Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules
Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organ...
Saved in:
Published in | Applied physics letters Vol. 122; no. 26 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
26.06.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organic–inorganic hybrid cathode interlayer of incorporating poly(4-vinylphenol) (P4VP) into the ZnO precursor solution was developed. The addition of P4VP improves the conductibility of ETL and facilitates the favorable vertical component distribution of active layer on the ZnO:P4VP substrate. Thus, the blade-coated OSC based on ZnO:P4VP performs better than the ZnO-based OSC in terms of photovoltaic performance and thickness insensitivity. The P4VP acts as an adhesive in ZnO grain boundaries and eliminates cracks in the bent ETL, leading to a significantly improved mechanical flexibility. Consequently, the ZnO:P4VP-based large-area flexible OSC achieves a power conversion efficiency of 14.05% and retains 80% of its initial efficiency after 1000 bending cycles, which is much better than that based on pristine ZnO (12.26%, 44%). Furthermore, flexible inverted organic solar modules were fabricated and achieved a considerable efficiency of 12.01%. These findings provide a general approach for using inorganic materials in flexible and wearable electronics. |
---|---|
AbstractList | Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organic–inorganic hybrid cathode interlayer of incorporating poly(4-vinylphenol) (P4VP) into the ZnO precursor solution was developed. The addition of P4VP improves the conductibility of ETL and facilitates the favorable vertical component distribution of active layer on the ZnO:P4VP substrate. Thus, the blade-coated OSC based on ZnO:P4VP performs better than the ZnO-based OSC in terms of photovoltaic performance and thickness insensitivity. The P4VP acts as an adhesive in ZnO grain boundaries and eliminates cracks in the bent ETL, leading to a significantly improved mechanical flexibility. Consequently, the ZnO:P4VP-based large-area flexible OSC achieves a power conversion efficiency of 14.05% and retains 80% of its initial efficiency after 1000 bending cycles, which is much better than that based on pristine ZnO (12.26%, 44%). Furthermore, flexible inverted organic solar modules were fabricated and achieved a considerable efficiency of 12.01%. These findings provide a general approach for using inorganic materials in flexible and wearable electronics. |
Author | Yang, Junliang Deng, Wen Li, Haojie Zhou, Ke Zhang, Lin Zhou, Jixuan Zhou, Conghua He, Yuxin Guo, Xueliang Ma, Wei Yuan, Yongbo Hu, Xiaotian Zou, Yingping Yang, Fang Zhang, Yong |
Author_xml | – sequence: 1 givenname: Lin surname: Zhang fullname: Zhang, Lin organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 2 givenname: Fang surname: Yang fullname: Yang, Fang organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 3 givenname: Wen surname: Deng fullname: Deng, Wen organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 4 givenname: Xueliang surname: Guo fullname: Guo, Xueliang organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 5 givenname: Yuxin surname: He fullname: He, Yuxin organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 6 givenname: Jixuan surname: Zhou fullname: Zhou, Jixuan organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 7 givenname: Haojie surname: Li fullname: Li, Haojie organization: Institute of Polymers and Energy Chemistry, College of Chemistry, Nanchang University – sequence: 8 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology – sequence: 9 givenname: Ke surname: Zhou fullname: Zhou, Ke organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University – sequence: 10 givenname: Conghua surname: Zhou fullname: Zhou, Conghua organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 11 givenname: Yingping surname: Zou fullname: Zou, Yingping organization: College of Chemistry and Chemical Engineering, Central South University – sequence: 12 givenname: Junliang surname: Yang fullname: Yang, Junliang organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University – sequence: 13 givenname: Xiaotian surname: Hu fullname: Hu, Xiaotian organization: Institute of Polymers and Energy Chemistry, College of Chemistry, Nanchang University – sequence: 14 givenname: Wei surname: Ma fullname: Ma, Wei organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University – sequence: 15 givenname: Yongbo surname: Yuan fullname: Yuan, Yongbo organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University |
BookMark | eNqdkMtKAzEUhoNUsK0ufIMBVwrT5p7pUoo3KHSj6yGTi02ZTmqSFrvzHXxDn8Qp0yKIK1fnHPj-78A_AL3GNwaASwRHCHIyZiOIGCoEPAF9BIXICUJFD_QhhCTnE4bOwCDGZXsyTEgfqHl4lY1TXx-frvHdni12VXA6UzItvDaZa5IJtdyZkFkfMmOtU840KbO1eXdVvSe2JiSjs6Mh-lqGbOX1pjbxHJxaWUdzcZhD8HJ_9zx9zGfzh6fp7SxXBIuUY44JLJC2lWIII4uRopQYXCjKOaLcSqorbRBkgkqKBbYFLrgouLJQYIjIEFx13nXwbxsTU7n0m9C0L0tc4AmjmFDYUuOOUsHHGIwtlUsyOd-kIF1dIljumyxZeWiyTVz_SqyDW8mw-5O96dh4tP4P3vrwA5Zrbck31NqR3Q |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_1007_s40843_023_2843_8 crossref_primary_10_1002_cjoc_202300479 crossref_primary_10_1007_s11771_024_5839_5 crossref_primary_10_1063_5_0184403 crossref_primary_10_1063_5_0179058 crossref_primary_10_1186_s11671_024_03982_1 |
Cites_doi | 10.1021/cm3010369 10.1002/adma.202106453 10.1016/0143-7496(92)90045-W 10.1002/adma.202110276 10.1021/acs.chemmater.7b01615 10.1002/adma.201800343 10.1016/j.joule.2021.06.017 10.1002/smll.202006387 10.1002/aenm.201300402 10.1016/j.scib.2019.10.019 10.1063/1.4893787 10.1039/C8TA11624E 10.1002/adma.201805041 10.1002/adfm.202102694 10.1021/jacs.7b13229 10.1002/adma.201004301 10.1002/adfm.201502929 10.1063/1.4826651 10.1002/aenm.201900999 10.1002/adma.202007231 10.1002/nano.202000012 10.1002/adfm.202202011 10.1021/acsami.1c22093 10.1039/D1TC01648B 10.1021/acsphotonics.7b01096 10.1021/acsnano.8b01178 10.1002/adma.202202089 10.1002/solr.202100838 10.1002/adma.202002973 10.1063/1.5028163 |
ContentType | Journal Article |
Copyright | Author(s) 2023 Author(s). Published under an exclusive license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2023 Author(s). Published under an exclusive license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0151870 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_5_0151870 apl |
GrantInformation_xml | – fundername: Innovation-Driven Project of Central South University grantid: 2020CX006 funderid: 10.13039/501100012486 – fundername: State Key Laboratory for Mechanical Behavior of Materials grantid: 20202201 funderid: 10.13039/501100011435 – fundername: National Natural Science Foundation of China grantid: 21875182 funderid: 10.13039/501100001809 – fundername: Natural Science Foundation of Hunan Province grantid: 2021JJ20077 funderid: 10.13039/501100004735 |
GroupedDBID | -DZ -~X .DC 2-P 23M 4.4 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 1UP 53G AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c327t-2623081dfbc5121f21c443e28c466146fa4dbde10574a4272f8286786cf072013 |
ISSN | 0003-6951 |
IngestDate | Mon Jun 30 14:42:50 EDT 2025 Tue Jul 01 01:08:31 EDT 2025 Thu Apr 24 23:07:08 EDT 2025 Fri Jun 21 00:13:54 EDT 2024 Tue Jul 04 19:18:37 EDT 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 26 |
Language | English |
License | Published under an exclusive license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c327t-2623081dfbc5121f21c443e28c466146fa4dbde10574a4272f8286786cf072013 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0001-9333-3394 0000-0002-8386-1062 0000-0001-5483-8800 0000-0002-2377-3909 0000-0002-5553-0186 0000-0002-8251-2987 0000-0003-1901-7243 0009-0008-5570-5637 0000-0002-7565-9016 0000-0002-4606-4611 0000-0003-4792-4430 |
PQID | 2829542340 |
PQPubID | 2050678 |
PageCount | 7 |
ParticipantIDs | scitation_primary_10_1063_5_0151870 crossref_citationtrail_10_1063_5_0151870 proquest_journals_2829542340 crossref_primary_10_1063_5_0151870 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20230626 2023-06-26 |
PublicationDateYYYYMMDD | 2023-06-26 |
PublicationDate_xml | – month: 06 year: 2023 text: 20230626 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2023 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Li, Liu, Zhang, Wang, Fang (c14) 2017 Wei, Ji, Zhang, Yan, Luo, Wang, Chen, Yang, Chen, Ma (c6) 2018 Smith, Rhodes, Beliatis, Jayawardena, Rozanski, Mills, Silva (c21) 2014 Zhang, Yang, Chen, Chen, Zeng, Shen, Li, Li (c23) 2022 Liu, Zheng, Wang, Wang, Xu, Zhang, Hou (c25) 2022 Liu, Li, Zhang, Ma, Fan, Mai (c24) 2018 Comyn (c27) 1992 Zhang, Xu, Lin, Zhao, Li, Xin, Bi, Qiu, Guo, Zhou, Zhan, Ma (c3) 2018 Zhang, Lin, Hu, Xu, Ma (c16) 2018 Liu, Li, Zhang, Guo, Zhang, Ruan (c15) 2017 Unsworth, Hancox, Dearden, Howells, Sullivan, Lilley, Sharp, Jones (c22) 2013 Kim, Kang, Kim, Kim, Yoon, Kim (c28) 2012 Wang, Pan, Xu, Jin, Ma, Xiong, Bao, Tang, Ma (c10) 2022 Zheng, Zhang, Wang, Zhang, Zhang, Zhang, Wei, Tang, Hou, Zhou (c12) 2019 Song, Yu, Zhou, Xie, Hong, Ge, Zhang, Zhang, Peng, Ge (c20) 2021 Zhan, Li, Xia, Li, Lu, Zuo, Shi, Chen (c26) 2021 Sun, Seo, Takacs, Seifter, Heeger (c5) 2011 Song, Liu, Gao, Di, Yang, Li, Zhou, Zhang (c9) 2021 Gaceur, Ben Dkhil, Duche, Bencheikh, Simon, Escoubas, Mansour, Guerrero, Garcia-Belmonte, Liu, Fahlman, Dachraoui, Diallo, Videlot-Ackermann, Margeat, Ackermann (c8) 2016 Wei, Wang, Wen, Hao, Qin (c2) 2018 Wang, Liu, Chen, Liu (c17) 2021 Gao, Qi, Peng, Lin, Jiang, Zhong, Kaminsky, Guan, Lee, Marks, Ade, Jen (c1) 2022 Trost, Zilberberg, Behrendt, Polywka, Görrn, Reckers, Maibach, Mayer, Riedl (c7) 2013 Cui, Li, Du, Li, Rong, Li, Shui, Zhou, Wang, Brabec, Nian (c13) 2020 Zhang, Yang, Ning, Yang, Deng, Xing, Bi, Zhou, Zhang, Hu, Yang, Yang, Zou, Ma, Yuan (c4) 2022 Li, Fu, Xia, Sun (c11) 2019 Xu, Xiao, Zhang, Wei, Jiao, Yip, Cao (c30) 2020 Xu, Li, Peng (c29) 2020 Chen, Song, Yu, Ge, Zhang, Xie, Peng, Ge (c18) 2021 Han, Hu, Zha, Chen, Yin, Guo, Li, Luo, Su, Ma (c19) 2022 (2023062610444652100_c26) 2021; 33 (2023062610444652100_c29) 2020; 1 (2023062610444652100_c2) 2018; 113 (2023062610444652100_c24) 2018; 140 (2023062610444652100_c13) 2020; 32 (2023062610444652100_c6) 2018; 12 (2023062610444652100_c21) 2014; 105 (2023062610444652100_c4) 2022; 6 (2023062610444652100_c12) 2019; 7 (2023062610444652100_c15) 2017; 4 (2023062610444652100_c22) 2013; 103 (2023062610444652100_c14) 2017; 29 (2023062610444652100_c27) 1992; 12 (2023062610444652100_c20) 2021; 31 (2023062610444652100_c3) 2018; 30 (2023062610444652100_c10) 2022; 14 (2023062610444652100_c17) 2021; 9 (2023062610444652100_c23) 2022; 32 (2023062610444652100_c19) 2022; 34 (2023062610444652100_c11) 2019; 9 (2023062610444652100_c1) 2022; 34 (2023062610444652100_c25) 2022; 34 (2023062610444652100_c7) 2013; 3 (2023062610444652100_c9) 2021; 17 (2023062610444652100_c28) 2012; 24 (2023062610444652100_c18) 2021; 5 (2023062610444652100_c30) 2020; 65 (2023062610444652100_c8) 2016; 26 (2023062610444652100_c16) 2018; 30 (2023062610444652100_c5) 2011; 23 |
References_xml | – start-page: 1805041 year: 2018 ident: c3 publication-title: Adv. Mater. – start-page: 2102694 year: 2021 ident: c20 publication-title: Adv. Funct. Mater. – start-page: 2373 year: 2012 ident: c28 publication-title: Chem. Mater. – start-page: 3570 year: 2019 ident: c12 publication-title: J. Mater. Chem. A – start-page: 2202011 year: 2022 ident: c23 publication-title: Adv. Funct. Mater. – start-page: 3825 year: 2018 ident: c24 publication-title: J. Am. Chem. Soc. – start-page: 1900999 year: 2019 ident: c11 publication-title: Adv. Energy Mater. – start-page: 11851 year: 2021 ident: c17 publication-title: J. Mater. Chem. C – start-page: 5518 year: 2018 ident: c6 publication-title: ACS Nano – start-page: 145 year: 1992 ident: c27 publication-title: Int. J. Adhes. Adhes. – start-page: 208 year: 2020 ident: c30 publication-title: Sci. Bull. – start-page: 2395 year: 2021 ident: c18 publication-title: Joule – start-page: 12450 year: 2022 ident: c10 publication-title: ACS Appl. Mater. Interfaces – start-page: 2100838 year: 2022 ident: c4 publication-title: Sol. RRL – start-page: 243 year: 2016 ident: c8 publication-title: Adv. Funct. Mater. – start-page: 1800343 year: 2018 ident: c16 publication-title: Adv. Mater. – start-page: 173304 year: 2013 ident: c22 publication-title: Appl. Phys. Lett. – start-page: 2202089 year: 2022 ident: c1 publication-title: Adv. Mater. – start-page: 2106453 year: 2022 ident: c25 publication-title: Adv. Mater. – start-page: 1679 year: 2011 ident: c5 publication-title: Adv. Mater. – start-page: 4176 year: 2017 ident: c14 publication-title: Chem. Mater. – start-page: 093301 year: 2018 ident: c2 publication-title: Appl. Phys. Lett. – start-page: 2006387 year: 2021 ident: c9 publication-title: Small – start-page: 2007231 year: 2021 ident: c26 publication-title: Adv. Mater. – start-page: 2002973 year: 2020 ident: c13 publication-title: Adv. Mater. – start-page: 2952 year: 2017 ident: c15 publication-title: ACS Photonics – start-page: 073304 year: 2014 ident: c21 publication-title: Appl. Phys. Lett. – start-page: 2110276 year: 2022 ident: c19 publication-title: Adv. Mater. – start-page: 1437 year: 2013 ident: c7 publication-title: Adv. Energy Mater. – start-page: 30 year: 2020 ident: c29 publication-title: Nano Sel. – volume: 24 start-page: 2373 year: 2012 ident: 2023062610444652100_c28 publication-title: Chem. Mater. doi: 10.1021/cm3010369 – volume: 34 start-page: 2106453 year: 2022 ident: 2023062610444652100_c25 publication-title: Adv. Mater. doi: 10.1002/adma.202106453 – volume: 12 start-page: 145 year: 1992 ident: 2023062610444652100_c27 publication-title: Int. J. Adhes. Adhes. doi: 10.1016/0143-7496(92)90045-W – volume: 34 start-page: 2110276 year: 2022 ident: 2023062610444652100_c19 publication-title: Adv. Mater. doi: 10.1002/adma.202110276 – volume: 29 start-page: 4176 year: 2017 ident: 2023062610444652100_c14 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b01615 – volume: 30 start-page: 1800343 year: 2018 ident: 2023062610444652100_c16 publication-title: Adv. Mater. doi: 10.1002/adma.201800343 – volume: 5 start-page: 2395 year: 2021 ident: 2023062610444652100_c18 publication-title: Joule doi: 10.1016/j.joule.2021.06.017 – volume: 17 start-page: 2006387 year: 2021 ident: 2023062610444652100_c9 publication-title: Small doi: 10.1002/smll.202006387 – volume: 3 start-page: 1437 year: 2013 ident: 2023062610444652100_c7 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201300402 – volume: 65 start-page: 208 year: 2020 ident: 2023062610444652100_c30 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.10.019 – volume: 105 start-page: 073304 year: 2014 ident: 2023062610444652100_c21 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4893787 – volume: 7 start-page: 3570 year: 2019 ident: 2023062610444652100_c12 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA11624E – volume: 30 start-page: 1805041 year: 2018 ident: 2023062610444652100_c3 publication-title: Adv. Mater. doi: 10.1002/adma.201805041 – volume: 31 start-page: 2102694 year: 2021 ident: 2023062610444652100_c20 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202102694 – volume: 140 start-page: 3825 year: 2018 ident: 2023062610444652100_c24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b13229 – volume: 23 start-page: 1679 year: 2011 ident: 2023062610444652100_c5 publication-title: Adv. Mater. doi: 10.1002/adma.201004301 – volume: 26 start-page: 243 year: 2016 ident: 2023062610444652100_c8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502929 – volume: 103 start-page: 173304 year: 2013 ident: 2023062610444652100_c22 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4826651 – volume: 9 start-page: 1900999 year: 2019 ident: 2023062610444652100_c11 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201900999 – volume: 33 start-page: 2007231 year: 2021 ident: 2023062610444652100_c26 publication-title: Adv. Mater. doi: 10.1002/adma.202007231 – volume: 1 start-page: 30 year: 2020 ident: 2023062610444652100_c29 publication-title: Nano Sel. doi: 10.1002/nano.202000012 – volume: 32 start-page: 2202011 year: 2022 ident: 2023062610444652100_c23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202202011 – volume: 14 start-page: 12450 year: 2022 ident: 2023062610444652100_c10 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c22093 – volume: 9 start-page: 11851 year: 2021 ident: 2023062610444652100_c17 publication-title: J. Mater. Chem. C doi: 10.1039/D1TC01648B – volume: 4 start-page: 2952 year: 2017 ident: 2023062610444652100_c15 publication-title: ACS Photonics doi: 10.1021/acsphotonics.7b01096 – volume: 12 start-page: 5518 year: 2018 ident: 2023062610444652100_c6 publication-title: ACS Nano doi: 10.1021/acsnano.8b01178 – volume: 34 start-page: 2202089 year: 2022 ident: 2023062610444652100_c1 publication-title: Adv. Mater. doi: 10.1002/adma.202202089 – volume: 6 start-page: 2100838 year: 2022 ident: 2023062610444652100_c4 publication-title: Sol. RRL doi: 10.1002/solr.202100838 – volume: 32 start-page: 2002973 year: 2020 ident: 2023062610444652100_c13 publication-title: Adv. Mater. doi: 10.1002/adma.202002973 – volume: 113 start-page: 093301 year: 2018 ident: 2023062610444652100_c2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.5028163 |
SSID | ssj0005233 |
Score | 2.4715526 |
Snippet | Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Cathodes Efficiency Electron transport Electronics Energy conversion efficiency Grain boundaries Inorganic materials Interlayers Modules Photovoltaic cells Solar cells Substrates Vertical distribution Wearable technology Zinc oxide |
Title | Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules |
URI | http://dx.doi.org/10.1063/5.0151870 https://www.proquest.com/docview/2829542340 |
Volume | 122 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60RdQH0apYrTKoD8ISzc4tu49FrUVaEWyxPoXMZEYXlmzZi6BP_gf_ob_EczKXpHaR6ktYZmdnQ86XyXdOzvkOIU8BNEzqCnwTIAcZegiZhid1JmppzShX1dhgcfLhO7V_LN6eyN6L9ra6ZKmfm-9r60r-x6owBnbFKtl_sGxaFAbgM9gXjmBhOF7Ixr6Q0sSEBT5pfJMmM_jyDSuxBijKOqttKwoxn1ZAr73Ed6sb0coyoR4mFk9NGmzMDOwzrrBAnxcb5aymIc0watUG3upjIovBtC0IStQ8RaAPJgl3n8LQXhWek8icrR_72NWivVm1cduTlcXYy-d-QIJhc4jMV72nTZZnahx0ZK3fV_MCw6Fhq40bL2M9hPklzu3oQKHADKitKocj32PkrGr2H0-zlGPYvl1XvJRl-OllssnAl4DNcHP31eHBh14mEOexsSKedxSgUvxF-t-ztKXzRa4CUfE5Ez1acnST3Aj-BN314LhFLtlmi1zvqUxukSvvvaVuExMA8-vHzwQV6qFCA1RoBxUKUKEJKjRChUao0LhCCxUaoHKHHO-9Pnq5n4UuG5nhrFiC6cALBa_FaQPkb-jY0AjBLRsZgdxNuUrUurbYD1pUghXMofJAMVLG5QXQR36XbDSzxt4jlGmlrEQRNe2E0_UY3N-xNDIXrs5ZlW-TZ_EilvGyYSeUaXnOWNvkcZp66nVX1k3aiZYow225KDE1QIKTIODrJ8k6f1tkzayvs3k3ozyt3f2LnM8Dcq27IXbIxnK-sg-Bsy71o4C534EgldA |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93inorganic+hybrid+cathode+interlayer+for+efficient+flexible+inverted+organic+solar+modules&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Lin&rft.au=Yang%2C+Fang&rft.au=Deng%2C+Wen&rft.au=Guo%2C+Xueliang&rft.date=2023-06-26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=26&rft_id=info:doi/10.1063%2F5.0151870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0151870 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |