Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects

Based on the analysis of the wave vector of an acoustic-vortex (AV) spanner, the radiation torque of object rotation is investigated. It is demonstrated that the rotation of an axisymmetric disk centered on the AV spanner is mainly driven by the acoustic radiation force. The radiation torque exerted...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 112; no. 25
Main Authors Li, Yuzhi, Guo, Gepu, Tu, Juan, Ma, Qingyu, Guo, Xiasheng, Zhang, Dong, Sapozhnikov, Oleg A.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 18.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Based on the analysis of the wave vector of an acoustic-vortex (AV) spanner, the radiation torque of object rotation is investigated. It is demonstrated that the rotation of an axisymmetric disk centered on the AV spanner is mainly driven by the acoustic radiation force. The radiation torque exerted on a small-radius object is inversely associated with the topological charge in the center AV, and it is enhanced significantly for a larger AV with a higher topological charge. With the sixteen-source experimental setup, radius dependencies of radiation torque for AV spanners with different topological charges are verified by quantitative laser-displacement measurements using disks with different radii. The favorable results demonstrate that the radiation torque is more applicable than the orbital angular momentum in describing the driving capability of an AV spanner and can be used as an effective tool in clinical applications to manipulate objects with a feature size at the wavelength-scale inside body.
AbstractList Based on the analysis of the wave vector of an acoustic-vortex (AV) spanner, the radiation torque of object rotation is investigated. It is demonstrated that the rotation of an axisymmetric disk centered on the AV spanner is mainly driven by the acoustic radiation force. The radiation torque exerted on a small-radius object is inversely associated with the topological charge in the center AV, and it is enhanced significantly for a larger AV with a higher topological charge. With the sixteen-source experimental setup, radius dependencies of radiation torque for AV spanners with different topological charges are verified by quantitative laser-displacement measurements using disks with different radii. The favorable results demonstrate that the radiation torque is more applicable than the orbital angular momentum in describing the driving capability of an AV spanner and can be used as an effective tool in clinical applications to manipulate objects with a feature size at the wavelength-scale inside body.
Author Guo, Xiasheng
Zhang, Dong
Ma, Qingyu
Li, Yuzhi
Guo, Gepu
Tu, Juan
Sapozhnikov, Oleg A.
Author_xml – sequence: 1
  givenname: Yuzhi
  surname: Li
  fullname: Li, Yuzhi
  organization: Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University
– sequence: 2
  givenname: Gepu
  surname: Guo
  fullname: Guo, Gepu
  organization: Key Laboratory of Optoelectronics of Jiangsu Province, School of Physics and Technology, Nanjing Normal University
– sequence: 3
  givenname: Juan
  surname: Tu
  fullname: Tu, Juan
  organization: Institute of Acoustics, Nanjing University
– sequence: 4
  givenname: Qingyu
  surname: Ma
  fullname: Ma, Qingyu
  organization: 4Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
– sequence: 5
  givenname: Xiasheng
  surname: Guo
  fullname: Guo, Xiasheng
  organization: Institute of Acoustics, Nanjing University
– sequence: 6
  givenname: Dong
  surname: Zhang
  fullname: Zhang, Dong
  organization: Institute of Acoustics, Nanjing University
– sequence: 7
  givenname: Oleg A.
  surname: Sapozhnikov
  fullname: Sapozhnikov, Oleg A.
  organization: 4Department of Acoustics, Physics Faculty, Moscow State University, Moscow 119991, Russia
BookMark eNp9kFtLAzEQhYNUsK0--A8CPilsm8sm6T6W4g0Kvig-hmwusKXdrEkq7b83ulVBxaeZYb5zZjgjMGh9awE4x2iCEadTPGGI8krwIzDESIiCYjwbgCFCiBa8YvgEjGJc5ZERSofgea79NqZGw6BMo1LjW5h8eNla6B1ULVSHffHqQ7I7GDvVtjZAu7N5NjDzatfE_WZjU8g2vl5ZneIpOHZqHe3ZoY7B08314-KuWD7c3i_my0JTIlJBK8uVQEZrrQjmlSu5I65mZemUE4paxwxjjtDcM1oLo7GxqCa6stgRTugYXPS-XfD56Zjkym9Dm09KgmYziipRlpm67CkdfIzBOtmFZqPCXmIk33OTWB5yy-z0B6ub9BFMCqpZ_6m46hXxk_yyz6F9g7Iz7j_4t_MbmpmOtg
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_ijmecsci_2024_109311
crossref_primary_10_1063_5_0230948
crossref_primary_10_1088_1674_1056_ab8210
crossref_primary_10_1063_5_0218404
crossref_primary_10_1016_j_apacoust_2022_109053
crossref_primary_10_1088_1674_1056_abca1f
crossref_primary_10_1016_j_apacoust_2024_110121
crossref_primary_10_1063_5_0007351
crossref_primary_10_1103_PhysRevB_107_134103
crossref_primary_10_1103_PhysRevLett_123_244301
crossref_primary_10_1109_TUFFC_2023_3277854
crossref_primary_10_1063_5_0154688
crossref_primary_10_1063_5_0130015
crossref_primary_10_1016_j_wavemoti_2024_103305
crossref_primary_10_1063_5_0201781
crossref_primary_10_1103_PhysRevApplied_20_034020
crossref_primary_10_1121_1_5135302
crossref_primary_10_1038_s41598_019_56369_z
crossref_primary_10_1063_5_0107785
crossref_primary_10_1088_1674_1056_ac7868
Cites_doi 10.1103/PhysRevB.74.174302
10.1121/1.3675961
10.1063/1.4981122
10.1109/TMTT.1986.1133390
10.1039/C7LC00215G
10.1088/1367-2630/8/8/138
10.1103/PhysRevLett.109.034301
10.1098/rspa.1974.0012
10.1119/1.3056580
10.1038/ncomms9686
10.1103/PhysRevE.71.066616
10.1103/PhysRevLett.96.043604
10.1103/PhysRevE.71.056617
10.1103/PhysRevLett.105.034301
10.1103/PhysRevE.75.036610
10.1063/1.5004752
10.1109/TUFFC.2010.1564
10.1080/09500349608232731
10.1103/PhysRevLett.100.024302
10.1364/OPEX.13.007599
10.1121/1.406957
10.1016/j.ultras.2018.02.002
10.1364/OL.22.000052
10.1103/PhysRevLett.91.244302
10.1038/47364
10.1088/1367-2630/10/1/013018
10.1103/PhysRevE.84.065601
10.1063/1.4978370
10.1103/PhysRevE.77.016605
10.1126/science.1210713
10.1063/1.3693413
10.1063/1.4801894
10.1121/1.2360420
10.1088/0305-4470/39/22/011
10.1140/epjst/e2007-00146-3
ContentType Journal Article
Copyright Author(s)
2018 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2018 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.5036976
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_5036976
apl
GrantInformation_xml – fundername: China Postdoctoral Science Foundation
  grantid: 2016M591874
  funderid: http://dx.doi.org/10.13039/501100002858
– fundername: Natural Science Foundation of Jiangsu Province
  grantid: BK20161013
  funderid: http://dx.doi.org/10.13039/501100004608
– fundername: National Natural Science Foundation of China
  grantid: 11474166; 11604156
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-39e6a70dccca2169f46f2fb544faf7a3ef5d55f237a353b7dc1de0b2c9e1f2623
ISSN 0003-6951
IngestDate Mon Jun 30 06:07:09 EDT 2025
Tue Jul 01 01:16:03 EDT 2025
Thu Apr 24 23:04:45 EDT 2025
Sun Jul 14 10:05:09 EDT 2019
Fri Jun 21 00:16:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 25
Language English
License 0003-6951/2018/112(25)/254101/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-39e6a70dccca2169f46f2fb544faf7a3ef5d55f237a353b7dc1de0b2c9e1f2623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4979-7706
PQID 2088309744
PQPubID 2050678
PageCount 5
ParticipantIDs crossref_primary_10_1063_1_5036976
crossref_citationtrail_10_1063_1_5036976
scitation_primary_10_1063_1_5036976
proquest_journals_2088309744
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180618
2018-06-18
PublicationDateYYYYMMDD 2018-06-18
PublicationDate_xml – month: 06
  year: 2018
  text: 20180618
  day: 18
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2018
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kang, Yeh (c20) 2010
Tang, Wang, Hu (c33) 2017
Yu, Gaburro (c7) 2011
Skeldon, Wilson, Edgar, Padgett (c19) 2008
Doinikov, Thibault, Marmottant (c34) 2018
Thomas, Marchiano (c10) 2003
Marchiano, Coulouvrat, Ganjehi, Thomas (c13) 2008
Silva, Chen, Greenleaf, Fatemi (c29) 2005
Berry, Popescu (c3) 2006
Zhang, Marston (c23) 2011
Marchiano, Thomas (c14) 2005
Simpson (c2) 1997
Collins, Khoo, Ma, Winkler, Weser, Schmidtm, Han, Ai (c32) 2017
Collins, Morahan, Garcia-Bustos, Doerig, Plebanski, Neild (c31) 2015
Mariyenko, Strohaber, Uiterwaal (c4) 2005
Courtial, O'Holleran (c6) 2007
Cain, Umemura (c17) 1986
Wang, Li, Ma, Guo, Tu, Zhang (c36) 2018
Dashti, Alhassen, Lee (c5) 2006
Volke-Sepúlveda, Santillán, Boullosa (c24) 2008
Li, Guo, Ma, Tu, Zhang (c35) 2017
Berry (c18) 2000
Anhauser, Wunenburger, Brasselet (c25) 2012
Brunet, Thomas, Marchiano (c21) 2010
Mitri (c30) 2006
Xavie, Dasgupta, Ahlawat, Joseph, Kumar Gupta (c8) 2012
Nye, Berry (c9) 1974
Berry, Klein (c1) 1996
Lekner (c22) 2006
Bliokh, Freilikher (c11) 2006
Aronov, Brown, Bachand, Yan (c15) 2012
Lee, Wang (c27) 1993
Lekner (c12) 2007
Santillán, Volke-Sepúlveda (c16) 2009
Yang, Ma, Tu, Zhang (c26) 2013
(2023080609434171900_c25) 2012; 109
(2023080609434171900_c1) 1996; 43
(2023080609434171900_c12) 2007; 75
(2023080609434171900_c7) 2011; 334
(2023080609434171900_c20) 2010; 57
(2023080609434171900_c29) 2005; 71
(2023080609434171900_c19) 2008; 10
(2023080609434171900_c22) 2006; 120
(2023080609434171900_c32) 2017; 17
(2023080609434171900_c11) 2006; 74
(2023080609434171900_c9) 1974; 336
(2023080609434171900_c24) 2008; 100
(2023080609434171900_c26) 2013; 113
(2023080609434171900_c8) 2012; 100
(2023080609434171900_c30) 2006; 8
(2023080609434171900_c23) 2011; 84
(2023080609434171900_c36) 2018; 123
(2023080609434171900_c5) 2006; 96
(2023080609434171900_c17) 1986; 34
(2023080609434171900_c15) 2012; 131
(2023080609434171900_c16) 2009; 77
(2023080609434171900_c6) 2007; 145
(2023080609434171900_c27) 1993; 94
(2023080609434171900_c13) 2008; 77
(2023080609434171900_c3) 2006; 39
(2023080609434171900_c14) 2005; 71
(2023080609434171900_c34) 2018; 87
(2023080609434171900_c4) 2005; 13
(2023080609434171900_c2) 1997; 22
(2023080609434171900_c10) 2003; 91
(2023080609434171900_c31) 2015; 6
(2023080609434171900_c28) 2012
(2023080609434171900_c21) 2010; 105
(2023080609434171900_c35) 2017; 121
(2023080609434171900_c18) 2000; 403
(2023080609434171900_c33) 2017; 110
References_xml – start-page: 036610
  year: 2007
  ident: c12
  publication-title: Phys. Rev. E
– start-page: 35
  year: 2007
  ident: c6
  publication-title: Eur. Phys. J. Spec. Top.
– start-page: 034301
  year: 2012
  ident: c25
  publication-title: Phys. Rev. Lett.
– start-page: 165
  year: 1996
  ident: c1
  publication-title: J. Mod. Opt.
– start-page: 2079
  year: 2012
  ident: c15
  publication-title: J. Acoust. Soc. Am.
– start-page: 1451
  year: 2010
  ident: c20
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
– start-page: 034901
  year: 2018
  ident: c36
  publication-title: J. Appl. Phys.
– start-page: 034301
  year: 2010
  ident: c21
  publication-title: Phys. Rev. Lett.
– start-page: 1769
  year: 2017
  ident: c32
  publication-title: Lab Chip
– start-page: 154904
  year: 2013
  ident: c26
  publication-title: J. Appl. Phys.
– start-page: 8686
  year: 2015
  ident: c31
  publication-title: Nat. Commun.
– start-page: 209
  year: 2009
  ident: c16
  publication-title: Am. J. Phys.
– start-page: 056617
  year: 2005
  ident: c29
  publication-title: Phys. Rev. E
– start-page: 066616
  year: 2005
  ident: c14
  publication-title: Phys. Rev. E
– start-page: 164901
  year: 2017
  ident: c35
  publication-title: J. Appl. Phys.
– start-page: 043604
  year: 2006
  ident: c5
  publication-title: Phys. Rev. Lett.
– start-page: 333
  year: 2011
  ident: c7
  publication-title: Science
– start-page: 52
  year: 1997
  ident: c2
  publication-title: Opt. Lett.
– start-page: 244302
  year: 2003
  ident: c10
  publication-title: Phys. Rev. Lett.
– start-page: 542
  year: 1986
  ident: c17
  publication-title: IEEE Trans. Microwave Theory Tech.
– start-page: 013018
  year: 2008
  ident: c19
  publication-title: New J. Phys.
– start-page: 1099
  year: 1993
  ident: c27
  publication-title: J. Acoust. Soc. Am.
– start-page: 7
  year: 2018
  ident: c34
  publication-title: Ultrasonics
– start-page: 21
  year: 2000
  ident: c18
  publication-title: Nature
– start-page: 121101
  year: 2012
  ident: c8
  publication-title: Appl. Phys. Lett.
– start-page: 6965
  year: 2006
  ident: c3
  publication-title: J. Phys. A: Math. Gen.
– start-page: 165
  year: 1974
  ident: c9
  publication-title: Proc. R. Soc. London, Ser. A
– start-page: 174302
  year: 2006
  ident: c11
  publication-title: Phys. Rev. B
– start-page: 104105
  year: 2017
  ident: c33
  publication-title: Appl. Phys. Lett.
– start-page: 065601
  year: 2011
  ident: c23
  publication-title: Phys. Rev. E
– start-page: 024302
  year: 2008
  ident: c24
  publication-title: Phys. Rev. Lett.
– start-page: 016605
  year: 2008
  ident: c13
  publication-title: Phys. Rev. E
– start-page: 7599
  year: 2005
  ident: c4
  publication-title: Opt. Express
– start-page: 138
  year: 2006
  ident: c30
  publication-title: New J. Phys.
– start-page: 3475
  year: 2006
  ident: c22
  publication-title: J. Acoust. Soc. Am.
– volume: 74
  start-page: 174302
  year: 2006
  ident: 2023080609434171900_c11
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.74.174302
– volume: 131
  start-page: 2079
  year: 2012
  ident: 2023080609434171900_c15
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3675961
– volume: 121
  start-page: 164901
  year: 2017
  ident: 2023080609434171900_c35
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4981122
– volume: 34
  start-page: 542
  year: 1986
  ident: 2023080609434171900_c17
  publication-title: IEEE Trans. Microwave Theory Tech.
  doi: 10.1109/TMTT.1986.1133390
– volume: 17
  start-page: 1769
  year: 2017
  ident: 2023080609434171900_c32
  publication-title: Lab Chip
  doi: 10.1039/C7LC00215G
– volume: 8
  start-page: 138
  year: 2006
  ident: 2023080609434171900_c30
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/8/8/138
– volume: 109
  start-page: 034301
  year: 2012
  ident: 2023080609434171900_c25
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.034301
– volume: 336
  start-page: 165
  year: 1974
  ident: 2023080609434171900_c9
  publication-title: Proc. R. Soc. London, Ser. A
  doi: 10.1098/rspa.1974.0012
– volume: 77
  start-page: 209
  year: 2009
  ident: 2023080609434171900_c16
  publication-title: Am. J. Phys.
  doi: 10.1119/1.3056580
– volume: 6
  start-page: 8686
  year: 2015
  ident: 2023080609434171900_c31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9686
– volume: 71
  start-page: 066616
  year: 2005
  ident: 2023080609434171900_c14
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.066616
– volume: 96
  start-page: 043604
  year: 2006
  ident: 2023080609434171900_c5
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.043604
– volume: 71
  start-page: 056617
  year: 2005
  ident: 2023080609434171900_c29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.71.056617
– volume: 105
  start-page: 034301
  year: 2010
  ident: 2023080609434171900_c21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.034301
– volume: 75
  start-page: 036610
  year: 2007
  ident: 2023080609434171900_c12
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.75.036610
– volume: 123
  start-page: 034901
  year: 2018
  ident: 2023080609434171900_c36
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5004752
– volume: 57
  start-page: 1451
  year: 2010
  ident: 2023080609434171900_c20
  publication-title: IEEE Trans. Ultrason. Ferroelectr. Freq. Control
  doi: 10.1109/TUFFC.2010.1564
– volume-title: Principles of Acoustics
  year: 2012
  ident: 2023080609434171900_c28
– volume: 43
  start-page: 165
  year: 1996
  ident: 2023080609434171900_c1
  publication-title: J. Mod. Opt.
  doi: 10.1080/09500349608232731
– volume: 100
  start-page: 024302
  year: 2008
  ident: 2023080609434171900_c24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.024302
– volume: 13
  start-page: 7599
  year: 2005
  ident: 2023080609434171900_c4
  publication-title: Opt. Express
  doi: 10.1364/OPEX.13.007599
– volume: 94
  start-page: 1099
  year: 1993
  ident: 2023080609434171900_c27
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.406957
– volume: 87
  start-page: 7
  year: 2018
  ident: 2023080609434171900_c34
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2018.02.002
– volume: 22
  start-page: 52
  year: 1997
  ident: 2023080609434171900_c2
  publication-title: Opt. Lett.
  doi: 10.1364/OL.22.000052
– volume: 91
  start-page: 244302
  year: 2003
  ident: 2023080609434171900_c10
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.91.244302
– volume: 403
  start-page: 21
  year: 2000
  ident: 2023080609434171900_c18
  publication-title: Nature
  doi: 10.1038/47364
– volume: 10
  start-page: 013018
  year: 2008
  ident: 2023080609434171900_c19
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/10/1/013018
– volume: 84
  start-page: 065601
  year: 2011
  ident: 2023080609434171900_c23
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.84.065601
– volume: 110
  start-page: 104105
  year: 2017
  ident: 2023080609434171900_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4978370
– volume: 77
  start-page: 016605
  year: 2008
  ident: 2023080609434171900_c13
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.77.016605
– volume: 334
  start-page: 333
  year: 2011
  ident: 2023080609434171900_c7
  publication-title: Science
  doi: 10.1126/science.1210713
– volume: 100
  start-page: 121101
  year: 2012
  ident: 2023080609434171900_c8
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3693413
– volume: 113
  start-page: 154904
  year: 2013
  ident: 2023080609434171900_c26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4801894
– volume: 120
  start-page: 3475
  year: 2006
  ident: 2023080609434171900_c22
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.2360420
– volume: 39
  start-page: 6965
  year: 2006
  ident: 2023080609434171900_c3
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/39/22/011
– volume: 145
  start-page: 35
  year: 2007
  ident: 2023080609434171900_c6
  publication-title: Eur. Phys. J. Spec. Top.
  doi: 10.1140/epjst/e2007-00146-3
SSID ssj0005233
Score 2.3771207
Snippet Based on the analysis of the wave vector of an acoustic-vortex (AV) spanner, the radiation torque of object rotation is investigated. It is demonstrated that...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Acoustics
Angular momentum
Applied physics
Axisymmetric bodies
Rotating disks
Rotation
Sound waves
Torque
Title Acoustic radiation torque of an acoustic-vortex spanner exerted on axisymmetric objects
URI http://dx.doi.org/10.1063/1.5036976
https://www.proquest.com/docview/2088309744
Volume 112
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELdGJwQ8TDBAFAaygAekKFtjx0nzWME-hLqBRCvKU-Q4tlZpS6qlRWN__e4S56NQTcBLFKUnN7r7-fyzcx-EvA98z3AWKVeboXR9nQg3CdKhm2LateQGFhVMFD49C06m_ueZmLUFFcrskmWyr2425pX8j1XhGdgVs2T_wbLNoPAA7sG-cAULw_WvbDxSedmMy7nCCgOlJWELjQVZ8et-5kj7u_sTQ2qvHfAe2Gmr7LOETBMjka_nxa_LS-yrpZw8wVOZoktYa5ZanYAUzkWZ_tMQ8XEZDPBjdXM-byJ5VrlzrBerNnKjyv5oYYgSs7kszrVdNu2pgzfE6CjrKNtAf5mthzR8rV5lzd9yN4hsSVldudhBiCejdrDaB3usA7YqFfoP5w5sCs8Z9gWsulG4oYD22Zf4aDoex5PD2eQe2Wawc2A9sj36dDr-1on74bxuo4ivVpebCvhBM_Q6SWl3Hg-AllQREh0SMnlMduzugY4qKDwhWzrbJY86NSV3yX2rnqfkew0P2sCDVvCguaEyo7_Bg1p4UAsPCvJdeFALj2dkenQ4-Xji2j4aruIsXLo80oEMB6mC2cq8IDJ-YJhJhO8baULJtRGpEIZxuBc8CVPlpXqQMBVpzzDgx89JL8sz_YJQLB9omNTAUz1fCl8qwxRPUsYiw7kY9smHWnFxrSrsdXIRl8EOAY-92Oq4T942oouqssomob1a-7GdeEXMYGXkA9gI-33yrrHIXYNskALNthLxIjUv7_6rV-RhOw_2SG95tdKvgY8ukzcWYbfb-JC0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Acoustic+radiation+torque+of+an+acoustic-vortex+spanner+exerted+on+axisymmetric+objects&rft.jtitle=Applied+physics+letters&rft.au=Li%2C+Yuzhi&rft.au=Guo+Gepu&rft.au=Tu%2C+Juan&rft.au=Guo+Xiasheng&rft.date=2018-06-18&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=112&rft.issue=25&rft_id=info:doi/10.1063%2F1.5036976&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon