Polarization-insensitive composite gradient-index metasurface array for microwave power reception
A composite gradient-index metasurface (C-GM) array for microwave power reception (MPR) operating at 5.8 GHz center frequency was introduced. The array is insensitive to the polarization of incident plane waves and possesses cosine gradient modulation characteristics, which can convert the incident...
Saved in:
Published in | Applied physics letters Vol. 122; no. 25 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
19.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A composite gradient-index metasurface (C-GM) array for microwave power reception (MPR) operating at 5.8 GHz center frequency was introduced. The array is insensitive to the polarization of incident plane waves and possesses cosine gradient modulation characteristics, which can convert the incident plane waves into surface waves focused at the center of the array. The focused surface wave energy is then collected by an omnidirectional antenna and fed back to a single rectifier for radio frequency (RF) to direct current (DC) conversion, resulting in DC output. Simulation results show that the array can fully excite surface waves under different polarized plane wave excitations, and the omnidirectional antenna has good matching characteristics with the array, achieving an energy collection efficiency of 66.52%. The array was fabricated and measured, achieving an energy reception efficiency of 59.91% and an RF-DC conversion efficiency of 34.83%, which is consistent with the simulation results. The proposed C-GM array can capture higher electromagnetic power by simply increasing its size, without the need for additional rectifiers or complex matching networks, making it a flexible and efficient MPR solution for different application scenarios. |
---|---|
AbstractList | A composite gradient-index metasurface (C-GM) array for microwave power reception (MPR) operating at 5.8 GHz center frequency was introduced. The array is insensitive to the polarization of incident plane waves and possesses cosine gradient modulation characteristics, which can convert the incident plane waves into surface waves focused at the center of the array. The focused surface wave energy is then collected by an omnidirectional antenna and fed back to a single rectifier for radio frequency (RF) to direct current (DC) conversion, resulting in DC output. Simulation results show that the array can fully excite surface waves under different polarized plane wave excitations, and the omnidirectional antenna has good matching characteristics with the array, achieving an energy collection efficiency of 66.52%. The array was fabricated and measured, achieving an energy reception efficiency of 59.91% and an RF-DC conversion efficiency of 34.83%, which is consistent with the simulation results. The proposed C-GM array can capture higher electromagnetic power by simply increasing its size, without the need for additional rectifiers or complex matching networks, making it a flexible and efficient MPR solution for different application scenarios. |
Author | Deng, Jia-Hao Zhang, Huai-Qing Xiong, Han Wang, Ben-Xin Peng, Wen-Xiong Yang, Qiang |
Author_xml | – sequence: 1 givenname: Qiang surname: Yang fullname: Yang, Qiang organization: 3School of Science, Jiangnan University, Wuxi 214122, China – sequence: 2 givenname: Han surname: Xiong fullname: Xiong, Han organization: School of Electrical Engineering, Chongqing University – sequence: 3 givenname: Jia-Hao surname: Deng fullname: Deng, Jia-Hao organization: 3School of Science, Jiangnan University, Wuxi 214122, China – sequence: 4 givenname: Ben-Xin surname: Wang fullname: Wang, Ben-Xin organization: School of Science, Jiangnan University – sequence: 5 givenname: Wen-Xiong surname: Peng fullname: Peng, Wen-Xiong organization: School of Electrical Engineering, Chongqing University – sequence: 6 givenname: Huai-Qing surname: Zhang fullname: Zhang, Huai-Qing organization: School of Electrical Engineering, Chongqing University |
BookMark | eNqdkE1LAzEQhoNUsK0e_AcLnhS2TTabjz1K8QsKetBziMmspHQ3a7K11l9vaiuCePI0M8zzvvMxQoPWt4DQKcETgjmdsgkmjLFSHKAhwULklBA5QEOMMc15xcgRGsW4SCUrKB0i_eCXOrgP3Tvf5q6N0EbXuzfIjG86n3LIXoK2Dto-tS28Zw30Oq5CrQ1kOgS9yWofssaZ4Nc6CTu_hpAFMNBtTY_RYa2XEU72cYyerq8eZ7f5_P7mbnY5zw0tRJ9TyrHBYKmVRlaMFrxmVSkF1RVUlpcS45pLJhjlnJpnWdjSklJjJoERXRZ0jM52vl3wryuIvVr4VWjTSFXIQghJS4ITNd1RadsYA9TKuP7r-D5ot1QEq-0fFVP7PybF-S9FF1yjw-ZP9mLHxm_X_8FvPvyAqrM1_QQhEpD_ |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1063_5_0170827 crossref_primary_10_1016_j_diamond_2024_111234 crossref_primary_10_1016_j_isci_2024_111301 crossref_primary_10_1016_j_infrared_2025_105712 crossref_primary_10_1016_j_micrna_2024_208004 crossref_primary_10_1016_j_ijthermalsci_2024_109172 crossref_primary_10_1016_j_photonics_2023_101211 crossref_primary_10_1088_1572_9494_ad3b8d crossref_primary_10_1063_5_0250589 crossref_primary_10_1016_j_matdes_2025_113636 crossref_primary_10_1088_1572_9494_ad3b8f crossref_primary_10_1016_j_optcom_2024_130982 crossref_primary_10_1109_JLT_2024_3376349 crossref_primary_10_1016_j_heliyon_2025_e43114 crossref_primary_10_1016_j_pnsc_2023_12_009 crossref_primary_10_1063_5_0175798 crossref_primary_10_1063_5_0224173 crossref_primary_10_1016_j_optcom_2024_130266 crossref_primary_10_1016_j_optcom_2025_131673 crossref_primary_10_1063_5_0208172 crossref_primary_10_1016_j_physe_2024_115954 crossref_primary_10_1063_5_0206791 crossref_primary_10_3390_coatings14040478 crossref_primary_10_1016_j_mtcomm_2024_109229 crossref_primary_10_1109_ACCESS_2024_3497664 crossref_primary_10_1016_j_jallcom_2024_173922 crossref_primary_10_3390_s24082658 crossref_primary_10_1016_j_optlaseng_2024_108368 crossref_primary_10_1016_j_diamond_2025_111986 crossref_primary_10_1039_D4DT00657G crossref_primary_10_1109_JSEN_2023_3306462 crossref_primary_10_1016_j_sna_2023_114972 crossref_primary_10_1016_j_diamond_2024_111664 crossref_primary_10_1016_j_apmt_2024_102297 crossref_primary_10_1016_j_optlastec_2023_110134 crossref_primary_10_1016_j_surfin_2024_104868 crossref_primary_10_1016_j_optlastec_2024_111006 crossref_primary_10_1063_5_0249587 crossref_primary_10_1016_j_infrared_2024_105465 crossref_primary_10_1364_AO_509826 crossref_primary_10_1016_j_optcom_2024_130738 crossref_primary_10_1016_j_optlastec_2025_112550 crossref_primary_10_1016_j_optcom_2024_130937 crossref_primary_10_1016_j_mtcomm_2024_108229 crossref_primary_10_1021_acsami_4c11720 crossref_primary_10_1007_s11664_024_11457_3 crossref_primary_10_1007_s00542_024_05611_4 crossref_primary_10_1016_j_diamond_2024_110843 crossref_primary_10_1016_j_rinp_2023_107159 crossref_primary_10_3390_coatings14050535 crossref_primary_10_1364_OL_541487 crossref_primary_10_1080_15599612_2024_2375497 crossref_primary_10_1016_j_diamond_2025_112208 crossref_primary_10_1016_j_optmat_2024_114838 crossref_primary_10_1016_j_micrna_2023_207730 crossref_primary_10_1364_OE_543264 crossref_primary_10_1039_D4DT03422H crossref_primary_10_1063_5_0164128 crossref_primary_10_1016_j_materresbull_2024_112751 crossref_primary_10_1039_D4DT01158A crossref_primary_10_1063_5_0174009 crossref_primary_10_1063_5_0227023 crossref_primary_10_1016_j_ceramint_2024_04_085 crossref_primary_10_1016_j_physleta_2025_130463 crossref_primary_10_1016_j_optlastec_2025_112581 crossref_primary_10_1016_j_optlastec_2024_111210 crossref_primary_10_1016_j_physleta_2025_130300 crossref_primary_10_1007_s11468_024_02219_2 crossref_primary_10_1016_j_ijleo_2024_172003 crossref_primary_10_1016_j_optmat_2024_115612 crossref_primary_10_1016_j_cjph_2024_06_021 crossref_primary_10_1007_s11082_024_06559_5 crossref_primary_10_1002_andp_202300459 crossref_primary_10_1039_D4TC04845H crossref_primary_10_1016_j_optlastec_2023_110113 crossref_primary_10_1039_D4DT01971G crossref_primary_10_1364_OE_550945 crossref_primary_10_1063_5_0193058 crossref_primary_10_1016_j_rinp_2025_108185 crossref_primary_10_1016_j_trac_2024_117917 crossref_primary_10_1002_andp_202300499 crossref_primary_10_1007_s11468_025_02793_z crossref_primary_10_1038_s41598_024_56349_y crossref_primary_10_1021_acsanm_3c04908 crossref_primary_10_1016_j_solener_2024_112847 crossref_primary_10_1038_s41598_024_58142_3 crossref_primary_10_1016_j_sna_2023_114839 crossref_primary_10_1142_S0217979224504228 crossref_primary_10_1002_qute_202300386 |
Cites_doi | 10.1063/1.3637045 10.1109/TAP.2018.2806398 10.1063/1.4854015 10.1109/TMTT.1973.1128128 10.1209/0295-5075/101/54002 10.1109/MMW.2002.1145675 10.1063/1.4824473 10.1109/LAWP.2020.3027833 10.1063/1.4767219 10.1088/2058-7058/19/7/19 10.1063/1.4986320 10.1109/ACCESS.2021.3058151 10.1038/nmat3292 10.1103/PhysRevLett.84.4184 10.1109/TAP.2011.2143668 10.1109/LMWC.2018.2884638 10.1038/lsa.2016.3 10.1063/1.4972121 10.1007/s11664-019-06962-9 10.1038/srep10880 10.1109/TAP.1959.1144771 10.1109/TMTT.1984.1132833 10.1063/1.4976804 10.1109/TAP.2010.2055812 10.1109/LAWP.2018.2858195 10.1063/1.4978321 10.1109/TMTT.2020.3040962 10.1063/1.4916232 10.1126/science.1210713 10.1063/1.5140966 10.1063/1.4999327 10.1063/1.5046927 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0155547 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0155547 apl |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-3360c0ed3d8c895326f594873a9e9d64800f685753663cb82d4d14a058e51a423 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 06:03:18 EDT 2025 Thu Apr 24 23:09:01 EDT 2025 Tue Jul 01 01:08:31 EDT 2025 Tue Jul 04 19:18:45 EDT 2023 Fri Jun 21 00:13:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-3360c0ed3d8c895326f594873a9e9d64800f685753663cb82d4d14a058e51a423 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5950-4102 0009-0003-5737-4732 0000-0003-1306-8680 0000-0002-6457-6047 0000-0003-0489-9861 |
PQID | 2827783410 |
PQPubID | 2050678 |
PageCount | 6 |
ParticipantIDs | crossref_primary_10_1063_5_0155547 proquest_journals_2827783410 scitation_primary_10_1063_5_0155547 crossref_citationtrail_10_1063_5_0155547 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230619 2023-06-19 |
PublicationDateYYYYMMDD | 2023-06-19 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230619 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Hawkes, Katko, Cummer (c9) 2013 Wang, Qu, Ma (c25) 2012 Almoneef, Ramahi (c13) 2015 Wang, Yang, Ni (c11) 2015 Zhang, Liu, Li (c14) 2017 Zhu, Ziolkowski, Xin (c6) 2011 Li, Zhang, Song (c20) 2021 Smith, Padilla, Vier (c10) 2000 Brown (c5) 1973 Cartlidge, Dume (c2) 2006 Li, Zhang, Song (c3) 2020 Ramahi, Almoneef, AlShareef (c12) 2013 Tekam, Ginis, Danckaert (c19) 2017 Badawe, Almoneef, Ramahi (c21) 2017 Almoneef, Erkmen, Alotaibi (c23) 2018 Brown (c1) 1984 Oliner, Hessel (c28) 1959 Karakaya, Bagci, Yilmaz (c16) 2019 Yu, Yang, Zhong (c17) 2018 Lee, Hong (c22) 2020 Sun, He, Xiao (c26) 2012 Eteng, Goh, Rahim (c7) 2021 Zhong, Yang, Song (c15) 2017 Liu, Lu, Zhu (c27) 2019 Duan, Chen, Zhou (c18) 2016 Duan, Chen, Zhou (c8) 2018 Yu, Genevet, Kats (c24) 2011 Sun, He, Sun, Zhou (c32) 2016 Qu, Xiao, Sun (c31) 2013 Fong, Colburn, Ottusch (c29) 2010 McSpadden, Mankins (c4) 2002 Patel, Grbic (c30) 2011 (2023062011343872400_c9) 2013; 103 (2023062011343872400_c21) 2017; 7 (2023062011343872400_c28) 1959; 7 (2023062011343872400_c2) 2006; 19 (2023062011343872400_c12) 2013; 103 (2023062011343872400_c19) 2017; 110 (2023062011343872400_c33) 2021 (2023062011343872400_c7) 2021; 9 (2023062011343872400_c8) 2018; 17 (2023062011343872400_c1) 1984; 32 (2023062011343872400_c13) 2015; 106 (2023062011343872400_c31) 2013; 101 (2023062011343872400_c5) 1973; 21 (2023062011343872400_c10) 2000; 84 (2023062011343872400_c16) 2019; 48 (2023062011343872400_c23) 2018; 66 (2023062011343872400_c20) 2021; 69 (2023062011343872400_c26) 2012; 11 (2023062011343872400_c14) 2017; 111 (2023062011343872400_c27) 2019; 29 (2023062011343872400_c11) 2015; 5 (2023062011343872400_c24) 2011; 334 (2023062011343872400_c25) 2012; 101 (2023062011343872400_c6) 2011; 99 (2023062011343872400_c4) 2002; 3 (2023062011343872400_c17) 2018; 113 (2023062011343872400_c29) 2010; 58 (2023062011343872400_c18) 2016; 6 (2023062011343872400_c15) 2017; 111 (2023062011343872400_c32) 2016; 5 (2023062011343872400_c22) 2020; 19 (2023062011343872400_c3) 2020; 116 (2023062011343872400_c30) 2011; 59 |
References_xml | – start-page: 2216 year: 2020 ident: c22 publication-title: IEEE Antennas Wireless Propag. Lett. – start-page: 060501 year: 2020 ident: c3 publication-title: Appl. Phys. Lett. – start-page: 10880 year: 2015 ident: c11 publication-title: Sci. Rep. – start-page: 201104 year: 2012 ident: c25 publication-title: Appl. Phys. Lett. – start-page: 4184 year: 2000 ident: c10 publication-title: Phys. Rev. Lett. – start-page: 153902 year: 2015 ident: c13 publication-title: Appl. Phys. Lett. – start-page: 1518 year: 2021 ident: c20 publication-title: IEEE Trans. Microwave Theory Tech. – start-page: 8 year: 2019 ident: c27 publication-title: IEEE Microwave Wireless Compon. Lett. – start-page: 3212 year: 2010 ident: c29 publication-title: IEEE Trans. Antennas Propag. – start-page: 201 year: 1959 ident: c28 publication-title: IRE Trans. Antennas Propag. – start-page: 54002 year: 2013 ident: c31 publication-title: Europhys. Lett. – start-page: 753 year: 1973 ident: c5 publication-title: IEEE Trans. Microwave Theory Tech. – start-page: 10 year: 2006 ident: c2 publication-title: Phys. World – start-page: 163901 year: 2013 ident: c9 publication-title: Appl. Phys. Lett. – start-page: 35112 year: 2017 ident: c21 publication-title: AIP Adv. – start-page: 27518 year: 2021 ident: c7 publication-title: IEEE Access – start-page: 213902 year: 2017 ident: c15 publication-title: Appl. Phys. Lett. – start-page: 083901 year: 2017 ident: c19 publication-title: Appl. Phys. Lett. – start-page: e16003 year: 2016 ident: c32 publication-title: Light: Sci. Appl. – start-page: 123903 year: 2018 ident: c17 publication-title: Appl. Phys. Lett. – start-page: 1230 year: 1984 ident: c1 publication-title: IEEE Trans. Microwave Theory Tech. – start-page: 2087 year: 2011 ident: c30 publication-title: IEEE Trans. Antennas Propag. – start-page: 1617 year: 2018 ident: c8 publication-title: IEEE Antennas Wireless Propag. Lett. – start-page: 46 year: 2002 ident: c4 publication-title: IEEE Microwave Mag. – start-page: 333 year: 2011 ident: c24 publication-title: Science – start-page: 269901 year: 2013 ident: c12 publication-title: Appl. Phys. Lett. – start-page: 125020 year: 2016 ident: c18 publication-title: AIP Adv. – start-page: 071902 year: 2017 ident: c14 publication-title: Appl. Phys. Lett. – start-page: 426 year: 2012 ident: c26 publication-title: Nat. Mater. – start-page: 2307 year: 2019 ident: c16 publication-title: J. Electron. Mater. – start-page: 114101 year: 2011 ident: c6 publication-title: Appl. Phys. Lett. – start-page: 1714 year: 2018 ident: c23 publication-title: IEEE Trans. Antennas Propag. – volume: 99 start-page: 114101 year: 2011 ident: 2023062011343872400_c6 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3637045 – volume: 66 start-page: 1714 year: 2018 ident: 2023062011343872400_c23 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2018.2806398 – volume: 103 start-page: 269901 year: 2013 ident: 2023062011343872400_c12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4854015 – volume: 21 start-page: 753 year: 1973 ident: 2023062011343872400_c5 publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.1973.1128128 – volume: 101 start-page: 54002 year: 2013 ident: 2023062011343872400_c31 publication-title: Europhys. Lett. doi: 10.1209/0295-5075/101/54002 – volume: 3 start-page: 46 year: 2002 ident: 2023062011343872400_c4 publication-title: IEEE Microwave Mag. doi: 10.1109/MMW.2002.1145675 – volume: 103 start-page: 163901 year: 2013 ident: 2023062011343872400_c9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824473 – volume: 19 start-page: 2216 year: 2020 ident: 2023062011343872400_c22 publication-title: IEEE Antennas Wireless Propag. Lett. doi: 10.1109/LAWP.2020.3027833 – volume: 101 start-page: 201104 year: 2012 ident: 2023062011343872400_c25 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4767219 – volume: 19 start-page: 10 year: 2006 ident: 2023062011343872400_c2 publication-title: Phys. World doi: 10.1088/2058-7058/19/7/19 – volume: 111 start-page: 213902 year: 2017 ident: 2023062011343872400_c15 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4986320 – volume: 9 start-page: 27518 year: 2021 ident: 2023062011343872400_c7 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058151 – volume: 11 start-page: 426 year: 2012 ident: 2023062011343872400_c26 publication-title: Nat. Mater. doi: 10.1038/nmat3292 – volume: 84 start-page: 4184 year: 2000 ident: 2023062011343872400_c10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.84.4184 – volume: 59 start-page: 2087 year: 2011 ident: 2023062011343872400_c30 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2011.2143668 – volume: 29 start-page: 8 year: 2019 ident: 2023062011343872400_c27 publication-title: IEEE Microwave Wireless Compon. Lett. doi: 10.1109/LMWC.2018.2884638 – volume: 5 start-page: e16003 year: 2016 ident: 2023062011343872400_c32 publication-title: Light: Sci. Appl. doi: 10.1038/lsa.2016.3 – volume: 6 start-page: 125020 year: 2016 ident: 2023062011343872400_c18 publication-title: AIP Adv. doi: 10.1063/1.4972121 – volume: 48 start-page: 2307 year: 2019 ident: 2023062011343872400_c16 publication-title: J. Electron. Mater. doi: 10.1007/s11664-019-06962-9 – volume: 5 start-page: 10880 year: 2015 ident: 2023062011343872400_c11 publication-title: Sci. Rep. doi: 10.1038/srep10880 – volume: 7 start-page: 201 year: 1959 ident: 2023062011343872400_c28 publication-title: IRE Trans. Antennas Propag. doi: 10.1109/TAP.1959.1144771 – volume: 32 start-page: 1230 year: 1984 ident: 2023062011343872400_c1 publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.1984.1132833 – volume: 110 start-page: 083901 year: 2017 ident: 2023062011343872400_c19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4976804 – volume: 58 start-page: 3212 year: 2010 ident: 2023062011343872400_c29 publication-title: IEEE Trans. Antennas Propag. doi: 10.1109/TAP.2010.2055812 – volume: 17 start-page: 1617 year: 2018 ident: 2023062011343872400_c8 publication-title: IEEE Antennas Wireless Propag. Lett. doi: 10.1109/LAWP.2018.2858195 – volume: 7 start-page: 35112 year: 2017 ident: 2023062011343872400_c21 publication-title: AIP Adv. doi: 10.1063/1.4978321 – volume: 69 start-page: 1518 year: 2021 ident: 2023062011343872400_c20 publication-title: IEEE Trans. Microwave Theory Tech. doi: 10.1109/TMTT.2020.3040962 – volume: 106 start-page: 153902 year: 2015 ident: 2023062011343872400_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4916232 – volume: 334 start-page: 333 year: 2011 ident: 2023062011343872400_c24 publication-title: Science doi: 10.1126/science.1210713 – volume: 116 start-page: 060501 year: 2020 ident: 2023062011343872400_c3 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5140966 – volume: 111 start-page: 071902 year: 2017 ident: 2023062011343872400_c14 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4999327 – volume: 113 start-page: 123903 year: 2018 ident: 2023062011343872400_c17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5046927 – start-page: 1 year: 2021 ident: 2023062011343872400_c33 |
SSID | ssj0005233 |
Score | 2.6640646 |
Snippet | A composite gradient-index metasurface (C-GM) array for microwave power reception (MPR) operating at 5.8 GHz center frequency was introduced. The array is... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Direct current Efficiency Energy conversion efficiency Matching Metasurfaces Omnidirectional antennas Plane waves Polarization Radio frequency Rectifiers Surface waves |
Title | Polarization-insensitive composite gradient-index metasurface array for microwave power reception |
URI | http://dx.doi.org/10.1063/5.0155547 https://www.proquest.com/docview/2827783410 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZgEwIeEAwQhYEs4AGpMkvtOIkfJ9hUoW4U0Wp9i5zEmSaNrkozkPjrubOdHxVlAl6iynXdyHc5f3f57o6Qt0GRwzkexkyWXLOwkIKpTHFWSmUyKeGA4ZjgfHIajefhp4VcdK9ibHZJnb3Pf27NK_kfqcIYyBWzZP9Bsu2iMACfQb5wBQnD9a9kPEW_1CdSsguMEq8dFQiJ4sjGMsPzynK6ambLImLDaIwJlhrzBKpKO7rmN2Tl_cA-RCtsmjYEK-jILn3o2uBVFwtZDy9tItC6M2HWfi3gV-etj2-WbOGKFJzpbvjMDnsu8NR0X9jo9XB8rS_Yl-ZI9REJjt0hWM_uta-aNugOU3dzG7ZYsEj5crPGmd8gxqipt8iNfea8p4guTfo3ww9IC6SFJVglAKS4O92aN_qnn9Pj-WSSzo4Ws9tkl4NXAWZx9_DjyeRrjxMkRNNiEW-tKUUViYN26U0A03kldwGyOPZED6DMHpIH3rOgh05NHpFbZrlH7vfqTe6RO357HhP9J9WhrerQTdWhPdWhVnUoqA5tVYda1aGt6jwh8-Oj2Ycx8902WC54XDMhoiAPTCGKJE-UBFhfYimfWGhlVBGF4FmUEfZzFQBS8yzhRViMQh3IxMiRBlT-lOwsr5bmGaGxyhJYRUeqhDPCGBWOiqTMhS3fKKUZkHfNFqbNpmFHlMvUUiIikcrU7_aAvG6nrlz9lW2T9hs5pP7xXKc8ARknANKCAXnTyuamRbbM-n5VdTPSVVE-v_mvXpB73ROxT3bq6tq8BNRaZ6-8rv0C03-chw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Polarization-insensitive+composite+gradient-index+metasurface+array+for+microwave+power+reception&rft.jtitle=Applied+physics+letters&rft.au=Han%2C+Xiong&rft.au=Ben-Xin%2C+Wang&rft.au=Wen-Xiong%2C+Peng&rft.au=Zhang+Huai-Qing&rft.date=2023-06-19&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=25&rft_id=info:doi/10.1063%2F5.0155547&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |