Suppressed resistance drift from short range order of amorphous GeTe ultrathin films
The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to o...
Saved in:
Published in | Applied physics letters Vol. 117; no. 2 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
13.07.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to overcome the limit of current plane lithography. Those memory cells composed of two-dimensional materials present a suppressed resistance drift in their amorphous phase. The drift exponent ν is reduced to 0.05 for 3 nm GeTe layers. Combined with Raman spectroscopy and ab initio molecular dynamics simulations, the structural relaxation process is described as the decay of tetrahedral-bonded sites. Tetrahedrons in ultrathin films are more stable than those in bulk materials. The local motifs of amorphous GeTe ultrathin films are covalently bonded and highly ordered in a short range. The majority of highly ordered tetrahedral clusters prevents spontaneous structural relaxation and leads to high stability in amorphous states, which helps to stop intrinsic fluctuations in physical properties of SET and RESET states, without an extra processing cost. |
---|---|
AbstractList | The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device designs is limited by plane lithography techniques. Phase change memory with a confined thickness of ultrathin GeTe layers is fabricated to overcome the limit of current plane lithography. Those memory cells composed of two-dimensional materials present a suppressed resistance drift in their amorphous phase. The drift exponent ν is reduced to 0.05 for 3 nm GeTe layers. Combined with Raman spectroscopy and ab initio molecular dynamics simulations, the structural relaxation process is described as the decay of tetrahedral-bonded sites. Tetrahedrons in ultrathin films are more stable than those in bulk materials. The local motifs of amorphous GeTe ultrathin films are covalently bonded and highly ordered in a short range. The majority of highly ordered tetrahedral clusters prevents spontaneous structural relaxation and leads to high stability in amorphous states, which helps to stop intrinsic fluctuations in physical properties of SET and RESET states, without an extra processing cost. |
Author | Miao, Xiangshui Xu, Ming Cheng, Xiaomin Tong, Hao Ma, Ping |
Author_xml | – sequence: 1 givenname: Ping surname: Ma fullname: Ma, Ping organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 2 givenname: Hao surname: Tong fullname: Tong, Hao organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 3 givenname: Ming surname: Xu fullname: Xu, Ming organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 4 givenname: Xiaomin surname: Cheng fullname: Cheng, Xiaomin organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China – sequence: 5 givenname: Xiangshui surname: Miao fullname: Miao, Xiangshui organization: Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, China |
BookMark | eNp9kE9Lw0AQxRepYFs9-A0WPCmk3T9JNjlK0SoUPFjPYZNM7JY0G2c3gt_elVYFFZnDY4bfvBnehIw62wEh55zNOEvlPJkxxnKZiiMy5kypSHKejcg4TGWU5gk_IRPntqFNhJRjsn4c-h7BOahpEOO87iqgNZrG0wbtjrqNRU9Rd89ALdaA1DZU7yz2Gzs4uoQ10KH1qP3GdLQx7c6dkuNGtw7ODjolT7c368VdtHpY3i-uV1ElhfKRjHmZZqpOS-CghBJ5CUpyqUrOmQael1leCSHThKWVzlmlgMUKYgayVExzOSUXe98e7csAzhdbO2AXThYiDiVElrFAzfdUhdY5hKaojNfe2C48bdqCs-IjuiIpDtGFjcsfGz2anca3P9mrPes-Xb_gV4vfYNHXzX_wb-d3VTeLKQ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2022_154274 crossref_primary_10_1016_j_jallcom_2021_162148 crossref_primary_10_1038_s41467_024_45327_7 crossref_primary_10_1021_acsanm_4c05610 crossref_primary_10_1038_s41598_024_53192_z