Suppressed resistance drift from short range order of amorphous GeTe ultrathin films

The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to o...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 117; no. 2
Main Authors Ma, Ping, Tong, Hao, Xu, Ming, Cheng, Xiaomin, Miao, Xiangshui
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 13.07.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to overcome the limit of current plane lithography. Those memory cells composed of two-dimensional materials present a suppressed resistance drift in their amorphous phase. The drift exponent ν is reduced to 0.05 for 3 nm GeTe layers. Combined with Raman spectroscopy and ab initio molecular dynamics simulations, the structural relaxation process is described as the decay of tetrahedral-bonded sites. Tetrahedrons in ultrathin films are more stable than those in bulk materials. The local motifs of amorphous GeTe ultrathin films are covalently bonded and highly ordered in a short range. The majority of highly ordered tetrahedral clusters prevents spontaneous structural relaxation and leads to high stability in amorphous states, which helps to stop intrinsic fluctuations in physical properties of SET and RESET states, without an extra processing cost.
AbstractList The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to overcome the limit of current plane lithography. Those memory cells composed of two-dimensional materials present a suppressed resistance drift in their amorphous phase. The drift exponent ν is reduced to 0.05 for 3 nm GeTe layers. Combined with Raman spectroscopy and ab initio molecular dynamics simulations, the structural relaxation process is described as the decay of tetrahedral-bonded sites. Tetrahedrons in ultrathin films are more stable than those in bulk materials. The local motifs of amorphous GeTe ultrathin films are covalently bonded and highly ordered in a short range. The majority of highly ordered tetrahedral clusters prevents spontaneous structural relaxation and leads to high stability in amorphous states, which helps to stop intrinsic fluctuations in physical properties of SET and RESET states, without an extra processing cost.
Author Miao, Xiangshui
Xu, Ming
Cheng, Xiaomin
Tong, Hao
Ma, Ping
Author_xml – sequence: 1
  givenname: Ping
  surname: Ma
  fullname: Ma, Ping
  organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 2
  givenname: Hao
  surname: Tong
  fullname: Tong, Hao
  organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 3
  givenname: Ming
  surname: Xu
  fullname: Xu, Ming
  organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 4
  givenname: Xiaomin
  surname: Cheng
  fullname: Cheng, Xiaomin
  organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
– sequence: 5
  givenname: Xiangshui
  surname: Miao
  fullname: Miao, Xiangshui
  organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China
BookMark eNp9kE9Lw0AQxRepYFs9-A0WPCmk3T9JNjlK0SoUPFjPYZNM7JY0G2c3gt_elVYFFZnDY4bfvBnehIw62wEh55zNOEvlPJkxxnKZiiMy5kypSHKejcg4TGWU5gk_IRPntqFNhJRjsn4c-h7BOahpEOO87iqgNZrG0wbtjrqNRU9Rd89ALdaA1DZU7yz2Gzs4uoQ10KH1qP3GdLQx7c6dkuNGtw7ODjolT7c368VdtHpY3i-uV1ElhfKRjHmZZqpOS-CghBJ5CUpyqUrOmQael1leCSHThKWVzlmlgMUKYgayVExzOSUXe98e7csAzhdbO2AXThYiDiVElrFAzfdUhdY5hKaojNfe2C48bdqCs-IjuiIpDtGFjcsfGz2anca3P9mrPes-Xb_gV4vfYNHXzX_wb-d3VTeLKQ
CODEN APPLAB
CitedBy_id crossref_primary_10_1016_j_apsusc_2022_154274
crossref_primary_10_1016_j_jallcom_2021_162148
crossref_primary_10_1038_s41467_024_45327_7
crossref_primary_10_1021_acsanm_4c05610
crossref_primary_10_1038_s41598_024_53192_z
crossref_primary_10_1016_j_ceramint_2023_03_117
crossref_primary_10_1016_j_ceramint_2023_12_169
crossref_primary_10_1088_1402_4896_ad75cf
crossref_primary_10_1016_j_mtadv_2025_100571
crossref_primary_10_1063_5_0138286
crossref_primary_10_1109_LED_2021_3133906
crossref_primary_10_1109_LED_2022_3203971
crossref_primary_10_1016_j_vacuum_2023_112127
crossref_primary_10_1016_j_jnoncrysol_2021_121327
crossref_primary_10_1002_adfm_202417128
crossref_primary_10_1016_j_fmre_2022_09_010
crossref_primary_10_1021_acsami_3c10785
crossref_primary_10_1063_5_0100570
crossref_primary_10_1088_1674_1056_ace765
crossref_primary_10_1016_j_ceramint_2023_09_112
Cites_doi 10.1109/MSPEC.2017.7864741
10.1016/j.jpcs.2016.12.016
10.1063/1.98091
10.1021/acs.jpcb.6b02452
10.1021/acs.jpcc.6b09841
10.1021/jp507361f
10.1002/admi.201300027
10.1063/1.4818132
10.1103/PhysRevB.92.054201
10.1016/j.jnoncrysol.2014.01.006
10.1063/1.4976828
10.1002/anie.201404223
10.1007/s10853-015-9493-z
10.1002/adma.201704729
10.1039/C7TC01135K
10.1038/srep32895
10.1109/LED.2010.2058838
10.1038/s41598-017-14498-3
10.1063/1.4886119
10.1063/1.3674311
10.1063/1.4964729
10.1063/1.1835560
10.1103/PhysRevLett.120.205502
10.1063/1.4894864
10.1063/1.3109063
10.1063/1.4874415
10.1063/1.2930680
10.1063/1.5020614
10.1038/ncomms8467
10.1016/S1369-7021(08)70118-4
10.1109/JETCAS.2016.2528598
10.1063/1.2801626
10.1126/science.aay0291
10.1021/acs.chemmater.8b01900
10.1109/TED.2018.2871197
10.1038/nnano.2016.70
10.1039/C5NR04530D
10.1143/JJAP.46.974
10.1038/s41467-017-01481-9
10.1038/35053024
10.1103/PhysRevB.76.235201
10.1103/PhysRevLett.104.085503
10.1088/0953-8984/18/3/014
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0009362
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
CrossRef
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0009362
apl
GrantInformation_xml – fundername: National Key Research and Development Program of China
  grantid: 2017YFB0405601
– fundername: National Science and Technology Major Project
  grantid: 2017ZX02301007-002
  funderid: https://doi.org/10.13039/100008986
– fundername: National Natural Science Foundation of China
  grantid: 61774068
  funderid: https://doi.org/10.13039/501100001809
– fundername: Major special projects for technological innovation of Hubei province
  grantid: 2018AAA038
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-341b687d6be1e72729be73137b110ae19b89c2236506ca90c7e047e40e3b70a13
ISSN 0003-6951
IngestDate Mon Jun 30 06:10:26 EDT 2025
Thu Apr 24 23:07:00 EDT 2025
Tue Jul 01 01:07:55 EDT 2025
Wed Nov 11 00:04:50 EST 2020
Fri Jun 21 00:19:18 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License 0003-6951/2020/117(2)/022109/5/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-341b687d6be1e72729be73137b110ae19b89c2236506ca90c7e047e40e3b70a13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2730-283X
0000-0002-8379-543X
PQID 2424222880
PQPubID 2050678
PageCount 5
ParticipantIDs scitation_primary_10_1063_5_0009362
crossref_citationtrail_10_1063_5_0009362
proquest_journals_2424222880
crossref_primary_10_1063_5_0009362
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20200713
2020-07-13
PublicationDateYYYYMMDD 2020-07-13
PublicationDate_xml – month: 07
  year: 2020
  text: 20200713
  day: 13
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Chong, Koon (c36) 2007
Ma, Tong, Huang, Xu, Yu, Cheng, Sun, Miao (c9) 2017
Jeong, Hwang (c7) 2018
Yalon, Deshmukh, Rojo, Lian, Neumann, Xiong, Pop (c13) 2017
Gabardi, Caravati, Sosso, Behler, Bernasconi (c18) 2015
Sosso, Colombo, Behler, Del Gado, Bernasconi (c19) 2014
Ielmini, Lavizzari, Sharma, Lacaita (c24) 2008
Deringer, Zhang, Lumeij, Maintz, Wuttig, Mazzarello, Dronskowski (c41) 2014
Sebastian, Tuma, Papandreou, Le Gallo, Kull, Parnell, Eleftheriou (c6) 2017
Alsayoud, Rao, Edwards, Deymier, Muralidharan, Potter, Runge, Lucas (c31) 2016
Ding, Wang, Zhou, Tian, Lu, Mazzarello, Jia, Zhang, Rao, Ma (c8) 2019
Fantini, Brazzelli, Cazzini, Mani (c17) 2012
Yu, Tong, Zhou, Elbashir, Miao (c33) 2013
Yu, Tong, Miao (c34) 2014
Ahn, Jeong, Park, Park, Jung, Han, Yang, Kim, Jeong, Cho (c10) 2017
Bourzac (c1) 2017
Momand, Wang, Boschker, Verheijen, Calarco, Kooi (c14) 2015
Hirata, Ichitsubo, Guan, Fujita, Chen (c44) 2018
Boniardi, Redaelli, Pirovano, Tortorelli, Ielmini, Pellizzer (c25) 2009
Wang, Campi, Bernasconi, Momand, Kooi, Verheijen, Wuttig, Calarco (c28) 2016
Mitrofanov, Kolobov, Fons, Wang, Tominaga, Tamenori, Uruga, Ciocchini, Ielmini (c42) 2014
Errington, Debenedetti (c39) 2001
Itoh (c30) 2017
Chien, Yeh, Bruce, Cheng, Kuo, Yang, Ray, Miyazoe, Kim, Carta (c4) 2018
Andrikopoulos, Yannopoulos, Voyiatzis, Kolobov, Ribes, Tominaga (c29) 2006
Homma, Schuller, Sevenhans, Bruynseraede (c35) 1987
Raty, Zhang, Luckas, Chen, Mazzarello, Bichara, Wuttig (c43) 2015
Caravati, Bernasconi, Kühne, Krack, Parrinello (c40) 2007
Varma, Muthu, Sood, Asokan (c27) 2014
Wang, Wang, Du, Lu, Schmitz, Reindl, Mio, Jia, Ma, Mazzarello (c22) 2018
Koughia, Shakoor, Kasap, Marshall (c23) 2005
Mazzarello, Caravati, Angioletti-Uberti, Bernasconi, Parrinello (c32) 2010
Akola, Jones (c38) 2007
Li, Wu, Ji, Zheng, Liu, Song, Shi, Zhu, Song, Feng (c11) 2018
Ohyanagi, Takaura (c20) 2016
Ohyanagi, Kitamura, Araidai, Kato, Takaura, Shiraishi (c15) 2014
Tominaga, Kolobov, Fons, Nakano, Murakami (c16) 2014
Wełnic, Wuttig (c37) 2008
Cecchi, Zallo, Momand, Wang, Kooi, Verheijen, Calarco (c21) 2017
Tuma, Pantazi, Le Gallo, Sebastian, Eleftheriou (c5) 2016
Khoo, Liu, Sasangka, Made, Tamura, Kunz, Budiman, Gan, Thompson (c26) 2016
Roy, In't Zandt, Wolters (c12) 2010
Athmanathan, Stanisavljevic, Papandreou, Pozidis, Eleftheriou (c3) 2016
(2023061717033094000_c20) 2016; 6
(2023061717033094000_c36) 2007; 46
(2023061717033094000_c10) 2017; 5
(2023061717033094000_c13) 2017; 7
(2023061717033094000_c19) 2014; 118
(2023061717033094000_c39) 2001; 409
(2023061717033094000_c9) 2017; 121
(2023061717033094000_c27) 2014; 387
(2023061717033094000_c11) 2018; 8
(2023061717033094000_c31) 2016; 120
(2023061717033094000_c30) 2017; 103
(2023061717033094000_c1) 2017; 54
(2023061717033094000_c3) 2016; 6
(2023061717033094000_c41) 2014; 53
(2023061717033094000_c12) 2010; 31
(2023061717033094000_c22) 2018; 30
(2023061717033094000_c7) 2018; 30
(2023061717033094000_c37) 2008; 11
(2023061717033094000_c16) 2014; 1
(2023061717033094000_c24) 2008; 92
(2023061717033094000_c26) 2016; 51
(2023061717033094000_c15) 2014; 104
(2023061717033094000_c25) 2009; 105
(2023061717033094000_c43) 2015; 6
(2023061717033094000_c33) 2013; 103
(2023061717033094000_c38) 2007; 76
(2023061717033094000_c14) 2015; 7
(2023061717033094000_c40) 2007; 91
(2023061717033094000_c4) 2018; 65
(2023061717033094000_c6) 2017; 8
(2023061717033094000_c8) 2019; 366
(2023061717033094000_c44) 2018; 120
(2023061717033094000_c32) 2010; 104
(2023061717033094000_c23) 2005; 97
(2023061717033094000_c28) 2016; 6
(2023061717033094000_c2) 2018
(2023061717033094000_c21) 2017; 5
(2023061717033094000_c5) 2016; 11
(2023061717033094000_c17) 2012; 100
(2023061717033094000_c29) 2006; 18
(2023061717033094000_c18) 2015; 92
(2023061717033094000_c34) 2014; 105
(2023061717033094000_c35) 1987; 50
(2023061717033094000_c42) 2014; 115
References_xml – start-page: 318
  year: 2001
  ident: c39
  publication-title: Nature
– start-page: 025201
  year: 2018
  ident: c11
  publication-title: AIP Adv.
– start-page: 7820
  year: 2017
  ident: c10
  publication-title: J. Mater. Chem. C
– start-page: 171906
  year: 2007
  ident: c40
  publication-title: Appl. Phys. Lett.
– start-page: 033706
  year: 2005
  ident: c23
  publication-title: J. Appl. Phys.
– start-page: 085503
  year: 2010
  ident: c32
  publication-title: Phys. Rev. Lett.
– start-page: 10817
  year: 2014
  ident: c41
  publication-title: Angew. Chem., Int. Ed.
– start-page: 87
  year: 2016
  ident: c3
  publication-title: IEEE J. Emerging Sel. Top. Circuits Syst.
– start-page: 235201
  year: 2007
  ident: c38
  publication-title: Phys. Rev. B
– start-page: 121902
  year: 2014
  ident: c34
  publication-title: Appl. Phys. Lett.
– start-page: 1115
  year: 2017
  ident: c6
  publication-title: Nat. Commun.
– start-page: 1077
  year: 2010
  ident: c12
  publication-title: IEEE Electron Device Lett.
– start-page: 4174
  year: 2016
  ident: c31
  publication-title: J. Phys. Chemistry B
– start-page: 109
  year: 2017
  ident: c30
  publication-title: J. Phys. Chem. Solids
– start-page: 193511
  year: 2008
  ident: c24
  publication-title: Appl. Phys. Lett.
– start-page: 13621
  year: 2014
  ident: c19
  publication-title: J. Phys. Chem. B
– start-page: 105104
  year: 2016
  ident: c20
  publication-title: AIP Adv.
– start-page: 084506
  year: 2009
  ident: c25
  publication-title: J. Appl. Phys.
– start-page: 15360
  year: 2017
  ident: c13
  publication-title: Sci. Rep.
– start-page: 013505
  year: 2012
  ident: c17
  publication-title: Appl. Phys. Lett.
– start-page: 693
  year: 2016
  ident: c5
  publication-title: Nat. Nanotechnol.
– start-page: 1704729
  year: 2018
  ident: c7
  publication-title: Adv. Mater.
– start-page: 1300027
  year: 2014
  ident: c16
  publication-title: Adv. Mater. Interfaces
– start-page: 054201
  year: 2015
  ident: c18
  publication-title: Phys. Rev. B
– start-page: 4770
  year: 2018
  ident: c22
  publication-title: Chem. Mater.
– start-page: 965
  year: 2006
  ident: c29
  publication-title: J. Phys.
– start-page: 252106
  year: 2014
  ident: c15
  publication-title: Appl. Phys. Lett.
– start-page: 5172
  year: 2018
  ident: c4
  publication-title: IEEE Trans. Electron Devices
– start-page: 1122
  year: 2017
  ident: c9
  publication-title: J. Phys. Chem. C
– start-page: 1864
  year: 2016
  ident: c26
  publication-title: J. Mater. Sci.
– start-page: 205502
  year: 2018
  ident: c44
  publication-title: Phys. Rev. Lett.
– start-page: 9
  year: 2017
  ident: c1
  publication-title: IEEE Spectrum
– start-page: 974
  year: 2007
  ident: c36
  publication-title: Jpn. J. Appl. Phys., Part 1
– start-page: 173501
  year: 2014
  ident: c42
  publication-title: J. Appl. Phys.
– start-page: 32895
  year: 2016
  ident: c28
  publication-title: Sci. Rep.
– start-page: 061910
  year: 2013
  ident: c33
  publication-title: Appl. Phys. Lett.
– start-page: 7467
  year: 2015
  ident: c43
  publication-title: Nat. Commun.
– start-page: 594
  year: 1987
  ident: c35
  publication-title: Appl. Phys. Lett.
– start-page: 026107
  year: 2017
  ident: c21
  publication-title: APL Mater.
– start-page: 19136
  year: 2015
  ident: c14
  publication-title: Nanoscale
– start-page: 143
  year: 2014
  ident: c27
  publication-title: J. Non-Cryst. Solids
– start-page: 20
  year: 2008
  ident: c37
  publication-title: Mater. Today
– start-page: 210
  year: 2019
  ident: c8
  publication-title: Science
– volume: 54
  start-page: 9
  year: 2017
  ident: 2023061717033094000_c1
  publication-title: IEEE Spectrum
  doi: 10.1109/MSPEC.2017.7864741
– volume: 103
  start-page: 109
  year: 2017
  ident: 2023061717033094000_c30
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2016.12.016
– volume: 50
  start-page: 594
  year: 1987
  ident: 2023061717033094000_c35
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.98091
– volume: 120
  start-page: 4174
  issue: 17
  year: 2016
  ident: 2023061717033094000_c31
  publication-title: J. Phys. Chemistry B
  doi: 10.1021/acs.jpcb.6b02452
– volume: 121
  start-page: 1122
  year: 2017
  ident: 2023061717033094000_c9
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09841
– volume: 118
  start-page: 13621
  year: 2014
  ident: 2023061717033094000_c19
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp507361f
– volume: 1
  start-page: 1300027
  year: 2014
  ident: 2023061717033094000_c16
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201300027
– volume: 103
  start-page: 061910
  year: 2013
  ident: 2023061717033094000_c33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4818132
– volume: 92
  start-page: 054201
  year: 2015
  ident: 2023061717033094000_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.92.054201
– volume: 387
  start-page: 143
  year: 2014
  ident: 2023061717033094000_c27
  publication-title: J. Non-Cryst. Solids
  doi: 10.1016/j.jnoncrysol.2014.01.006
– volume: 5
  start-page: 026107
  year: 2017
  ident: 2023061717033094000_c21
  publication-title: APL Mater.
  doi: 10.1063/1.4976828
– volume: 53
  start-page: 10817
  year: 2014
  ident: 2023061717033094000_c41
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404223
– volume: 51
  start-page: 1864
  year: 2016
  ident: 2023061717033094000_c26
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9493-z
– volume: 30
  start-page: 1704729
  year: 2018
  ident: 2023061717033094000_c7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704729
– volume: 5
  start-page: 7820
  year: 2017
  ident: 2023061717033094000_c10
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC01135K
– volume: 6
  start-page: 32895
  year: 2016
  ident: 2023061717033094000_c28
  publication-title: Sci. Rep.
  doi: 10.1038/srep32895
– volume: 31
  start-page: 1077
  year: 2010
  ident: 2023061717033094000_c12
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/LED.2010.2058838
– volume: 7
  start-page: 15360
  year: 2017
  ident: 2023061717033094000_c13
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-14498-3
– volume: 104
  start-page: 252106
  year: 2014
  ident: 2023061717033094000_c15
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4886119
– volume: 100
  start-page: 013505
  year: 2012
  ident: 2023061717033094000_c17
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3674311
– volume: 6
  start-page: 105104
  year: 2016
  ident: 2023061717033094000_c20
  publication-title: AIP Adv.
  doi: 10.1063/1.4964729
– volume: 97
  start-page: 033706
  year: 2005
  ident: 2023061717033094000_c23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1835560
– volume: 120
  start-page: 205502
  year: 2018
  ident: 2023061717033094000_c44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.205502
– volume: 105
  start-page: 121902
  year: 2014
  ident: 2023061717033094000_c34
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4894864
– volume: 105
  start-page: 084506
  year: 2009
  ident: 2023061717033094000_c25
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3109063
– volume: 115
  start-page: 173501
  year: 2014
  ident: 2023061717033094000_c42
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4874415
– volume: 92
  start-page: 193511
  year: 2008
  ident: 2023061717033094000_c24
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2930680
– year: 2018
  ident: 2023061717033094000_c2
– volume: 8
  start-page: 025201
  year: 2018
  ident: 2023061717033094000_c11
  publication-title: AIP Adv.
  doi: 10.1063/1.5020614
– volume: 6
  start-page: 7467
  year: 2015
  ident: 2023061717033094000_c43
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8467
– volume: 11
  start-page: 20
  year: 2008
  ident: 2023061717033094000_c37
  publication-title: Mater. Today
  doi: 10.1016/S1369-7021(08)70118-4
– volume: 6
  start-page: 87
  year: 2016
  ident: 2023061717033094000_c3
  publication-title: IEEE J. Emerging Sel. Top. Circuits Syst.
  doi: 10.1109/JETCAS.2016.2528598
– volume: 91
  start-page: 171906
  year: 2007
  ident: 2023061717033094000_c40
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2801626
– volume: 366
  start-page: 210
  year: 2019
  ident: 2023061717033094000_c8
  publication-title: Science
  doi: 10.1126/science.aay0291
– volume: 30
  start-page: 4770
  year: 2018
  ident: 2023061717033094000_c22
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b01900
– volume: 65
  start-page: 5172
  year: 2018
  ident: 2023061717033094000_c4
  publication-title: IEEE Trans. Electron Devices
  doi: 10.1109/TED.2018.2871197
– volume: 11
  start-page: 693
  year: 2016
  ident: 2023061717033094000_c5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.70
– volume: 7
  start-page: 19136
  year: 2015
  ident: 2023061717033094000_c14
  publication-title: Nanoscale
  doi: 10.1039/C5NR04530D
– volume: 46
  start-page: 974
  year: 2007
  ident: 2023061717033094000_c36
  publication-title: Jpn. J. Appl. Phys., Part 1
  doi: 10.1143/JJAP.46.974
– volume: 8
  start-page: 1115
  year: 2017
  ident: 2023061717033094000_c6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01481-9
– volume: 409
  start-page: 318
  year: 2001
  ident: 2023061717033094000_c39
  publication-title: Nature
  doi: 10.1038/35053024
– volume: 76
  start-page: 235201
  year: 2007
  ident: 2023061717033094000_c38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.235201
– volume: 104
  start-page: 085503
  year: 2010
  ident: 2023061717033094000_c32
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.085503
– volume: 18
  start-page: 965
  year: 2006
  ident: 2023061717033094000_c29
  publication-title: J. Phys.
  doi: 10.1088/0953-8984/18/3/014
SSID ssj0005233
Score 2.439765
Snippet The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Amorphous materials
Applied physics
Computer memory
Drift
Lithography
Molecular dynamics
Physical properties
Raman spectroscopy
Short range order
Tetrahedra
Thickness
Thin films
Two dimensional materials
Title Suppressed resistance drift from short range order of amorphous GeTe ultrathin films
URI http://dx.doi.org/10.1063/5.0009362
https://www.proquest.com/docview/2424222880
Volume 117
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJwQ8IBggCgNZwANSFZbESVw_TuNHNVE0iU7qW2Qntlqpa6Y25YG_njvbSVqo0OAlqiwnjXyfL5_Pd58JeVcIlcSwbAiKMlRBYiIdCMVEAFxCM1mOEqGwOHnyLRtfJRezdNbrXexkLW1r9aH4ebCu5H-sCm1gV6yS_QfLtg-FBvgN9oUrWBiut7IxHslpxb-xBGWDTBCnablemNrVjWzmwK6HaywgGFqRTbvtf13B4GLq6xc91cPtEgVq54sVajR57fJGltZTVBf-2AyXtvanZeETSzwvm4-fjVU71zGWVdM027rs_K7T-Vy7XrOFrK698rcPPMAqE-Uk2Z4zZUEmvF6sdv4z5Bj29C61cbCuOtMjKT7ouIEpwWhjfCsUzPvnPXHs3z5abSqh3UTPWJ7m_tY75CiGJUPcJ0dnHydfv-8k_DDWnJ-Ir93oTGXstP3ffXbSLTnuAR9xqRE77GP6iDz0ywZ65jDwmPT06pg82BGTPCZ3L52VnpBphwva4YJaXFDEBbW4oBYX1OKCVoa2uKCIC9riglpcPCVXnz9Nz8eBPz0jKFjM6wDoicpGvMyUjjRutwulOYsYV8D4pI6EGokCyCFQ9KyQIiy4DhOuk1AzxUMZsWekv6pW-jmhkqVCp7w0jOMJBFKkqYkVzGUTZ9KYckDeN6OWN-OEJ5ws8z-sMyBv2q43Tk_lUKeTZuhzP902OdYxYbhyFA7I29Ycf3vIgV4_qnXXI78pzYvbvM9Lcr-bACekX6-3-hVw0Vq99iD7BUO4iEM
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressed+resistance+drift+from+short+range+order+of+amorphous+GeTe+ultrathin+films&rft.jtitle=Applied+physics+letters&rft.au=Ma%2C+Ping&rft.au=Tong%2C+Hao&rft.au=Xu%2C+Ming&rft.au=Cheng%2C+Xiaomin&rft.date=2020-07-13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=117&rft.issue=2&rft_id=info:doi/10.1063%2F5.0009362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0009362
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon