Elastic stability criteria of seven crystal systems and their application under pressure: Taking carbon as an example

Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic pressure and given the equations between the elastic constants C ~ i j and C i j under pressure. On this basis, the closed forms of necessar...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied physics Vol. 133; no. 13
Main Authors Gao, Juan, Liu, Qi-Jun, Tang, Bin
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 07.04.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic pressure and given the equations between the elastic constants C ~ i j and C i j under pressure. On this basis, the closed forms of necessary and sufficient conditions for elastic stability in all crystal classes have been presented, which are popular in normal pressure. However, the forms of elastic stability criteria under pressure are still fragmented in various literature studies. Carbon is an element with a rich variety of allotropes, and because of its excellent mechanical and electronic properties, it gains enduring and intense attention, while its phase diagram is poorly known. In order to systematically study the response of various carbon stabilities to pressure and offer some valuable insights into experimental exploration, we derive the total forms of mechanical stability criteria under isotropic pressure and calculate the mechanical stability of 46 carbon allotropes involving seven crystal systems under pressure.
AbstractList Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic pressure and given the equations between the elastic constants C~ij and Cij under pressure. On this basis, the closed forms of necessary and sufficient conditions for elastic stability in all crystal classes have been presented, which are popular in normal pressure. However, the forms of elastic stability criteria under pressure are still fragmented in various literature studies. Carbon is an element with a rich variety of allotropes, and because of its excellent mechanical and electronic properties, it gains enduring and intense attention, while its phase diagram is poorly known. In order to systematically study the response of various carbon stabilities to pressure and offer some valuable insights into experimental exploration, we derive the total forms of mechanical stability criteria under isotropic pressure and calculate the mechanical stability of 46 carbon allotropes involving seven crystal systems under pressure.
Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic pressure and given the equations between the elastic constants C ~ i j and C i j under pressure. On this basis, the closed forms of necessary and sufficient conditions for elastic stability in all crystal classes have been presented, which are popular in normal pressure. However, the forms of elastic stability criteria under pressure are still fragmented in various literature studies. Carbon is an element with a rich variety of allotropes, and because of its excellent mechanical and electronic properties, it gains enduring and intense attention, while its phase diagram is poorly known. In order to systematically study the response of various carbon stabilities to pressure and offer some valuable insights into experimental exploration, we derive the total forms of mechanical stability criteria under isotropic pressure and calculate the mechanical stability of 46 carbon allotropes involving seven crystal systems under pressure.
Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic pressure and given the equations between the elastic constants C ~ i j and C i j under pressure. On this basis, the closed forms of necessary and sufficient conditions for elastic stability in all crystal classes have been presented, which are popular in normal pressure. However, the forms of elastic stability criteria under pressure are still fragmented in various literature studies. Carbon is an element with a rich variety of allotropes, and because of its excellent mechanical and electronic properties, it gains enduring and intense attention, while its phase diagram is poorly known. In order to systematically study the response of various carbon stabilities to pressure and offer some valuable insights into experimental exploration, we derive the total forms of mechanical stability criteria under isotropic pressure and calculate the mechanical stability of 46 carbon allotropes involving seven crystal systems under pressure.