crossref_primary_10_1016_j_ceramint_2023_03_117 crossref_primary_10_1016_j_ceramint_2023_12_169 crossref_primary_10_1088_1402_4896_ad75cf crossref_primary_10_1016_j_mtadv_2025_100571 crossref_primary_10_1063_5_0138286 crossref_primary_10_1109_LED_2021_3133906 crossref_primary_10_1109_LED_2022_3203971 crossref_primary_10_1016_j_vacuum_2023_112127 crossref_primary_10_1016_j_jnoncrysol_2021_121327 crossref_primary_10_1002_adfm_202417128 crossref_primary_10_1016_j_fmre_2022_09_010 crossref_primary_10_1021_acsami_3c10785 crossref_primary_10_1063_5_0100570 crossref_primary_10_1088_1674_1056_ace765 crossref_primary_10_1016_j_ceramint_2023_09_112 |
Cites_doi | 10.1109/MSPEC.2017.7864741 10.1016/j.jpcs.2016.12.016 10.1063/1.98091 10.1021/acs.jpcb.6b02452 10.1021/acs.jpcc.6b09841 10.1021/jp507361f 10.1002/admi.201300027 10.1063/1.4818132 10.1103/PhysRevB.92.054201 10.1016/j.jnoncrysol.2014.01.006 10.1063/1.4976828 10.1002/anie.201404223 10.1007/s10853-015-9493-z 10.1002/adma.201704729 10.1039/C7TC01135K 10.1038/srep32895 10.1109/LED.2010.2058838 10.1038/s41598-017-14498-3 10.1063/1.4886119 10.1063/1.3674311 10.1063/1.4964729 10.1063/1.1835560 10.1103/PhysRevLett.120.205502 10.1063/1.4894864 10.1063/1.3109063 10.1063/1.4874415 10.1063/1.2930680 10.1063/1.5020614 10.1038/ncomms8467 10.1016/S1369-7021(08)70118-4 10.1109/JETCAS.2016.2528598 10.1063/1.2801626 10.1126/science.aay0291 10.1021/acs.chemmater.8b01900 10.1109/TED.2018.2871197 10.1038/nnano.2016.70 10.1039/C5NR04530D 10.1143/JJAP.46.974 10.1038/s41467-017-01481-9 10.1038/35053024 10.1103/PhysRevB.76.235201 10.1103/PhysRevLett.104.085503 10.1088/0953-8984/18/3/014 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0009362 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0009362 apl |
GrantInformation_xml | – fundername: National Key Research and Development Program of China grantid: 2017YFB0405601 – fundername: National Science and Technology Major Project grantid: 2017ZX02301007-002 funderid: https://doi.org/10.13039/100008986 – fundername: National Natural Science Foundation of China grantid: 61774068 funderid: https://doi.org/10.13039/501100001809 – fundername: Major special projects for technological innovation of Hubei province grantid: 2018AAA038 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-341b687d6be1e72729be73137b110ae19b89c2236506ca90c7e047e40e3b70a13 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:10:26 EDT 2025 Thu Apr 24 23:07:00 EDT 2025 Tue Jul 01 01:07:55 EDT 2025 Wed Nov 11 00:04:50 EST 2020 Fri Jun 21 00:19:18 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | 0003-6951/2020/117(2)/022109/5/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-341b687d6be1e72729be73137b110ae19b89c2236506ca90c7e047e40e3b70a13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2730-283X 0000-0002-8379-543X |
PQID | 2424222880 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | scitation_primary_10_1063_5_0009362 crossref_citationtrail_10_1063_5_0009362 proquest_journals_2424222880 crossref_primary_10_1063_5_0009362 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20200713 2020-07-13 |
PublicationDateYYYYMMDD | 2020-07-13 |
PublicationDate_xml | – month: 07 year: 2020 text: 20200713 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Chong, Koon (c36) 2007 Ma, Tong, Huang, Xu, Yu, Cheng, Sun, Miao (c9) 2017 Jeong, Hwang (c7) 2018 Yalon, Deshmukh, Rojo, Lian, Neumann, Xiong, Pop (c13) 2017 Gabardi, Caravati, Sosso, Behler, Bernasconi (c18) 2015 Sosso, Colombo, Behler, Del Gado, Bernasconi (c19) 2014 Ielmini, Lavizzari, Sharma, Lacaita (c24) 2008 Deringer, Zhang, Lumeij, Maintz, Wuttig, Mazzarello, Dronskowski (c41) 2014 Sebastian, Tuma, Papandreou, Le Gallo, Kull, Parnell, Eleftheriou (c6) 2017 Alsayoud, Rao, Edwards, Deymier, Muralidharan, Potter, Runge, Lucas (c31) 2016 Ding, Wang, Zhou, Tian, Lu, Mazzarello, Jia, Zhang, Rao, Ma (c8) 2019 Fantini, Brazzelli, Cazzini, Mani (c17) 2012 Yu, Tong, Zhou, Elbashir, Miao (c33) 2013 Yu, Tong, Miao (c34) 2014 Ahn, Jeong, Park, Park, Jung, Han, Yang, Kim, Jeong, Cho (c10) 2017 Bourzac (c1) 2017 Momand, Wang, Boschker, Verheijen, Calarco, Kooi (c14) 2015 Hirata, Ichitsubo, Guan, Fujita, Chen (c44) 2018 Boniardi, Redaelli, Pirovano, Tortorelli, Ielmini, Pellizzer (c25) 2009 Wang, Campi, Bernasconi, Momand, Kooi, Verheijen, Wuttig, Calarco (c28) 2016 Mitrofanov, Kolobov, Fons, Wang, Tominaga, Tamenori, Uruga, Ciocchini, Ielmini (c42) 2014 Errington, Debenedetti (c39) 2001 Itoh (c30) 2017 Chien, Yeh, Bruce, Cheng, Kuo, Yang, Ray, Miyazoe, Kim, Carta (c4) 2018 Andrikopoulos, Yannopoulos, Voyiatzis, Kolobov, Ribes, Tominaga (c29) 2006 Homma, Schuller, Sevenhans, Bruynseraede (c35) 1987 Raty, Zhang, Luckas, Chen, Mazzarello, Bichara, Wuttig (c43) 2015 Caravati, Bernasconi, Kühne, Krack, Parrinello (c40) 2007 Varma, Muthu, Sood, Asokan (c27) 2014 Wang, Wang, Du, Lu, Schmitz, Reindl, Mio, Jia, Ma, Mazzarello (c22) 2018 Koughia, Shakoor, Kasap, Marshall (c23) 2005 Mazzarello, Caravati, Angioletti-Uberti, Bernasconi, Parrinello (c32) 2010 Akola, Jones (c38) 2007 Li, Wu, Ji, Zheng, Liu, Song, Shi, Zhu, Song, Feng (c11) 2018 Ohyanagi, Takaura (c20) 2016 Ohyanagi, Kitamura, Araidai, Kato, Takaura, Shiraishi (c15) 2014 Tominaga, Kolobov, Fons, Nakano, Murakami (c16) 2014 Wełnic, Wuttig (c37) 2008 Cecchi, Zallo, Momand, Wang, Kooi, Verheijen, Calarco (c21) 2017 Tuma, Pantazi, Le Gallo, Sebastian, Eleftheriou (c5) 2016 Khoo, Liu, Sasangka, Made, Tamura, Kunz, Budiman, Gan, Thompson (c26) 2016 Roy, In't Zandt, Wolters (c12) 2010 Athmanathan, Stanisavljevic, Papandreou, Pozidis, Eleftheriou (c3) 2016 (2023061717033094000_c20) 2016; 6 (2023061717033094000_c36) 2007; 46 (2023061717033094000_c10) 2017; 5 (2023061717033094000_c13) 2017; 7 (2023061717033094000_c19) 2014; 118 (2023061717033094000_c39) 2001; 409 (2023061717033094000_c9) 2017; 121 (2023061717033094000_c27) 2014; 387 (2023061717033094000_c11) 2018; 8 (2023061717033094000_c31) 2016; 120 (2023061717033094000_c30) 2017; 103 (2023061717033094000_c1) 2017; 54 (2023061717033094000_c3) 2016; 6 (2023061717033094000_c41) 2014; 53 (2023061717033094000_c12) 2010; 31 (2023061717033094000_c22) 2018; 30 (2023061717033094000_c7) 2018; 30 (2023061717033094000_c37) 2008; 11 (2023061717033094000_c16) 2014; 1 (2023061717033094000_c24) 2008; 92 (2023061717033094000_c26) 2016; 51 (2023061717033094000_c15) 2014; 104 (2023061717033094000_c25) 2009; 105 (2023061717033094000_c43) 2015; 6 (2023061717033094000_c33) 2013; 103 (2023061717033094000_c38) 2007; 76 (2023061717033094000_c14) 2015; 7 (2023061717033094000_c40) 2007; 91 (2023061717033094000_c4) 2018; 65 (2023061717033094000_c6) 2017; 8 (2023061717033094000_c8) 2019; 366 (2023061717033094000_c44) 2018; 120 (2023061717033094000_c32) 2010; 104 (2023061717033094000_c23) 2005; 97 (2023061717033094000_c28) 2016; 6 (2023061717033094000_c2) 2018 (2023061717033094000_c21) 2017; 5 (2023061717033094000_c5) 2016; 11 (2023061717033094000_c17) 2012; 100 (2023061717033094000_c29) 2006; 18 (2023061717033094000_c18) 2015; 92 (2023061717033094000_c34) 2014; 105 (2023061717033094000_c35) 1987; 50 (2023061717033094000_c42) 2014; 115 |
References_xml | – start-page: 318 year: 2001 ident: c39 publication-title: Nature – start-page: 025201 year: 2018 ident: c11 publication-title: AIP Adv. – start-page: 7820 year: 2017 ident: c10 publication-title: J. Mater. Chem. C – start-page: 171906 year: 2007 ident: c40 publication-title: Appl. Phys. Lett. – start-page: 033706 year: 2005 ident: c23 publication-title: J. Appl. Phys. – start-page: 085503 year: 2010 ident: c32 publication-title: Phys. Rev. Lett. – start-page: 10817 year: 2014 ident: c41 publication-title: Angew. Chem., Int. Ed. – start-page: 87 year: 2016 ident: c3 publication-title: IEEE J. Emerging Sel. Top. Circuits Syst. – start-page: 235201 year: 2007 ident: c38 publication-title: Phys. Rev. B – start-page: 121902 year: 2014 ident: c34 publication-title: Appl. Phys. Lett. – start-page: 1115 year: 2017 ident: c6 publication-title: Nat. Commun. – start-page: 1077 year: 2010 ident: c12 publication-title: IEEE Electron Device Lett. – start-page: 4174 year: 2016 ident: c31 publication-title: J. Phys. Chemistry B – start-page: 109 year: 2017 ident: c30 publication-title: J. Phys. Chem. Solids – start-page: 193511 year: 2008 ident: c24 publication-title: Appl. Phys. Lett. – start-page: 13621 year: 2014 ident: c19 publication-title: J. Phys. Chem. B – start-page: 105104 year: 2016 ident: c20 publication-title: AIP Adv. – start-page: 084506 year: 2009 ident: c25 publication-title: J. Appl. Phys. – start-page: 15360 year: 2017 ident: c13 publication-title: Sci. Rep. – start-page: 013505 year: 2012 ident: c17 publication-title: Appl. Phys. Lett. – start-page: 693 year: 2016 ident: c5 publication-title: Nat. Nanotechnol. – start-page: 1704729 year: 2018 ident: c7 publication-title: Adv. Mater. – start-page: 1300027 year: 2014 ident: c16 publication-title: Adv. Mater. Interfaces – start-page: 054201 year: 2015 ident: c18 publication-title: Phys. Rev. B – start-page: 4770 year: 2018 ident: c22 publication-title: Chem. Mater. – start-page: 965 year: 2006 ident: c29 publication-title: J. Phys. – start-page: 252106 year: 2014 ident: c15 publication-title: Appl. Phys. Lett. – start-page: 5172 year: 2018 ident: c4 publication-title: IEEE Trans. Electron Devices – start-page: 1122 year: 2017 ident: c9 publication-title: J. Phys. Chem. C – start-page: 1864 year: 2016 ident: c26 publication-title: J. Mater. Sci. – start-page: 205502 year: 2018 ident: c44 publication-title: Phys. Rev. Lett. – start-page: 9 year: 2017 ident: c1 publication-title: IEEE Spectrum – start-page: 974 year: 2007 ident: c36 publication-title: Jpn. J. Appl. Phys., Part 1 – start-page: 173501 year: 2014 ident: c42 publication-title: J. Appl. Phys. – start-page: 32895 year: 2016 ident: c28 publication-title: Sci. Rep. – start-page: 061910 year: 2013 ident: c33 publication-title: Appl. Phys. Lett. – start-page: 7467 year: 2015 ident: c43 publication-title: Nat. Commun. – start-page: 594 year: 1987 ident: c35 publication-title: Appl. Phys. Lett. – start-page: 026107 year: 2017 ident: c21 publication-title: APL Mater. – start-page: 19136 year: 2015 ident: c14 publication-title: Nanoscale – start-page: 143 year: 2014 ident: c27 publication-title: J. Non-Cryst. Solids – start-page: 20 year: 2008 ident: c37 publication-title: Mater. Today – start-page: 210 year: 2019 ident: c8 publication-title: Science – volume: 54 start-page: 9 year: 2017 ident: 2023061717033094000_c1 publication-title: IEEE Spectrum doi: 10.1109/MSPEC.2017.7864741 – volume: 103 start-page: 109 year: 2017 ident: 2023061717033094000_c30 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2016.12.016 – volume: 50 start-page: 594 year: 1987 ident: 2023061717033094000_c35 publication-title: Appl. Phys. Lett. doi: 10.1063/1.98091 – volume: 120 start-page: 4174 issue: 17 year: 2016 ident: 2023061717033094000_c31 publication-title: J. Phys. Chemistry B doi: 10.1021/acs.jpcb.6b02452 – volume: 121 start-page: 1122 year: 2017 ident: 2023061717033094000_c9 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b09841 – volume: 118 start-page: 13621 year: 2014 ident: 2023061717033094000_c19 publication-title: J. Phys. Chem. B doi: 10.1021/jp507361f – volume: 1 start-page: 1300027 year: 2014 ident: 2023061717033094000_c16 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201300027 – volume: 103 start-page: 061910 year: 2013 ident: 2023061717033094000_c33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4818132 – volume: 92 start-page: 054201 year: 2015 ident: 2023061717033094000_c18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.92.054201 – volume: 387 start-page: 143 year: 2014 ident: 2023061717033094000_c27 publication-title: J. Non-Cryst. Solids doi: 10.1016/j.jnoncrysol.2014.01.006 – volume: 5 start-page: 026107 year: 2017 ident: 2023061717033094000_c21 publication-title: APL Mater. doi: 10.1063/1.4976828 – volume: 53 start-page: 10817 year: 2014 ident: 2023061717033094000_c41 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404223 – volume: 51 start-page: 1864 year: 2016 ident: 2023061717033094000_c26 publication-title: J. Mater. Sci. doi: 10.1007/s10853-015-9493-z – volume: 30 start-page: 1704729 year: 2018 ident: 2023061717033094000_c7 publication-title: Adv. Mater. doi: 10.1002/adma.201704729 – volume: 5 start-page: 7820 year: 2017 ident: 2023061717033094000_c10 publication-title: J. Mater. Chem. C doi: 10.1039/C7TC01135K – volume: 6 start-page: 32895 year: 2016 ident: 2023061717033094000_c28 publication-title: Sci. Rep. doi: 10.1038/srep32895 – volume: 31 start-page: 1077 year: 2010 ident: 2023061717033094000_c12 publication-title: IEEE Electron Device Lett. doi: 10.1109/LED.2010.2058838 – volume: 7 start-page: 15360 year: 2017 ident: 2023061717033094000_c13 publication-title: Sci. Rep. doi: 10.1038/s41598-017-14498-3 – volume: 104 start-page: 252106 year: 2014 ident: 2023061717033094000_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4886119 – volume: 100 start-page: 013505 year: 2012 ident: 2023061717033094000_c17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3674311 – volume: 6 start-page: 105104 year: 2016 ident: 2023061717033094000_c20 publication-title: AIP Adv. doi: 10.1063/1.4964729 – volume: 97 start-page: 033706 year: 2005 ident: 2023061717033094000_c23 publication-title: J. Appl. Phys. doi: 10.1063/1.1835560 – volume: 120 start-page: 205502 year: 2018 ident: 2023061717033094000_c44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.205502 – volume: 105 start-page: 121902 year: 2014 ident: 2023061717033094000_c34 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4894864 – volume: 105 start-page: 084506 year: 2009 ident: 2023061717033094000_c25 publication-title: J. Appl. Phys. doi: 10.1063/1.3109063 – volume: 115 start-page: 173501 year: 2014 ident: 2023061717033094000_c42 publication-title: J. Appl. Phys. doi: 10.1063/1.4874415 – volume: 92 start-page: 193511 year: 2008 ident: 2023061717033094000_c24 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2930680 – year: 2018 ident: 2023061717033094000_c2 – volume: 8 start-page: 025201 year: 2018 ident: 2023061717033094000_c11 publication-title: AIP Adv. doi: 10.1063/1.5020614 – volume: 6 start-page: 7467 year: 2015 ident: 2023061717033094000_c43 publication-title: Nat. Commun. doi: 10.1038/ncomms8467 – volume: 11 start-page: 20 year: 2008 ident: 2023061717033094000_c37 publication-title: Mater. Today doi: 10.1016/S1369-7021(08)70118-4 – volume: 6 start-page: 87 year: 2016 ident: 2023061717033094000_c3 publication-title: IEEE J. Emerging Sel. Top. Circuits Syst. doi: 10.1109/JETCAS.2016.2528598 – volume: 91 start-page: 171906 year: 2007 ident: 2023061717033094000_c40 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2801626 – volume: 366 start-page: 210 year: 2019 ident: 2023061717033094000_c8 publication-title: Science doi: 10.1126/science.aay0291 – volume: 30 start-page: 4770 year: 2018 ident: 2023061717033094000_c22 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01900 – volume: 65 start-page: 5172 year: 2018 ident: 2023061717033094000_c4 publication-title: IEEE Trans. Electron Devices doi: 10.1109/TED.2018.2871197 – volume: 11 start-page: 693 year: 2016 ident: 2023061717033094000_c5 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.70 – volume: 7 start-page: 19136 year: 2015 ident: 2023061717033094000_c14 publication-title: Nanoscale doi: 10.1039/C5NR04530D – volume: 46 start-page: 974 year: 2007 ident: 2023061717033094000_c36 publication-title: Jpn. J. Appl. Phys., Part 1 doi: 10.1143/JJAP.46.974 – volume: 8 start-page: 1115 year: 2017 ident: 2023061717033094000_c6 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01481-9 – volume: 409 start-page: 318 year: 2001 ident: 2023061717033094000_c39 publication-title: Nature doi: 10.1038/35053024 – volume: 76 start-page: 235201 year: 2007 ident: 2023061717033094000_c38 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.235201 – volume: 104 start-page: 085503 year: 2010 ident: 2023061717033094000_c32 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.085503 – volume: 18 start-page: 965 year: 2006 ident: 2023061717033094000_c29 publication-title: J. Phys. doi: 10.1088/0953-8984/18/3/014 |
SSID | ssj0005233 |
Score | 2.439765 |
Snippet | The nanosize confined effect is believed to contribute to improving the resistance drift in nanophase change devices. However, the smaller dimension of device... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Amorphous materials Applied physics Computer memory Drift Lithography Molecular dynamics Physical properties Raman spectroscopy Short range order Tetrahedra Thickness Thin films Two dimensional materials |
Title | Suppressed resistance drift from short range order of amorphous GeTe ultrathin films |
URI | http://dx.doi.org/10.1063/5.0009362 https://www.proquest.com/docview/2424222880 |
Volume | 117 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZKJwQ8IBggCgNZwANSFZbESVw_TuNHNVE0iU7qW2Qntlqpa6Y25YG_njvbSVqo0OAlqiwnjXyfL5_Pd58JeVcIlcSwbAiKMlRBYiIdCMVEAFxCM1mOEqGwOHnyLRtfJRezdNbrXexkLW1r9aH4ebCu5H-sCm1gV6yS_QfLtg-FBvgN9oUrWBiut7IxHslpxb-xBGWDTBCnablemNrVjWzmwK6HaywgGFqRTbvtf13B4GLq6xc91cPtEgVq54sVajR57fJGltZTVBf-2AyXtvanZeETSzwvm4-fjVU71zGWVdM027rs_K7T-Vy7XrOFrK698rcPPMAqE-Uk2Z4zZUEmvF6sdv4z5Bj29C61cbCuOtMjKT7ouIEpwWhjfCsUzPvnPXHs3z5abSqh3UTPWJ7m_tY75CiGJUPcJ0dnHydfv-8k_DDWnJ-Ir93oTGXstP3ffXbSLTnuAR9xqRE77GP6iDz0ywZ65jDwmPT06pg82BGTPCZ3L52VnpBphwva4YJaXFDEBbW4oBYX1OKCVoa2uKCIC9riglpcPCVXnz9Nz8eBPz0jKFjM6wDoicpGvMyUjjRutwulOYsYV8D4pI6EGokCyCFQ9KyQIiy4DhOuk1AzxUMZsWekv6pW-jmhkqVCp7w0jOMJBFKkqYkVzGUTZ9KYckDeN6OWN-OEJ5ws8z-sMyBv2q43Tk_lUKeTZuhzP902OdYxYbhyFA7I29Ycf3vIgV4_qnXXI78pzYvbvM9Lcr-bACekX6-3-hVw0Vq99iD7BUO4iEM |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Suppressed+resistance+drift+from+short+range+order+of+amorphous+GeTe+ultrathin+films&rft.jtitle=Applied+physics+letters&rft.au=Ma%2C+Ping&rft.au=Tong%2C+Hao&rft.au=Xu%2C+Ming&rft.au=Cheng%2C+Xiaomin&rft.date=2020-07-13&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=117&rft.issue=2&rft_id=info:doi/10.1063%2F5.0009362&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0009362 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |