD6wlOLMMiNzzazTqWuT2w1e2WulhJF5BhGqDMHNENysBrdNeojo94UoYu0PgGmz2rTZX6Ztkxbao_E0qcCZ8tP_uPkZ2Ymwla8vwjkn2-u3d3sB8cU6v_RT6Qt248pT
  priority: 102
  providerName: Directory of Open Access Journals
Title Electrically Large Complex Objects Recognition Based on Gated Recurrent Residual Network (GRRNet)
URI https://ieeexplore.ieee.org/document/10798473
https://doaj.org/article/06ddac00ee7f4736917662f78fdc7032
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LS8MwGA_Okx58i_NFDh5U6GyaNm2Pm0xluE2GgreS58WxiW6gHvzb_b60m1MQvJSPtNCQX_K98j0IORFRaAxXwP2cNEEcJyrI4pyBzSNdniQWhDy6Bro9cfMQdx6TxypZ3efCWGt98JltIOnv8s1YT9FVBic8zYGb8hqpwT4rk7XmDhXUlVkkqptLFuYX_U7zDizAKG7whInMd3T7lj2-RP-PnipepFytk95sMmUkyVNjOlEN_fGrTuO_Z7tB1irlkjbL3bBJluxoi6wulBzcJrLt-94gNMN3eotx4BR5wtC-0b5Cp8wrHcyCisYj2gIpZygQ6GYz-Kos6ATUq8_jor0ykJyeXg8GQJ_tkIer9v3lTVC1WQg0j9JJwLVOGADGtEqlUwpEukwM5yLloA8JtJhkxpjkqK05BivPpBG5To20kQTJt0uWR-OR3SPUGYe2tpRGguEIaOecWWZSJZl1MnN1cj4DoHguq2kU3goJ8wLRKhCtokKrTloI0fxDLITtB2CVi-pcFaEwRuowtDZ1sNYix4KXkUszZzQws6hOdhCZhb-VoOz_MX5AViLs8Otjcw7J8uRlao9A7ZioY2-uw7P72T72W-8Lv6TW2A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT9swFH_a2GHjAGNjWhlsPuywTUoWx4mTHCmCdVACqkDiFvnzsqpFtJWAv37vOSmUSUi7PTmWYvlnvy-_D4CvMk2sFRq5n1c2yrJcR2VWcbR5lK_y3KGQJ9fAaS0Hl9nxVX7VJauHXBjnXAg-czGR4S3fTs2CXGV4w4sKual4Ca9Q8Gd5m6714FIhbZmnsnu75En18-x4_xxtwDSLRc5lGXq6PUqfUKT_SVeVIFSONqFeLqeNJfkTL-Y6Nvf_VGr87_W-hY1OvWT77XnYghdu8g7WV4oOvgd1GDrfEDjjOzakSHBGXGHsbtmZJrfMjI2WYUXTCeujnLMMCXK0WfrUlnRCahYyuVjdhpKzb79GI6S_b8Pl0eHFwSDqGi1ERqTFPBLG5Bwh40YXymuNQl3lVghZCNSIJNlMquRcCdLXPMc7zpWVlSmscqlC2fcB1ibTifsIzFtP1rZSVqHpiHhXgjtuC62486r0PfixBKC5butpNMEOSaqG0GoIraZDqwd9guhhIpXCDgO4y013s5pEWqtMkjhXeNxrWVHJy9QXpbcG2Vnag21CZuVvLSg7z4x_gdeDi9NhM_xdn3yCNyn1-w2ROruwNr9ZuD1UQub6czh6fwEGL9f_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Electrically+Large+Complex+Objects+Recognition+Based+on+Gated+Recurrent+Residual+Network+%28GRRNet%29&rft.jtitle=IEEE+Open+Journal+of+Antennas+and+Propagation&rft.au=Liu%2C+Shangyin&rft.au=Xing%2C+Lei&rft.au=Hao%2C+Xiaojun&rft.au=Gong%2C+Shuaige&rft.date=2025-04-01&rft.issn=2637-6431&rft.eissn=2637-6431&rft.volume=6&rft.issue=2&rft.spage=365&rft.epage=371&rft_id=info:doi/10.1109%2FOJAP.2024.3516835&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_OJAP_2024_3516835
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2637-6431&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2637-6431&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2637-6431&client=summon