Author Gao, Juan
Liu, Qi-Jun
Tang, Bin
Author_xml – sequence: 1
  givenname: Juan
  surname: Gao
  fullname: Gao, Juan
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 2
  givenname: Qi-Jun
  surname: Liu
  fullname: Liu, Qi-Jun
  organization: Bond and Band Engineering Group, School of Physical Science and Technology, Southwest Jiaotong University
– sequence: 3
  givenname: Bin
  surname: Tang
  fullname: Tang, Bin
  organization: State Key Laboratory of Solidification Processing, Northwestern Polytechnical University
BookMark eNp9kE9LxDAQxYMouKse_AYBTwp1k6bdNt5k8R8IXtZzmU4nGu22NUkX99tb3VVBxdODeb_3hpkx227ahhg7lOJUiqmapKdCKh2reIuNpMh1lKWp2GYjIWIZ5TrTu2zs_ZMQUuZKj1h_UYMPFrkPUNrahhVHZwM5C7w13NOSmmGyGuya-0Fo4Tk0FQ-PZB2HrqstQrBtw_umIsc7R973js74HJ5t88ARXDm48B7j9AqLrqZ9tmOg9nSw0T12f3kxn11Ht3dXN7Pz2whVnIUoRqBUCSQEMZVGlQlQKYfrEgOQm4RMBlAqXRlEiWhAV5CUsjJT1IgqV3vsaN3bufalJx-Kp7Z3zbCyiDOdiiRO9XSgJmsKXeu9I1OgDR83BQe2LqQo3n9bpMXmt0Pi-Eeic3YBbvUne7Jm_WfrF7xs3TdYdJX5D_7d_AbN5pq_
CODEN JAPIAU
CitedBy_id crossref_primary_10_1016_j_jpcs_2024_112150
crossref_primary_10_3103_S0027134924700656
crossref_primary_10_1002_pssb_202400125
crossref_primary_10_1016_j_physb_2024_416029
crossref_primary_10_1016_j_cej_2024_157415
crossref_primary_10_1063_5_0148260
crossref_primary_10_1007_s00894_024_06098_6
crossref_primary_10_1021_acsaom_4c00314
crossref_primary_10_1007_s00894_024_05941_0
crossref_primary_10_3103_S0027134924700668
crossref_primary_10_1088_1402_4896_ad897c
crossref_primary_10_1080_00268976_2024_2379994
crossref_primary_10_1088_2053_1591_ad21ae
crossref_primary_10_1007_s00894_024_06076_y
crossref_primary_10_1016_j_cplett_2024_141342
crossref_primary_10_1007_s00894_023_05804_0
crossref_primary_10_1103_PhysRevB_109_144105
crossref_primary_10_1016_j_jssc_2024_125080
crossref_primary_10_1007_s11708_024_0970_4
crossref_primary_10_1016_j_mseb_2024_117842
crossref_primary_10_1038_s41598_024_78006_0
crossref_primary_10_1016_j_jpcs_2025_112692
crossref_primary_10_1039_D4CP03324H
crossref_primary_10_1002_pssb_202400188
crossref_primary_10_1016_j_cplett_2025_141930
crossref_primary_10_1016_j_chemphys_2024_112487
crossref_primary_10_1016_j_heliyon_2024_e41315
crossref_primary_10_1021_acs_jpcc_4c02681
crossref_primary_10_1080_00268976_2024_2356186
crossref_primary_10_61343_jcm_v3i01_83
crossref_primary_10_1016_j_jpcs_2025_112618
crossref_primary_10_1016_j_physb_2024_416321
crossref_primary_10_1002_eng2_13115
crossref_primary_10_1016_j_physb_2024_415993
crossref_primary_10_1080_00268976_2024_2427236
crossref_primary_10_1016_j_mssp_2024_108547
crossref_primary_10_1088_1402_4896_ad423d
crossref_primary_10_1080_00268976_2024_2410483
crossref_primary_10_1002_pssb_202400152
crossref_primary_10_1016_j_physb_2024_416176
crossref_primary_10_1007_s00894_024_06075_z
crossref_primary_10_1016_j_mssp_2025_109497
crossref_primary_10_1002_pssr_202400135
crossref_primary_10_1142_S0217979225501188
crossref_primary_10_1021_acs_jpcc_3c05572
crossref_primary_10_1080_00268976_2024_2411329
crossref_primary_10_1016_j_physb_2024_416410
crossref_primary_10_1016_j_physb_2024_416698
crossref_primary_10_1021_acs_jpca_4c01561
crossref_primary_10_1088_1674_1056_ad92fe
crossref_primary_10_1007_s00894_024_05914_3
crossref_primary_10_1016_j_physb_2024_416538
Cites_doi 10.1016/j.jallcom.2015.01.085
10.1103/PhysRevB.43.1993
10.1016/j.jallcom.2018.07.352
10.1039/c2cp24066a
10.1103/PhysRevB.85.144115
10.1007/s10853-016-0564-6
10.1111/j.1151-2916.1992.tb07211.x
10.1088/0953-8984/16/45/032
10.1016/j.jpcs.2017.01.014
10.1103/PhysRevLett.107.215502
10.1103/PhysRevLett.108.135501
10.1016/j.diamond.2021.108571
10.1209/0295-5075/107/27007
10.1021/ja301582d
10.11858/gywlxb.20220575
10.1016/j.jmmm.2016.01.013
10.6052/j.issn.1000-4750.2018.12.0665
10.1126/science.1060470
10.1103/PhysRevB.81.014106
10.1039/D2NR04709H
10.1016/j.ssc.2013.07.001
10.1103/PhysRevLett.77.3865
10.1103/PhysRevB.90.224104
10.1103/PhysRevLett.124.147001
10.1006/jssc.1999.8448
10.1016/j.diamond.2021.108731
10.1088/0953-8984/14/28/101
10.1107/S0108768195010810
10.1023/A:1014915307738
10.1140/epjb/e2013-40639-4
10.1103/RevModPhys.84.945
10.1103/PhysRevB.89.224109
10.1039/c2cp40531h
10.1103/PhysRevLett.102.175506
10.1063/1.4794424
10.1103/PhysRevB.13.5188
10.1016/S0081-1947(08)60010-7
10.1103/PhysRevLett.106.075501
10.1006/jcph.1996.5612
10.1103/PhysRevB.70.045101
10.1016/j.actamat.2022.118137
10.1021/ja304380p
10.1088/0953-8984/14/29/301
10.1126/science.1165278
10.1016/j.matchemphys.2016.05.041
10.1088/0953-8984/14/11/301
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0139232
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Technology Research Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1089-7550
ExternalDocumentID 10_1063_5_0139232
jap
GroupedDBID -DZ
-~X
.DC
1UP
2-P
29J
4.4
5GY
5VS
85S
AAAAW
AABDS
AAEUA
AAIKC
AAMNW
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
RXW
SC5
TAE
TN5
TWZ
UCJ
UHB
UPT
WH7
XSW
YQT
YZZ
ZCA
~02
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-2cae530ceca061f3b4aeb19234faa8f4ef7aab39dfcc1ccfa9da4b1df6c9cc383
ISSN 0021-8979
IngestDate Mon Jun 30 03:33:25 EDT 2025
Thu Apr 24 23:08:27 EDT 2025
Tue Jul 01 00:38:48 EDT 2025
Fri Jun 21 00:19:01 EDT 2024
Tue Jul 04 19:17:50 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-2cae530ceca061f3b4aeb19234faa8f4ef7aab39dfcc1ccfa9da4b1df6c9cc383
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4148-1309
0000-0001-7221-7696
PQID 2795042596
PQPubID 2050677
PageCount 8
ParticipantIDs crossref_citationtrail_10_1063_5_0139232
crossref_primary_10_1063_5_0139232
proquest_journals_2795042596
scitation_primary_10_1063_5_0139232
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230407
2023-04-07
PublicationDateYYYYMMDD 2023-04-07
PublicationDate_xml – month: 04
  year: 2023
  text: 20230407
  day: 07
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Journal of applied physics
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Li, Gao, Xu (c49) 2012
Strong, Pickard, Milman, Thimm, Winkler (c33) 2004
Troullier, Martins (c18) 1991
Pickard, Needs (c26) 2010
He, Sun, Zhang, Peng, Zhang, Zhong (c36) 2012
Monkhorst, Pack (c17) 1976
Niu, Chen, Wang, Li, Mao, Li (c41) 2012
Mouhat, Coudert (c3) 2014
Li, Bao, Tian, Zeng, He, Liu, Cui (c39) 2012
Knudson, Desjarlais, Dolan (c46) 2008
Kim, Sim, Park (c29) 2013
Liu, Ran, Liu, Liu (c7) 2015
Zhang, Cao, Liu, Hu, Yu, Zhang (c31) 2021
Benedict, Driver, Hamel, Militzer, Qi, Correa, Saul, Schwegler (c45) 2014
Perdew, Burke, Ernzerhof (c19) 1996
Wei, Yuan, Tong, Zhang (c37) 2022
Ownby, Yang, Liu (c27) 1992
Liu, Liu, Zhong, Gan, Liu, Li, Tang (c48) 2022
Zhang, Wang, Lv, Zhu, Li, Zhang, Li, Ma (c34) 2013
Wei, Zhang, Yan, Zhang, Wei (c32) 2018
Segall, Lindan, Probert, Pickard, Hasnip, Clark, Payne (c15) 2002
Zhang, Wang, Chen, Zhang, Ni, Zhang (c47) 2023
Liu, Xu, Wang, Wu, Wang (c10) 2017
Grimvall, Magyari-Köpe, Ozoliņš, Persson (c21) 2012
Zhao, Tian, Dong, Li, Wang, Wang, Zhong, Xu, Yu, He, Wang, Ma, Tian (c30) 2012
Wang, Chen, Kawazoe (c40) 2011
Amsler, Flores-Livas, Marques, Botti, Goedecker (c43) 2013
Wei, Zhang, Yan, Zhang (c28) 2017
Li, Ji (c1) 2019
Marcus, Ma, Qiu (c22) 2002
Yamanaka, Morimoto (c24) 1996
Sin’ko, Smirnov (c6) 2004
Tang, Zhang, Wang, Zhang, Wen, Li, Wang, Chan, Sheng (c13) 2001
Pfrommer, Côté, Louie, Cohen (c16) 1997
Fayos (c25) 1999
Zhao, Xu, Zhou, Wang, Wen, He, Liu, Wang, Tian (c11) 2011
Zhou, Zeng (c38) 2012
Li, Ma, Oganov, Wang, Wang, Xu, Zou (c42) 2009
Gueddouh, Bentria, Lefkaier (c9) 2016
Liu, Qin, Jiao, Liu, Liu (c8) 2016
Chung (c12) 2002
Gao, Liu, Jiang, Fan, Zhang, Liu, Tang (c4) 2022
Sin’ko, Smirnov (c5) 2002
Wei, Zhang, Yan, Lin, Zhu (c35) 2014
Liu, Song, Li, Ma, Chen (c14) 2020
Wallace (c23) 1970
(2023081106292943900_c33) 2004; 70
(2023081106292943900_c49) 2012; 85
(2023081106292943900_c30) 2012; 134
(2023081106292943900_c23) 1970; 25
(2023081106292943900_c25) 1999; 148
(2023081106292943900_c37) 2022; 121
(2023081106292943900_c48) 2022; 236
(2023081106292943900_c7) 2015; 631
(2023081106292943900_c11) 2011; 107
(2023081106292943900_c31) 2021; 119
(2023081106292943900_c42) 2009; 102
(2023081106292943900_c8) 2016; 180
(2023081106292943900_c6) 2004; 16
(2023081106292943900_c35) 2014; 107
(2023081106292943900_c3) 2014; 90
(2023081106292943900_c46) 2008; 322
(2023081106292943900_c14) 2020; 124
(2023081106292943900_c34) 2013; 138
(2023081106292943900_c12) 2002; 37
(2023081106292943900_c18) 1991; 43
(2023081106292943900_c38) 2012; 134
(2023081106292943900_c20) 1954
(2023081106292943900_c26) 2010; 81
(2023081106292943900_c21) 2012; 84
(2023081106292943900_c24) 1996; 52
(2023081106292943900_c32) 2018; 769
(2023081106292943900_c10) 2017; 104
(2023081106292943900_c47) 2023; 15
(2023081106292943900_c40) 2011; 106
(2023081106292943900_c16) 1997; 131
(2023081106292943900_c4) 2022; 36
(2023081106292943900_c27) 1992; 75
(2023081106292943900_c19) 1996; 77
(2023081106292943900_c22) 2002; 14
(2023081106292943900_c43) 2013; 86
(2023081106292943900_c13) 2001; 292
(2023081106292943900_c36) 2012; 14
The materials project (2023081106292943900_c44)
(2023081106292943900_c28) 2017; 52
(2023081106292943900_c5) 2002; 14
(2023081106292943900_c41) 2012; 108
(2023081106292943900_c17) 1976; 13
(2023081106292943900_c2) 1940
(2023081106292943900_c39) 2012; 14
(2023081106292943900_c1) 2019; 36
(2023081106292943900_c29) 2013; 169
(2023081106292943900_c45) 2014; 89
(2023081106292943900_c9) 2016; 406
(2023081106292943900_c15) 2002; 14
References_xml – start-page: 75
  year: 2016
  ident: c8
  publication-title: Mater. Chem. Phys.
– start-page: 945
  year: 2012
  ident: c21
  publication-title: Rev. Mod. Phys.
– start-page: 045101
  year: 2004
  ident: c33
  publication-title: Phys. Rev. B
– start-page: 347
  year: 2018
  ident: c32
  publication-title: J. Alloys Compd.
– start-page: 1475
  year: 2002
  ident: c12
  publication-title: J. Mater. Sci.
– start-page: 278
  year: 1999
  ident: c25
  publication-title: J. Solid State Chem.
– start-page: 135501
  year: 2012
  ident: c41
  publication-title: Phys. Rev. Lett.
– start-page: 215502
  year: 2011
  ident: c11
  publication-title: Phys. Rev. Lett.
– start-page: 175506
  year: 2009
  ident: c42
  publication-title: Phys. Rev. Lett.
– start-page: 118137
  year: 2022
  ident: c48
  publication-title: Acta Mater.
– start-page: 1993
  year: 1991
  ident: c18
  publication-title: Phys. Rev. B
– start-page: 13
  year: 2019
  ident: c1
  publication-title: Eng. Mech.
– start-page: 232
  year: 1996
  ident: c24
  publication-title: Acta Crystallogr., Sect. B Struct. Sci.
– start-page: 8101
  year: 2004
  ident: c6
  publication-title: J. Phys.: Condens. Matter
– start-page: 50
  year: 2013
  ident: c29
  publication-title: Solid State Commun.
– start-page: 108731
  year: 2022
  ident: c37
  publication-title: Diamond Relat. Mater.
– start-page: 224109
  year: 2014
  ident: c45
  publication-title: Phys. Rev. B
– start-page: 2462
  year: 2001
  ident: c13
  publication-title: Science
– start-page: 27007
  year: 2014
  ident: c35
  publication-title: Europhys. Lett.
– start-page: 6989
  year: 2002
  ident: c5
  publication-title: J. Phys.: Condens. Matter
– start-page: 5188
  year: 1976
  ident: c17
  publication-title: Phys. Rev. B
– start-page: 301
  year: 1970
  ident: c23
  publication-title: Solid State Phys.
– start-page: 147001
  year: 2020
  ident: c14
  publication-title: Phys. Rev. Lett.
– start-page: 114101
  year: 2013
  ident: c34
  publication-title: J. Chem. Phys.
– start-page: 8410
  year: 2012
  ident: c36
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 075501
  year: 2011
  ident: c40
  publication-title: Phys. Rev. Lett.
– start-page: 1180
  year: 2023
  ident: c47
  publication-title: Nanoscale
– start-page: 051101
  year: 2022
  ident: c4
  publication-title: Chin. J. High Press. Phys.
– start-page: 3865
  year: 1996
  ident: c19
  publication-title: Phys. Rev. Lett.
– start-page: 014106
  year: 2010
  ident: c26
  publication-title: Phys. Rev. B
– start-page: 7530
  year: 2012
  ident: c38
  publication-title: J. Am. Chem. Soc.
– start-page: 1822
  year: 2008
  ident: c46
  publication-title: Science
– start-page: 1876
  year: 1992
  ident: c27
  publication-title: J. Am. Ceram. Soc.
– start-page: 12362
  year: 2012
  ident: c30
  publication-title: J. Am. Chem. Soc.
– start-page: L525
  year: 2002
  ident: c22
  publication-title: J. Phys.: Condens. Matter
– start-page: 1
  year: 2013
  ident: c43
  publication-title: Eur. Phys. J. B
– start-page: 144115
  year: 2012
  ident: c49
  publication-title: Phys. Rev. B
– start-page: 192
  year: 2016
  ident: c9
  publication-title: J. Magn. Magn. Mater.
– start-page: 233
  year: 1997
  ident: c16
  publication-title: J. Comput. Phys.
– start-page: 4347
  year: 2012
  ident: c39
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 192
  year: 2015
  ident: c7
  publication-title: J. Alloys Compd.
– start-page: 2385
  year: 2017
  ident: c28
  publication-title: J. Mater. Sci.
– start-page: 243
  year: 2017
  ident: c10
  publication-title: J. Phys. Chem. Solids
– start-page: 2717
  year: 2002
  ident: c15
  publication-title: J. Phys.: Condens. Matter
– start-page: 108571
  year: 2021
  ident: c31
  publication-title: Diamond Relat. Mater.
– start-page: 224104
  year: 2014
  ident: c3
  publication-title: Phys. Rev. B
– volume: 631
  start-page: 192
  year: 2015
  ident: 2023081106292943900_c7
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2015.01.085
– volume: 43
  start-page: 1993
  year: 1991
  ident: 2023081106292943900_c18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.43.1993
– volume: 769
  start-page: 347
  year: 2018
  ident: 2023081106292943900_c32
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2018.07.352
– volume: 14
  start-page: 4347
  year: 2012
  ident: 2023081106292943900_c39
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp24066a
– volume: 85
  start-page: 144115
  year: 2012
  ident: 2023081106292943900_c49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.85.144115
– volume: 52
  start-page: 2385
  year: 2017
  ident: 2023081106292943900_c28
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-016-0564-6
– volume-title: Dynamical Theory of Crystal Lattices
  year: 1954
  ident: 2023081106292943900_c20
– volume: 75
  start-page: 1876
  year: 1992
  ident: 2023081106292943900_c27
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1151-2916.1992.tb07211.x
– volume: 16
  start-page: 8101
  year: 2004
  ident: 2023081106292943900_c6
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/16/45/032
– volume: 104
  start-page: 243
  year: 2017
  ident: 2023081106292943900_c10
  publication-title: J. Phys. Chem. Solids
  doi: 10.1016/j.jpcs.2017.01.014
– volume: 107
  start-page: 215502
  year: 2011
  ident: 2023081106292943900_c11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.215502
– volume: 108
  start-page: 135501
  year: 2012
  ident: 2023081106292943900_c41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.135501
– volume: 119
  start-page: 108571
  year: 2021
  ident: 2023081106292943900_c31
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2021.108571
– volume: 107
  start-page: 27007
  year: 2014
  ident: 2023081106292943900_c35
  publication-title: Europhys. Lett.
  doi: 10.1209/0295-5075/107/27007
– volume: 134
  start-page: 7530
  year: 2012
  ident: 2023081106292943900_c38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja301582d
– volume: 36
  start-page: 051101
  year: 2022
  ident: 2023081106292943900_c4
  publication-title: Chin. J. High Press. Phys.
  doi: 10.11858/gywlxb.20220575
– volume: 406
  start-page: 192
  year: 2016
  ident: 2023081106292943900_c9
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2016.01.013
– volume: 36
  start-page: 13
  year: 2019
  ident: 2023081106292943900_c1
  publication-title: Eng. Mech.
  doi: 10.6052/j.issn.1000-4750.2018.12.0665
– volume: 292
  start-page: 2462
  year: 2001
  ident: 2023081106292943900_c13
  publication-title: Science
  doi: 10.1126/science.1060470
– volume: 81
  start-page: 014106
  year: 2010
  ident: 2023081106292943900_c26
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.014106
– volume: 15
  start-page: 1180
  year: 2023
  ident: 2023081106292943900_c47
  publication-title: Nanoscale
  doi: 10.1039/D2NR04709H
– volume: 169
  start-page: 50
  year: 2013
  ident: 2023081106292943900_c29
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2013.07.001
– volume: 77
  start-page: 3865
  year: 1996
  ident: 2023081106292943900_c19
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 90
  start-page: 224104
  year: 2014
  ident: 2023081106292943900_c3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.224104
– volume: 124
  start-page: 147001
  year: 2020
  ident: 2023081106292943900_c14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.147001
– volume: 148
  start-page: 278
  year: 1999
  ident: 2023081106292943900_c25
  publication-title: J. Solid State Chem.
  doi: 10.1006/jssc.1999.8448
– volume: 121
  start-page: 108731
  year: 2022
  ident: 2023081106292943900_c37
  publication-title: Diamond Relat. Mater.
  doi: 10.1016/j.diamond.2021.108731
– volume: 14
  start-page: L525
  year: 2002
  ident: 2023081106292943900_c22
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/28/101
– volume: 52
  start-page: 232
  year: 1996
  ident: 2023081106292943900_c24
  publication-title: Acta Crystallogr., Sect. B Struct. Sci.
  doi: 10.1107/S0108768195010810
– volume: 37
  start-page: 1475
  year: 2002
  ident: 2023081106292943900_c12
  publication-title: J. Mater. Sci.
  doi: 10.1023/A:1014915307738
– ident: 2023081106292943900_c44
– volume: 86
  start-page: 1
  year: 2013
  ident: 2023081106292943900_c43
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2013-40639-4
– volume: 84
  start-page: 945
  year: 2012
  ident: 2023081106292943900_c21
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.84.945
– volume: 89
  start-page: 224109
  year: 2014
  ident: 2023081106292943900_c45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.224109
– volume: 14
  start-page: 8410
  year: 2012
  ident: 2023081106292943900_c36
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40531h
– volume: 102
  start-page: 175506
  year: 2009
  ident: 2023081106292943900_c42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.175506
– volume: 138
  start-page: 114101
  year: 2013
  ident: 2023081106292943900_c34
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4794424
– start-page: 160
  volume-title: Mathematical Proceedings of the Cambridge Philosophical Society
  year: 1940
  ident: 2023081106292943900_c2
– volume: 13
  start-page: 5188
  year: 1976
  ident: 2023081106292943900_c17
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 25
  start-page: 301
  year: 1970
  ident: 2023081106292943900_c23
  publication-title: Solid State Phys.
  doi: 10.1016/S0081-1947(08)60010-7
– volume: 106
  start-page: 075501
  year: 2011
  ident: 2023081106292943900_c40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.075501
– volume: 131
  start-page: 233
  year: 1997
  ident: 2023081106292943900_c16
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1996.5612
– volume: 70
  start-page: 045101
  year: 2004
  ident: 2023081106292943900_c33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.70.045101
– volume: 236
  start-page: 118137
  year: 2022
  ident: 2023081106292943900_c48
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2022.118137
– volume: 134
  start-page: 12362
  year: 2012
  ident: 2023081106292943900_c30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja304380p
– volume: 14
  start-page: 6989
  year: 2002
  ident: 2023081106292943900_c5
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/29/301
– volume: 322
  start-page: 1822
  year: 2008
  ident: 2023081106292943900_c46
  publication-title: Science
  doi: 10.1126/science.1165278
– volume: 180
  start-page: 75
  year: 2016
  ident: 2023081106292943900_c8
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2016.05.041
– volume: 14
  start-page: 2717
  year: 2002
  ident: 2023081106292943900_c15
  publication-title: J. Phys.: Condens. Matter
  doi: 10.1088/0953-8984/14/11/301
SSID ssj0011839
Score 2.6380026
Snippet Elastic stability criteria are widely employed to prove the being of the lattice. Sin'ko and Smirnov have reported the applicable criteria under isotropic...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Allotropy
Applied physics
Carbon
Crystals
Elastic properties
Phase diagrams
Stability criteria
Title Elastic stability criteria of seven crystal systems and their application under pressure: Taking carbon as an example
URI http://dx.doi.org/10.1063/5.0139232
https://www.proquest.com/docview/2795042596
Volume 133
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1daxQxFA3aItoH0aq42kpQH4QldWcymZn41mq1FCuKW-jbcCeTwILsltkdsf313nzMR3WV6suwhGR2yD25OUluziXkpclAlDhPMciqyG7dKCYrrZmCRHAkzLlwechOPqVHp8nxmTjrQ3nd7ZJVuacu194r-R-rYhna1d6S_QfLdi_FAvyN9sUnWhif17LxIVJfK7iKDM_FuF6M0QdY8WWwHHBpxZmw5GJpLzx6yeZlGzE5q8eDs2uXDbceu6DYpnbX1acuTZVVri5twLJtONY_wIoJ_4HQQiC0frOk4-ofwB_uNIPon1lji77M2HHTBwKHneuDoAUetiJi7iJYsqF7jSOWS58dZk97jzrJJcuEV5ftXK4Xv2ixxdf6ciRPaACrqoocLmyCXtHL_mUe66IL3bl6ygtRhKY3yWaMqwh0g5v7704-fu2OmSw99DFA_rtb6amUv-7-9yph6Vcht5Gi-GiJASGZ3iN3Q8fTfQ-L--SGnm-TrYG-5Da59dmb4gFpAlRoBxXaQoUuDHVQoQEqNECFIlSogwodQIU6qNAWKm-oBwr1QKFgm9EAlIfk9P3h9O0RCxk3mOJxtmKxAi34RGkFyPMMLxPAuRx7ITEAuUk0Dm0ouayMUpFSBmQFSRlVJlVSKZ7zR2Rjvpjrx4ROIpPh-l7khtsqKWSgUmF4XE4UUmI5Iq_abi3ajrRZUb4Vv5lvRJ53Vc-9Bsu6SjutbYowRJdFnElhZyWZjsiLzl5_e8maWt8XdV-jOK_Mk-t8z1Nypx8iO2RjVTd6F_nrqnwWUPgTUZSdxg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Elastic+stability+criteria+of+seven+crystal+systems+and+their+application+under+pressure%3A+Taking+carbon+as+an+example&rft.jtitle=Journal+of+applied+physics&rft.au=Gao%2C+Juan&rft.au=Liu%2C+Qi-Jun&rft.au=Tang%2C+Bin&rft.date=2023-04-07&rft.issn=0021-8979&rft.eissn=1089-7550&rft.volume=133&rft.issue=13&rft_id=info:doi/10.1063%2F5.0139232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0139232
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-8979&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-8979&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-8979&client=summon