Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules

Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organ...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 122; no. 26
Main Authors Zhang, Lin, Yang, Fang, Deng, Wen, Guo, Xueliang, He, Yuxin, Zhou, Jixuan, Li, Haojie, Zhang, Yong, Zhou, Ke, Zhou, Conghua, Zou, Yingping, Yang, Junliang, Hu, Xiaotian, Ma, Wei, Yuan, Yongbo
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 26.06.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organic–inorganic hybrid cathode interlayer of incorporating poly(4-vinylphenol) (P4VP) into the ZnO precursor solution was developed. The addition of P4VP improves the conductibility of ETL and facilitates the favorable vertical component distribution of active layer on the ZnO:P4VP substrate. Thus, the blade-coated OSC based on ZnO:P4VP performs better than the ZnO-based OSC in terms of photovoltaic performance and thickness insensitivity. The P4VP acts as an adhesive in ZnO grain boundaries and eliminates cracks in the bent ETL, leading to a significantly improved mechanical flexibility. Consequently, the ZnO:P4VP-based large-area flexible OSC achieves a power conversion efficiency of 14.05% and retains 80% of its initial efficiency after 1000 bending cycles, which is much better than that based on pristine ZnO (12.26%, 44%). Furthermore, flexible inverted organic solar modules were fabricated and achieved a considerable efficiency of 12.01%. These findings provide a general approach for using inorganic materials in flexible and wearable electronics.
AbstractList Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of inorganic electron transport layers (ETL) and their large-area production make it difficult to use them in flexible inverted OSCs. Herein, an organic–inorganic hybrid cathode interlayer of incorporating poly(4-vinylphenol) (P4VP) into the ZnO precursor solution was developed. The addition of P4VP improves the conductibility of ETL and facilitates the favorable vertical component distribution of active layer on the ZnO:P4VP substrate. Thus, the blade-coated OSC based on ZnO:P4VP performs better than the ZnO-based OSC in terms of photovoltaic performance and thickness insensitivity. The P4VP acts as an adhesive in ZnO grain boundaries and eliminates cracks in the bent ETL, leading to a significantly improved mechanical flexibility. Consequently, the ZnO:P4VP-based large-area flexible OSC achieves a power conversion efficiency of 14.05% and retains 80% of its initial efficiency after 1000 bending cycles, which is much better than that based on pristine ZnO (12.26%, 44%). Furthermore, flexible inverted organic solar modules were fabricated and achieved a considerable efficiency of 12.01%. These findings provide a general approach for using inorganic materials in flexible and wearable electronics.
Author Yang, Junliang
Deng, Wen
Li, Haojie
Zhou, Ke
Zhang, Lin
Zhou, Jixuan
Zhou, Conghua
He, Yuxin
Guo, Xueliang
Ma, Wei
Yuan, Yongbo
Hu, Xiaotian
Zou, Yingping
Yang, Fang
Zhang, Yong
Author_xml – sequence: 1
  givenname: Lin
  surname: Zhang
  fullname: Zhang, Lin
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 2
  givenname: Fang
  surname: Yang
  fullname: Yang, Fang
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 3
  givenname: Wen
  surname: Deng
  fullname: Deng, Wen
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 4
  givenname: Xueliang
  surname: Guo
  fullname: Guo, Xueliang
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 5
  givenname: Yuxin
  surname: He
  fullname: He, Yuxin
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 6
  givenname: Jixuan
  surname: Zhou
  fullname: Zhou, Jixuan
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 7
  givenname: Haojie
  surname: Li
  fullname: Li, Haojie
  organization: Institute of Polymers and Energy Chemistry, College of Chemistry, Nanchang University
– sequence: 8
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: Department of Materials Science and Engineering, and Shenzhen Engineering Research and Development Center for Flexible Solar Cells, Southern University of Science and Technology
– sequence: 9
  givenname: Ke
  surname: Zhou
  fullname: Zhou, Ke
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
– sequence: 10
  givenname: Conghua
  surname: Zhou
  fullname: Zhou, Conghua
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 11
  givenname: Yingping
  surname: Zou
  fullname: Zou, Yingping
  organization: College of Chemistry and Chemical Engineering, Central South University
– sequence: 12
  givenname: Junliang
  surname: Yang
  fullname: Yang, Junliang
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
– sequence: 13
  givenname: Xiaotian
  surname: Hu
  fullname: Hu, Xiaotian
  organization: Institute of Polymers and Energy Chemistry, College of Chemistry, Nanchang University
– sequence: 14
  givenname: Wei
  surname: Ma
  fullname: Ma, Wei
  organization: State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University
– sequence: 15
  givenname: Yongbo
  surname: Yuan
  fullname: Yuan, Yongbo
  organization: Hunan Key Laboratory for Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University
BookMark eNqdkMtKAzEUhoNUsK0ufIMBVwrT5p7pUoo3KHSj6yGTi02ZTmqSFrvzHXxDn8Qp0yKIK1fnHPj-78A_AL3GNwaASwRHCHIyZiOIGCoEPAF9BIXICUJFD_QhhCTnE4bOwCDGZXsyTEgfqHl4lY1TXx-frvHdni12VXA6UzItvDaZa5IJtdyZkFkfMmOtU840KbO1eXdVvSe2JiSjs6Mh-lqGbOX1pjbxHJxaWUdzcZhD8HJ_9zx9zGfzh6fp7SxXBIuUY44JLJC2lWIII4uRopQYXCjKOaLcSqorbRBkgkqKBbYFLrgouLJQYIjIEFx13nXwbxsTU7n0m9C0L0tc4AmjmFDYUuOOUsHHGIwtlUsyOd-kIF1dIljumyxZeWiyTVz_SqyDW8mw-5O96dh4tP4P3vrwA5Zrbck31NqR3Q
CODEN APPLAB
CitedBy_id crossref_primary_10_1007_s40843_023_2843_8
crossref_primary_10_1002_cjoc_202300479
crossref_primary_10_1007_s11771_024_5839_5
crossref_primary_10_1063_5_0184403
crossref_primary_10_1063_5_0179058
crossref_primary_10_1186_s11671_024_03982_1
Cites_doi 10.1021/cm3010369
10.1002/adma.202106453
10.1016/0143-7496(92)90045-W
10.1002/adma.202110276
10.1021/acs.chemmater.7b01615
10.1002/adma.201800343
10.1016/j.joule.2021.06.017
10.1002/smll.202006387
10.1002/aenm.201300402
10.1016/j.scib.2019.10.019
10.1063/1.4893787
10.1039/C8TA11624E
10.1002/adma.201805041
10.1002/adfm.202102694
10.1021/jacs.7b13229
10.1002/adma.201004301
10.1002/adfm.201502929
10.1063/1.4826651
10.1002/aenm.201900999
10.1002/adma.202007231
10.1002/nano.202000012
10.1002/adfm.202202011
10.1021/acsami.1c22093
10.1039/D1TC01648B
10.1021/acsphotonics.7b01096
10.1021/acsnano.8b01178
10.1002/adma.202202089
10.1002/solr.202100838
10.1002/adma.202002973
10.1063/1.5028163
ContentType Journal Article
Copyright Author(s)
2023 Author(s). Published under an exclusive license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2023 Author(s). Published under an exclusive license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0151870
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_5_0151870
apl
GrantInformation_xml – fundername: Innovation-Driven Project of Central South University
  grantid: 2020CX006
  funderid: 10.13039/501100012486
– fundername: State Key Laboratory for Mechanical Behavior of Materials
  grantid: 20202201
  funderid: 10.13039/501100011435
– fundername: National Natural Science Foundation of China
  grantid: 21875182
  funderid: 10.13039/501100001809
– fundername: Natural Science Foundation of Hunan Province
  grantid: 2021JJ20077
  funderid: 10.13039/501100004735
GroupedDBID -DZ
-~X
.DC
2-P
23M
4.4
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
1UP
53G
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c327t-2623081dfbc5121f21c443e28c466146fa4dbde10574a4272f8286786cf072013
ISSN 0003-6951
IngestDate Mon Jun 30 14:42:50 EDT 2025
Tue Jul 01 01:08:31 EDT 2025
Thu Apr 24 23:07:08 EDT 2025
Fri Jun 21 00:13:54 EDT 2024
Tue Jul 04 19:18:37 EDT 2023
IsPeerReviewed true
IsScholarly true
Issue 26
Language English
License Published under an exclusive license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c327t-2623081dfbc5121f21c443e28c466146fa4dbde10574a4272f8286786cf072013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0001-9333-3394
0000-0002-8386-1062
0000-0001-5483-8800
0000-0002-2377-3909
0000-0002-5553-0186
0000-0002-8251-2987
0000-0003-1901-7243
0009-0008-5570-5637
0000-0002-7565-9016
0000-0002-4606-4611
0000-0003-4792-4430
PQID 2829542340
PQPubID 2050678
PageCount 7
ParticipantIDs scitation_primary_10_1063_5_0151870
crossref_citationtrail_10_1063_5_0151870
proquest_journals_2829542340
crossref_primary_10_1063_5_0151870
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230626
2023-06-26
PublicationDateYYYYMMDD 2023-06-26
PublicationDate_xml – month: 06
  year: 2023
  text: 20230626
  day: 26
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2023
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Li, Liu, Zhang, Wang, Fang (c14) 2017
Wei, Ji, Zhang, Yan, Luo, Wang, Chen, Yang, Chen, Ma (c6) 2018
Smith, Rhodes, Beliatis, Jayawardena, Rozanski, Mills, Silva (c21) 2014
Zhang, Yang, Chen, Chen, Zeng, Shen, Li, Li (c23) 2022
Liu, Zheng, Wang, Wang, Xu, Zhang, Hou (c25) 2022
Liu, Li, Zhang, Ma, Fan, Mai (c24) 2018
Comyn (c27) 1992
Zhang, Xu, Lin, Zhao, Li, Xin, Bi, Qiu, Guo, Zhou, Zhan, Ma (c3) 2018
Zhang, Lin, Hu, Xu, Ma (c16) 2018
Liu, Li, Zhang, Guo, Zhang, Ruan (c15) 2017
Unsworth, Hancox, Dearden, Howells, Sullivan, Lilley, Sharp, Jones (c22) 2013
Kim, Kang, Kim, Kim, Yoon, Kim (c28) 2012
Wang, Pan, Xu, Jin, Ma, Xiong, Bao, Tang, Ma (c10) 2022
Zheng, Zhang, Wang, Zhang, Zhang, Zhang, Wei, Tang, Hou, Zhou (c12) 2019
Song, Yu, Zhou, Xie, Hong, Ge, Zhang, Zhang, Peng, Ge (c20) 2021
Zhan, Li, Xia, Li, Lu, Zuo, Shi, Chen (c26) 2021
Sun, Seo, Takacs, Seifter, Heeger (c5) 2011
Song, Liu, Gao, Di, Yang, Li, Zhou, Zhang (c9) 2021
Gaceur, Ben Dkhil, Duche, Bencheikh, Simon, Escoubas, Mansour, Guerrero, Garcia-Belmonte, Liu, Fahlman, Dachraoui, Diallo, Videlot-Ackermann, Margeat, Ackermann (c8) 2016
Wei, Wang, Wen, Hao, Qin (c2) 2018
Wang, Liu, Chen, Liu (c17) 2021
Gao, Qi, Peng, Lin, Jiang, Zhong, Kaminsky, Guan, Lee, Marks, Ade, Jen (c1) 2022
Trost, Zilberberg, Behrendt, Polywka, Görrn, Reckers, Maibach, Mayer, Riedl (c7) 2013
Cui, Li, Du, Li, Rong, Li, Shui, Zhou, Wang, Brabec, Nian (c13) 2020
Zhang, Yang, Ning, Yang, Deng, Xing, Bi, Zhou, Zhang, Hu, Yang, Yang, Zou, Ma, Yuan (c4) 2022
Li, Fu, Xia, Sun (c11) 2019
Xu, Xiao, Zhang, Wei, Jiao, Yip, Cao (c30) 2020
Xu, Li, Peng (c29) 2020
Chen, Song, Yu, Ge, Zhang, Xie, Peng, Ge (c18) 2021
Han, Hu, Zha, Chen, Yin, Guo, Li, Luo, Su, Ma (c19) 2022
(2023062610444652100_c26) 2021; 33
(2023062610444652100_c29) 2020; 1
(2023062610444652100_c2) 2018; 113
(2023062610444652100_c24) 2018; 140
(2023062610444652100_c13) 2020; 32
(2023062610444652100_c6) 2018; 12
(2023062610444652100_c21) 2014; 105
(2023062610444652100_c4) 2022; 6
(2023062610444652100_c12) 2019; 7
(2023062610444652100_c15) 2017; 4
(2023062610444652100_c22) 2013; 103
(2023062610444652100_c14) 2017; 29
(2023062610444652100_c27) 1992; 12
(2023062610444652100_c20) 2021; 31
(2023062610444652100_c3) 2018; 30
(2023062610444652100_c10) 2022; 14
(2023062610444652100_c17) 2021; 9
(2023062610444652100_c23) 2022; 32
(2023062610444652100_c19) 2022; 34
(2023062610444652100_c11) 2019; 9
(2023062610444652100_c1) 2022; 34
(2023062610444652100_c25) 2022; 34
(2023062610444652100_c7) 2013; 3
(2023062610444652100_c9) 2021; 17
(2023062610444652100_c28) 2012; 24
(2023062610444652100_c18) 2021; 5
(2023062610444652100_c30) 2020; 65
(2023062610444652100_c8) 2016; 26
(2023062610444652100_c16) 2018; 30
(2023062610444652100_c5) 2011; 23
References_xml – start-page: 1805041
  year: 2018
  ident: c3
  publication-title: Adv. Mater.
– start-page: 2102694
  year: 2021
  ident: c20
  publication-title: Adv. Funct. Mater.
– start-page: 2373
  year: 2012
  ident: c28
  publication-title: Chem. Mater.
– start-page: 3570
  year: 2019
  ident: c12
  publication-title: J. Mater. Chem. A
– start-page: 2202011
  year: 2022
  ident: c23
  publication-title: Adv. Funct. Mater.
– start-page: 3825
  year: 2018
  ident: c24
  publication-title: J. Am. Chem. Soc.
– start-page: 1900999
  year: 2019
  ident: c11
  publication-title: Adv. Energy Mater.
– start-page: 11851
  year: 2021
  ident: c17
  publication-title: J. Mater. Chem. C
– start-page: 5518
  year: 2018
  ident: c6
  publication-title: ACS Nano
– start-page: 145
  year: 1992
  ident: c27
  publication-title: Int. J. Adhes. Adhes.
– start-page: 208
  year: 2020
  ident: c30
  publication-title: Sci. Bull.
– start-page: 2395
  year: 2021
  ident: c18
  publication-title: Joule
– start-page: 12450
  year: 2022
  ident: c10
  publication-title: ACS Appl. Mater. Interfaces
– start-page: 2100838
  year: 2022
  ident: c4
  publication-title: Sol. RRL
– start-page: 243
  year: 2016
  ident: c8
  publication-title: Adv. Funct. Mater.
– start-page: 1800343
  year: 2018
  ident: c16
  publication-title: Adv. Mater.
– start-page: 173304
  year: 2013
  ident: c22
  publication-title: Appl. Phys. Lett.
– start-page: 2202089
  year: 2022
  ident: c1
  publication-title: Adv. Mater.
– start-page: 2106453
  year: 2022
  ident: c25
  publication-title: Adv. Mater.
– start-page: 1679
  year: 2011
  ident: c5
  publication-title: Adv. Mater.
– start-page: 4176
  year: 2017
  ident: c14
  publication-title: Chem. Mater.
– start-page: 093301
  year: 2018
  ident: c2
  publication-title: Appl. Phys. Lett.
– start-page: 2006387
  year: 2021
  ident: c9
  publication-title: Small
– start-page: 2007231
  year: 2021
  ident: c26
  publication-title: Adv. Mater.
– start-page: 2002973
  year: 2020
  ident: c13
  publication-title: Adv. Mater.
– start-page: 2952
  year: 2017
  ident: c15
  publication-title: ACS Photonics
– start-page: 073304
  year: 2014
  ident: c21
  publication-title: Appl. Phys. Lett.
– start-page: 2110276
  year: 2022
  ident: c19
  publication-title: Adv. Mater.
– start-page: 1437
  year: 2013
  ident: c7
  publication-title: Adv. Energy Mater.
– start-page: 30
  year: 2020
  ident: c29
  publication-title: Nano Sel.
– volume: 24
  start-page: 2373
  year: 2012
  ident: 2023062610444652100_c28
  publication-title: Chem. Mater.
  doi: 10.1021/cm3010369
– volume: 34
  start-page: 2106453
  year: 2022
  ident: 2023062610444652100_c25
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202106453
– volume: 12
  start-page: 145
  year: 1992
  ident: 2023062610444652100_c27
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/0143-7496(92)90045-W
– volume: 34
  start-page: 2110276
  year: 2022
  ident: 2023062610444652100_c19
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202110276
– volume: 29
  start-page: 4176
  year: 2017
  ident: 2023062610444652100_c14
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b01615
– volume: 30
  start-page: 1800343
  year: 2018
  ident: 2023062610444652100_c16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800343
– volume: 5
  start-page: 2395
  year: 2021
  ident: 2023062610444652100_c18
  publication-title: Joule
  doi: 10.1016/j.joule.2021.06.017
– volume: 17
  start-page: 2006387
  year: 2021
  ident: 2023062610444652100_c9
  publication-title: Small
  doi: 10.1002/smll.202006387
– volume: 3
  start-page: 1437
  year: 2013
  ident: 2023062610444652100_c7
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201300402
– volume: 65
  start-page: 208
  year: 2020
  ident: 2023062610444652100_c30
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.10.019
– volume: 105
  start-page: 073304
  year: 2014
  ident: 2023062610444652100_c21
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4893787
– volume: 7
  start-page: 3570
  year: 2019
  ident: 2023062610444652100_c12
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA11624E
– volume: 30
  start-page: 1805041
  year: 2018
  ident: 2023062610444652100_c3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201805041
– volume: 31
  start-page: 2102694
  year: 2021
  ident: 2023062610444652100_c20
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202102694
– volume: 140
  start-page: 3825
  year: 2018
  ident: 2023062610444652100_c24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13229
– volume: 23
  start-page: 1679
  year: 2011
  ident: 2023062610444652100_c5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201004301
– volume: 26
  start-page: 243
  year: 2016
  ident: 2023062610444652100_c8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502929
– volume: 103
  start-page: 173304
  year: 2013
  ident: 2023062610444652100_c22
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4826651
– volume: 9
  start-page: 1900999
  year: 2019
  ident: 2023062610444652100_c11
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201900999
– volume: 33
  start-page: 2007231
  year: 2021
  ident: 2023062610444652100_c26
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007231
– volume: 1
  start-page: 30
  year: 2020
  ident: 2023062610444652100_c29
  publication-title: Nano Sel.
  doi: 10.1002/nano.202000012
– volume: 32
  start-page: 2202011
  year: 2022
  ident: 2023062610444652100_c23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202202011
– volume: 14
  start-page: 12450
  year: 2022
  ident: 2023062610444652100_c10
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.1c22093
– volume: 9
  start-page: 11851
  year: 2021
  ident: 2023062610444652100_c17
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D1TC01648B
– volume: 4
  start-page: 2952
  year: 2017
  ident: 2023062610444652100_c15
  publication-title: ACS Photonics
  doi: 10.1021/acsphotonics.7b01096
– volume: 12
  start-page: 5518
  year: 2018
  ident: 2023062610444652100_c6
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b01178
– volume: 34
  start-page: 2202089
  year: 2022
  ident: 2023062610444652100_c1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202202089
– volume: 6
  start-page: 2100838
  year: 2022
  ident: 2023062610444652100_c4
  publication-title: Sol. RRL
  doi: 10.1002/solr.202100838
– volume: 32
  start-page: 2002973
  year: 2020
  ident: 2023062610444652100_c13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202002973
– volume: 113
  start-page: 093301
  year: 2018
  ident: 2023062610444652100_c2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5028163
SSID ssj0005233
Score 2.4715526
Snippet Organic solar cells (OSC) have great potential for flexible and wearable electronics due to their significant energy supply. However, the brittleness of...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Cathodes
Efficiency
Electron transport
Electronics
Energy conversion efficiency
Grain boundaries
Inorganic materials
Interlayers
Modules
Photovoltaic cells
Solar cells
Substrates
Vertical distribution
Wearable technology
Zinc oxide
Title Organic–inorganic hybrid cathode interlayer for efficient flexible inverted organic solar modules
URI http://dx.doi.org/10.1063/5.0151870
https://www.proquest.com/docview/2829542340
Volume 122
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9RAFB60RdQH0apYrTKoD8ISzc4tu49FrUVaEWyxPoXMZEYXlmzZi6BP_gf_ob_EczKXpHaR6ktYZmdnQ86XyXdOzvkOIU8BNEzqCnwTIAcZegiZhid1JmppzShX1dhgcfLhO7V_LN6eyN6L9ra6ZKmfm-9r60r-x6owBnbFKtl_sGxaFAbgM9gXjmBhOF7Ixr6Q0sSEBT5pfJMmM_jyDSuxBijKOqttKwoxn1ZAr73Ed6sb0coyoR4mFk9NGmzMDOwzrrBAnxcb5aymIc0watUG3upjIovBtC0IStQ8RaAPJgl3n8LQXhWek8icrR_72NWivVm1cduTlcXYy-d-QIJhc4jMV72nTZZnahx0ZK3fV_MCw6Fhq40bL2M9hPklzu3oQKHADKitKocj32PkrGr2H0-zlGPYvl1XvJRl-OllssnAl4DNcHP31eHBh14mEOexsSKedxSgUvxF-t-ztKXzRa4CUfE5Ez1acnST3Aj-BN314LhFLtlmi1zvqUxukSvvvaVuExMA8-vHzwQV6qFCA1RoBxUKUKEJKjRChUao0LhCCxUaoHKHHO-9Pnq5n4UuG5nhrFiC6cALBa_FaQPkb-jY0AjBLRsZgdxNuUrUurbYD1pUghXMofJAMVLG5QXQR36XbDSzxt4jlGmlrEQRNe2E0_UY3N-xNDIXrs5ZlW-TZ_EilvGyYSeUaXnOWNvkcZp66nVX1k3aiZYow225KDE1QIKTIODrJ8k6f1tkzayvs3k3ozyt3f2LnM8Dcq27IXbIxnK-sg-Bsy71o4C534EgldA
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Organic%E2%80%93inorganic+hybrid+cathode+interlayer+for+efficient+flexible+inverted+organic+solar+modules&rft.jtitle=Applied+physics+letters&rft.au=Zhang%2C+Lin&rft.au=Yang%2C+Fang&rft.au=Deng%2C+Wen&rft.au=Guo%2C+Xueliang&rft.date=2023-06-26&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=122&rft.issue=26&rft_id=info:doi/10.1063%2F5.0151870&rft.externalDBID=n%2Fa&rft.externalDocID=10_1063_5_0151870
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon