P-(skew)symmetric common solutions to a pair of quaternion matrix equations

An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In this paper, we first establish necessary and sufficient conditions for the existence and the expression of the general solution to the system of...

Full description

Saved in:
Bibliographic Details
Published inApplied mathematics and computation Vol. 195; no. 2; pp. 721 - 732
Main Authors Wang, Qing-Wen, Chang, Hai-Xia, Lin, Chun-Yan
Format Journal Article
LanguageEnglish
Published New York, NY Elsevier Inc 01.02.2008
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In this paper, we first establish necessary and sufficient conditions for the existence and the expression of the general solution to the system of quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C b , then use the results on the system mentioned above to give necessary and sufficient conditions for the existence and the representations of P-symmetric and P-skewsymmetric solutions to the system of quaternion matrix equations A a X = C a and A b XB b = C b . Furthermore, we establish representations of P-symmetric and P-skewsymmetric quaternion matrices. A numerical example is presented to illustrate the results of this paper.
AbstractList An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In this paper, we first establish necessary and sufficient conditions for the existence and the expression of the general solution to the system of quaternion matrix equations A 1 X 1 = C 1 , A 2 X 2 = C 2 , A 3 X 1 B 1 + A 4 X 2 B 2 = C b , then use the results on the system mentioned above to give necessary and sufficient conditions for the existence and the representations of P-symmetric and P-skewsymmetric solutions to the system of quaternion matrix equations A a X = C a and A b XB b = C b . Furthermore, we establish representations of P-symmetric and P-skewsymmetric quaternion matrices. A numerical example is presented to illustrate the results of this paper.
Author Wang, Qing-Wen
Lin, Chun-Yan
Chang, Hai-Xia
Author_xml – sequence: 1
  givenname: Qing-Wen
  surname: Wang
  fullname: Wang, Qing-Wen
  email: wqw858@yahoo.com.cn
  organization: Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
– sequence: 2
  givenname: Hai-Xia
  surname: Chang
  fullname: Chang, Hai-Xia
  organization: Department of Mathematics, Shanghai University, 99 Shangda Road, Shanghai 200444, PR China
– sequence: 3
  givenname: Chun-Yan
  surname: Lin
  fullname: Lin, Chun-Yan
  email: l.chy@163.com
  organization: School of Statistics and Sciences, Shandong Finance University, 40 Shungeng Road, Jinan 250014, PR China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20005779$$DView record in Pascal Francis
BookMark eNp9kE1LAzEURYNUsK3-AHfZCLqYMR-TpMGVFL-woAtdh5BJILUzqUmq9t-bseLCRVcP7jvnwbsTMOpDbwE4xajGCPPLZa07UxOERI1YjQg-AGM8E7RivJEjMEZI8ooiRI_AJKUlKiDHzRg8Plfn6c1-XqRt19kcvYEmdF3oYQqrTfahTzAHqOFa-wiDg-8bnW3sywJ2uvBf0A7RAB6DQ6dXyZ78zil4vb15md9Xi6e7h_n1ojKUiFwRhpkljrdSECIRNkK4RtCG4tY5ZjjVjcDSyFlLsLG8KZG0DmspnOWUcToFZ7u7a52MXrmoe-OTWkff6bhVpQTEhJCFwzvOxJBStO4PwUgNramlKq0NglCIqdJaccQ_x_j8816O2q_2mlc705bXP7yNKhlve2NbH63Jqg1-j_0N8ymIqQ
CODEN AMHCBQ
CitedBy_id crossref_primary_10_1007_s11464_020_0865_6
crossref_primary_10_1142_S100538671400039X
crossref_primary_10_3934_math_2021766
crossref_primary_10_1016_j_amc_2007_08_091
crossref_primary_10_1080_03081087_2010_509928
crossref_primary_10_1080_03081087_2017_1284740
crossref_primary_10_1155_2013_869705
crossref_primary_10_1007_s10255_011_0083_9
crossref_primary_10_1155_2013_217540
crossref_primary_10_1142_S1005386717000025
crossref_primary_10_1155_2019_9072690
crossref_primary_10_1142_S1005386717000104
crossref_primary_10_1142_S100538671700013X
crossref_primary_10_1016_j_amc_2008_08_016
crossref_primary_10_1016_j_amc_2010_04_053
crossref_primary_10_1016_j_amc_2011_04_011
crossref_primary_10_1155_2013_831656
crossref_primary_10_1007_s11075_008_9220_9
crossref_primary_10_1007_s11075_012_9674_7
crossref_primary_10_1016_j_laa_2009_02_010
crossref_primary_10_1080_03081087_2017_1395388
crossref_primary_10_1142_S1005386712000132
crossref_primary_10_1080_00207160_2012_689291
crossref_primary_10_1155_2014_239465
crossref_primary_10_1142_S1005386709000297
crossref_primary_10_1007_s00006_021_01122_x
crossref_primary_10_1155_2013_514984
crossref_primary_10_1155_2024_9713495
crossref_primary_10_1016_j_laa_2008_05_031
crossref_primary_10_1155_2014_857081
Cites_doi 10.2307/2323222
10.1016/j.laa.2004.01.018
10.1016/0024-3795(80)90241-4
10.1016/j.laa.2003.07.013
10.1016/j.camwa.2005.11.032
10.1016/j.camwa.2004.12.002
10.1137/0612044
10.1016/S0024-3795(98)10144-1
10.1016/j.camwa.2005.01.014
10.1137/0611011
10.1016/j.laa.2003.10.007
10.1007/s10114-004-0493-1
10.1016/0024-3795(76)90101-4
10.1137/S0895479895288759
10.1016/j.laa.2003.12.039
10.1137/0611009
10.1016/S0024-3795(02)00303-8
10.1007/BF01598746
10.1155/S0161171202007792
10.1080/03081089508818358
10.1007/s10114-005-0566-9
10.1016/j.amc.2006.06.012
10.1016/j.amc.2005.10.035
10.1016/j.amc.2007.05.018
10.1016/S0024-3795(03)00607-4
10.1016/0024-3795(80)90189-5
10.1137/S0036144595294801
10.1080/0308108031000114631
10.1137/S0036144597328341
10.1016/j.cam.2006.01.024
10.1016/S0024-3795(00)00232-9
ContentType Journal Article
Copyright 2007 Elsevier Inc.
2008 INIST-CNRS
Copyright_xml – notice: 2007 Elsevier Inc.
– notice: 2008 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1016/j.amc.2007.05.021
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-5649
EndPage 732
ExternalDocumentID 20005779
10_1016_j_amc_2007_05_021
S0096300307006108
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADGUI
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AI.
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLZ
HMJ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
RXW
SBC
SDF
SDG
SES
SEW
SME
SPC
SPCBC
SSW
SSZ
T5K
TAE
TN5
VH1
VOH
WH7
WUQ
X6Y
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
ID FETCH-LOGICAL-c327t-2515e2f6d9722901c77f473431dff5c63a4719c98d21ce645c69ef1a97fe63563
IEDL.DBID AIKHN
ISSN 0096-3003
IngestDate Mon Jul 21 09:16:37 EDT 2025
Tue Jul 01 04:07:05 EDT 2025
Thu Apr 24 23:10:43 EDT 2025
Fri Feb 23 02:19:03 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords P-symmetric matrix
Quaternion matrix
Moore–Penrose inverse
P-skewsymmetric matrix
System of matrix equations
Numerical analysis
Necessary and sufficient condition
Moore Penrose inverse
Applied mathematics
Symmetric matrix
Matrix equation
Moore-Penrose inverse
Equation system
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c327t-2515e2f6d9722901c77f473431dff5c63a4719c98d21ce645c69ef1a97fe63563
PageCount 12
ParticipantIDs pascalfrancis_primary_20005779
crossref_primary_10_1016_j_amc_2007_05_021
crossref_citationtrail_10_1016_j_amc_2007_05_021
elsevier_sciencedirect_doi_10_1016_j_amc_2007_05_021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-01
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
PublicationTitle Applied mathematics and computation
PublicationYear 2008
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Aitken (bib2) 1939
Peng, Hu, Zhang (bib24) 2007; 200
Melman (bib12) 2000; 320
Wang (bib27) 2005; 49
Blyumin, Milovidov (bib34) 1994; 34
Hungerford (bib1) 1980
Baksalary, Kala (bib30) 1980; 30
Andrew (bib10) 1998; 40
Cvetković-iliić (bib25) 2006; 51
Blyumin, S Golan (bib35) 2002; 29
Chen (bib19) 1998; 19
Datta, Morgera (bib3) 1989; 8
Lee (bib6) 1980; 29
Pressman (bib11) 1998; 284
Trench (bib21) 2004; 380
Hell, Bates, Waters (bib8) 1990; 11
Huang (bib33) 1997; 26
Wang, Song, Lin (bib38) 2007
Cantoni, Butler (bib4) 1976; 13
Wang (bib28) 2005; 49
Li, Hu, Zhang (bib26) 2006; 177
Trench (bib22) 2004; 387
Wang, Wu, Lin (bib37) 2006; 182
Wang (bib15) 2005; 21
Wang, Li (bib17) 2004; 47
Chen, Sameh (bib18) 1987; vol. 86
Weaver (bib5) 1985; 92
Tian (bib36) 2003; 51
.
Huang, Zeng (bib32) 1995; 38
Wang, Qin, Lin (bib16) 2005; 36
Wang, Sun, Li (bib13) 2002; 353
Peng, Hu (bib23) 2003; 375
Reid (bib9) 1997; 39
Trench (bib20) 2004; 377
Wang (bib29) 2004; 384
Özgüler (bib31) 1991; 12
Hell, Bates, Waters (bib7) 1990; 11
Wang, Tian, Li (bib14) 2004; 27
Q.W. Wang, S.W. Yu, C.Y. Lin, Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput. (2007)
Hungerford (10.1016/j.amc.2007.05.021_bib1) 1980
Aitken (10.1016/j.amc.2007.05.021_bib2) 1939
Wang (10.1016/j.amc.2007.05.021_bib17) 2004; 47
Baksalary (10.1016/j.amc.2007.05.021_bib30) 1980; 30
Hell (10.1016/j.amc.2007.05.021_bib7) 1990; 11
Pressman (10.1016/j.amc.2007.05.021_bib11) 1998; 284
Wang (10.1016/j.amc.2007.05.021_bib28) 2005; 49
Blyumin (10.1016/j.amc.2007.05.021_bib34) 1994; 34
Wang (10.1016/j.amc.2007.05.021_bib13) 2002; 353
Huang (10.1016/j.amc.2007.05.021_bib33) 1997; 26
Lee (10.1016/j.amc.2007.05.021_bib6) 1980; 29
Wang (10.1016/j.amc.2007.05.021_bib16) 2005; 36
Peng (10.1016/j.amc.2007.05.021_bib24) 2007; 200
Özgüler (10.1016/j.amc.2007.05.021_bib31) 1991; 12
Peng (10.1016/j.amc.2007.05.021_bib23) 2003; 375
Weaver (10.1016/j.amc.2007.05.021_bib5) 1985; 92
Wang (10.1016/j.amc.2007.05.021_bib38) 2007
Cvetković-iliić (10.1016/j.amc.2007.05.021_bib25) 2006; 51
Blyumin (10.1016/j.amc.2007.05.021_bib35) 2002; 29
Chen (10.1016/j.amc.2007.05.021_bib18) 1987; vol. 86
Wang (10.1016/j.amc.2007.05.021_bib15) 2005; 21
Hell (10.1016/j.amc.2007.05.021_bib8) 1990; 11
Trench (10.1016/j.amc.2007.05.021_bib22) 2004; 387
Wang (10.1016/j.amc.2007.05.021_bib27) 2005; 49
Reid (10.1016/j.amc.2007.05.021_bib9) 1997; 39
Trench (10.1016/j.amc.2007.05.021_bib20) 2004; 377
Huang (10.1016/j.amc.2007.05.021_bib32) 1995; 38
Datta (10.1016/j.amc.2007.05.021_bib3) 1989; 8
Wang (10.1016/j.amc.2007.05.021_bib14) 2004; 27
Trench (10.1016/j.amc.2007.05.021_bib21) 2004; 380
Melman (10.1016/j.amc.2007.05.021_bib12) 2000; 320
Li (10.1016/j.amc.2007.05.021_bib26) 2006; 177
Wang (10.1016/j.amc.2007.05.021_bib29) 2004; 384
Tian (10.1016/j.amc.2007.05.021_bib36) 2003; 51
Wang (10.1016/j.amc.2007.05.021_bib37) 2006; 182
Andrew (10.1016/j.amc.2007.05.021_bib10) 1998; 40
Cantoni (10.1016/j.amc.2007.05.021_bib4) 1976; 13
Chen (10.1016/j.amc.2007.05.021_bib19) 1998; 19
10.1016/j.amc.2007.05.021_bib39
References_xml – volume: 30
  start-page: 141
  year: 1980
  end-page: 147
  ident: bib30
  article-title: The matrix equation
  publication-title: Linear Algebra Appl.
– year: 2007
  ident: bib38
  article-title: Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 581
  year: 1991
  end-page: 591
  ident: bib31
  article-title: The matrix equation
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 8
  start-page: 71
  year: 1989
  end-page: 96
  ident: bib3
  article-title: On the reducibility of centrosymmetric matrices – applications in engineering problems
  publication-title: Circ. Syst. Sig. Process.
– volume: 92
  start-page: 711
  year: 1985
  end-page: 717
  ident: bib5
  article-title: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors
  publication-title: Amer. Math. Monthly
– volume: 39
  start-page: 313
  year: 1997
  end-page: 316
  ident: bib9
  article-title: Some eigenvalues properties of persymmetric matrices
  publication-title: SIAM Rev.
– volume: vol. 86
  start-page: 101
  year: 1987
  end-page: 125
  ident: bib18
  article-title: Numerical linear algebra algorithms on the ceder system
  publication-title: Parallel Computations and Their Impact on Mechanics
– volume: 177
  start-page: 105
  year: 2006
  end-page: 110
  ident: bib26
  article-title: Left and right inverse eigenpairs problem of skew-centrosymmetric matrices
  publication-title: Appl. Math. Comput.
– volume: 13
  start-page: 275
  year: 1976
  end-page: 288
  ident: bib4
  article-title: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices
  publication-title: Linear Algebra Appl.
– volume: 40
  start-page: 697
  year: 1998
  end-page: 698
  ident: bib10
  article-title: Centrosymmetric matrices
  publication-title: SIAM Rev.
– volume: 377
  start-page: 207
  year: 2004
  end-page: 218
  ident: bib20
  article-title: Characterization and properties of matrices with generalized symmetry or skew symmetry
  publication-title: Linear Algebra Appl.
– volume: 34
  start-page: 133
  year: 1994
  end-page: 142
  ident: bib34
  article-title: Investigation and solution of matrix equations over associative rings
  publication-title: Comput. Math. Phys.
– volume: 353
  start-page: 169
  year: 2002
  end-page: 182
  ident: bib13
  article-title: Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra
  publication-title: Linear Algebra Appl.
– reference: Q.W. Wang, S.W. Yu, C.Y. Lin, Extreme ranks of a linear quaternion matrix expression subject to triple quaternion matrix equations with applications, Appl. Math. Comput. (2007),
– volume: 36
  start-page: 655
  year: 2005
  end-page: 672
  ident: bib16
  article-title: The common solution to matrix equations over a regular ring with applications
  publication-title: Indian J. Pure Appl. Math.
– volume: 51
  start-page: 111
  year: 2003
  end-page: 125
  ident: bib36
  article-title: Ranks of Solutions of the matrix equation
  publication-title: Linear and Multilinear Algebra
– volume: 49
  start-page: 641
  year: 2005
  end-page: 650
  ident: bib27
  article-title: Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations
  publication-title: Comput. Math. Appl.
– volume: 26
  start-page: 269
  year: 1997
  end-page: 275
  ident: bib33
  article-title: The solvability of matrix equation
  publication-title: Adv. Math. (China)
– year: 1939
  ident: bib2
  article-title: Determinants and Matrices
– volume: 19
  start-page: 140
  year: 1998
  end-page: 153
  ident: bib19
  article-title: Generalized reflexive matrices: special properties and application
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 320
  start-page: 193
  year: 2000
  end-page: 198
  ident: bib12
  article-title: Symmetric centrosymmetric matrix–vector multiplication
  publication-title: Linear Algebra Appl.
– year: 1980
  ident: bib1
  article-title: Algebra
– volume: 11
  start-page: 173
  year: 1990
  end-page: 179
  ident: bib8
  article-title: On perhermitian matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 380
  start-page: 199
  year: 2004
  end-page: 211
  ident: bib21
  article-title: Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry
  publication-title: Linear Algebra Appl.
– volume: 49
  start-page: 665
  year: 2005
  end-page: 675
  ident: bib28
  article-title: The general solution to a system of real quaternion matrix equations
  publication-title: Comput. Math. Appl.
– volume: 21
  start-page: 323
  year: 2005
  end-page: 334
  ident: bib15
  article-title: A system of four matrix equations over von Neumann regular rings and its applications
  publication-title: Acta Math. Sinica, English Series
– volume: 11
  start-page: 128
  year: 1990
  end-page: 133
  ident: bib7
  article-title: On centrohermitian matrices
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 47
  start-page: 27
  year: 2004
  end-page: 34
  ident: bib17
  article-title: The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra
  publication-title: Acta Math. Sinica
– volume: 27
  start-page: 929
  year: 2004
  end-page: 938
  ident: bib14
  article-title: Roth’s theorems for centroselfconjugate solutions to systems of matrix equations over a finite dimensional central algebra
  publication-title: Southeast Asian Bull. Math.
– volume: 387
  start-page: 83
  year: 2004
  end-page: 98
  ident: bib22
  article-title: Hermitian, hermitian R-symmetric, and hermitian R-skew symmetric Procrustes problem
  publication-title: Linear Algebra Appl.
– volume: 200
  start-page: 749
  year: 2007
  end-page: 760
  ident: bib24
  article-title: The reflexive and anti-reflexive solutions of the matrix equation
  publication-title: J. Comput. Appl. Math.
– volume: 51
  start-page: 897
  year: 2006
  end-page: 902
  ident: bib25
  article-title: The reflexive solutions of the matrix equation
  publication-title: Comput. Math. Appl.
– volume: 384
  start-page: 43
  year: 2004
  end-page: 54
  ident: bib29
  article-title: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
  publication-title: Linear Algebra Appl.
– volume: 29
  start-page: 453
  year: 2002
  end-page: 458
  ident: bib35
  article-title: One-sided complements and solutions of the equation
  publication-title: Int. J. Math. Math. Sci.
– volume: 29
  start-page: 205
  year: 1980
  end-page: 210
  ident: bib6
  article-title: Centrohermitian and skew-centrohermitian matrices
  publication-title: Linear Algebra Appl.
– volume: 284
  start-page: 239
  year: 1998
  end-page: 258
  ident: bib11
  article-title: Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices
  publication-title: Linear Algebra Appl.
– volume: 182
  start-page: 1755
  year: 2006
  end-page: 1764
  ident: bib37
  article-title: Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
– volume: 38
  start-page: 225
  year: 1995
  end-page: 232
  ident: bib32
  article-title: The solvability of matrix equation
  publication-title: Linear and Multilinear Algebra
– reference: .
– volume: 375
  start-page: 147
  year: 2003
  end-page: 155
  ident: bib23
  article-title: The reflexive and anti-reflexive solutions of matrix equation
  publication-title: Linear Algebra Appl.
– volume: 92
  start-page: 711
  year: 1985
  ident: 10.1016/j.amc.2007.05.021_bib5
  article-title: Centrosymmetric (cross-symmetric) matrices, their basic properties, eigenvalues, eigenvectors
  publication-title: Amer. Math. Monthly
  doi: 10.2307/2323222
– volume: 387
  start-page: 83
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib22
  article-title: Hermitian, hermitian R-symmetric, and hermitian R-skew symmetric Procrustes problem
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2004.01.018
– volume: 29
  start-page: 205
  year: 1980
  ident: 10.1016/j.amc.2007.05.021_bib6
  article-title: Centrohermitian and skew-centrohermitian matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(80)90241-4
– volume: 377
  start-page: 207
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib20
  article-title: Characterization and properties of matrices with generalized symmetry or skew symmetry
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2003.07.013
– volume: 51
  start-page: 897
  year: 2006
  ident: 10.1016/j.amc.2007.05.021_bib25
  article-title: The reflexive solutions of the matrix equation AXB=C
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.11.032
– volume: 49
  start-page: 665
  issue: 5–6
  year: 2005
  ident: 10.1016/j.amc.2007.05.021_bib28
  article-title: The general solution to a system of real quaternion matrix equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2004.12.002
– year: 2007
  ident: 10.1016/j.amc.2007.05.021_bib38
  article-title: Extreme ranks of the solution to a consistent system of linear quaternion matrix equations with an application
  publication-title: Appl. Math. Comput.
– volume: 12
  start-page: 581
  year: 1991
  ident: 10.1016/j.amc.2007.05.021_bib31
  article-title: The matrix equation AXB+CYD=E over a principal ideal domain
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0612044
– volume: 284
  start-page: 239
  year: 1998
  ident: 10.1016/j.amc.2007.05.021_bib11
  article-title: Matrices with multiple symmetry properties: applications of centrohermitian and perhermitian matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(98)10144-1
– volume: 49
  start-page: 641
  issue: 5–6
  year: 2005
  ident: 10.1016/j.amc.2007.05.021_bib27
  article-title: Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2005.01.014
– volume: 34
  start-page: 133
  issue: 2
  year: 1994
  ident: 10.1016/j.amc.2007.05.021_bib34
  article-title: Investigation and solution of matrix equations over associative rings
  publication-title: Comput. Math. Phys.
– volume: 11
  start-page: 173
  issue: 2
  year: 1990
  ident: 10.1016/j.amc.2007.05.021_bib8
  article-title: On perhermitian matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0611011
– volume: 380
  start-page: 199
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib21
  article-title: Inverse eigenproblems and associated approximation problems for matrices with generalized symmetry or skew symmetry
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2003.10.007
– volume: 27
  start-page: 929
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib14
  article-title: Roth’s theorems for centroselfconjugate solutions to systems of matrix equations over a finite dimensional central algebra
  publication-title: Southeast Asian Bull. Math.
– volume: vol. 86
  start-page: 101
  year: 1987
  ident: 10.1016/j.amc.2007.05.021_bib18
  article-title: Numerical linear algebra algorithms on the ceder system
– volume: 21
  start-page: 323
  issue: 2
  year: 2005
  ident: 10.1016/j.amc.2007.05.021_bib15
  article-title: A system of four matrix equations over von Neumann regular rings and its applications
  publication-title: Acta Math. Sinica, English Series
  doi: 10.1007/s10114-004-0493-1
– volume: 36
  start-page: 655
  issue: 12
  year: 2005
  ident: 10.1016/j.amc.2007.05.021_bib16
  article-title: The common solution to matrix equations over a regular ring with applications
  publication-title: Indian J. Pure Appl. Math.
– volume: 13
  start-page: 275
  year: 1976
  ident: 10.1016/j.amc.2007.05.021_bib4
  article-title: Eigenvalues and eigenvectors of symmetric centrosymmetric matrices
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(76)90101-4
– volume: 19
  start-page: 140
  year: 1998
  ident: 10.1016/j.amc.2007.05.021_bib19
  article-title: Generalized reflexive matrices: special properties and application
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/S0895479895288759
– volume: 384
  start-page: 43
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib29
  article-title: A system of matrix equations and a linear matrix equation over arbitrary regular rings with identity
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2003.12.039
– volume: 11
  start-page: 128
  issue: 1
  year: 1990
  ident: 10.1016/j.amc.2007.05.021_bib7
  article-title: On centrohermitian matrices
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0611009
– volume: 353
  start-page: 169
  year: 2002
  ident: 10.1016/j.amc.2007.05.021_bib13
  article-title: Consistency for bi(skew)symmetric solutions to systems of generalized Sylvester equations over a finite central algebra
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(02)00303-8
– year: 1939
  ident: 10.1016/j.amc.2007.05.021_bib2
– volume: 8
  start-page: 71
  issue: 1
  year: 1989
  ident: 10.1016/j.amc.2007.05.021_bib3
  article-title: On the reducibility of centrosymmetric matrices – applications in engineering problems
  publication-title: Circ. Syst. Sig. Process.
  doi: 10.1007/BF01598746
– volume: 29
  start-page: 453
  issue: 8
  year: 2002
  ident: 10.1016/j.amc.2007.05.021_bib35
  article-title: One-sided complements and solutions of the equation aXb=c in semirings
  publication-title: Int. J. Math. Math. Sci.
  doi: 10.1155/S0161171202007792
– volume: 38
  start-page: 225
  year: 1995
  ident: 10.1016/j.amc.2007.05.021_bib32
  article-title: The solvability of matrix equation AXB+CYD=E over a simple Artinian ring
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/03081089508818358
– volume: 47
  start-page: 27
  issue: 1
  year: 2004
  ident: 10.1016/j.amc.2007.05.021_bib17
  article-title: The persymmetric and perskewsymmetric solutions to sets of matrix equations over a finite central algebra
  publication-title: Acta Math. Sinica
  doi: 10.1007/s10114-005-0566-9
– volume: 182
  start-page: 1755
  year: 2006
  ident: 10.1016/j.amc.2007.05.021_bib37
  article-title: Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2006.06.012
– volume: 177
  start-page: 105
  year: 2006
  ident: 10.1016/j.amc.2007.05.021_bib26
  article-title: Left and right inverse eigenpairs problem of skew-centrosymmetric matrices
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2005.10.035
– ident: 10.1016/j.amc.2007.05.021_bib39
  doi: 10.1016/j.amc.2007.05.018
– volume: 375
  start-page: 147
  year: 2003
  ident: 10.1016/j.amc.2007.05.021_bib23
  article-title: The reflexive and anti-reflexive solutions of matrix equation AX=B
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(03)00607-4
– volume: 30
  start-page: 141
  year: 1980
  ident: 10.1016/j.amc.2007.05.021_bib30
  article-title: The matrix equation AXB+CYD=E
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(80)90189-5
– year: 1980
  ident: 10.1016/j.amc.2007.05.021_bib1
– volume: 26
  start-page: 269
  issue: 3
  year: 1997
  ident: 10.1016/j.amc.2007.05.021_bib33
  article-title: The solvability of matrix equation AXB+CYD=E over a ring
  publication-title: Adv. Math. (China)
– volume: 39
  start-page: 313
  year: 1997
  ident: 10.1016/j.amc.2007.05.021_bib9
  article-title: Some eigenvalues properties of persymmetric matrices
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144595294801
– volume: 51
  start-page: 111
  issue: 2
  year: 2003
  ident: 10.1016/j.amc.2007.05.021_bib36
  article-title: Ranks of Solutions of the matrix equation AXB=C
  publication-title: Linear and Multilinear Algebra
  doi: 10.1080/0308108031000114631
– volume: 40
  start-page: 697
  year: 1998
  ident: 10.1016/j.amc.2007.05.021_bib10
  article-title: Centrosymmetric matrices
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144597328341
– volume: 200
  start-page: 749
  issue: 2
  year: 2007
  ident: 10.1016/j.amc.2007.05.021_bib24
  article-title: The reflexive and anti-reflexive solutions of the matrix equation AHXB=C
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.01.024
– volume: 320
  start-page: 193
  year: 2000
  ident: 10.1016/j.amc.2007.05.021_bib12
  article-title: Symmetric centrosymmetric matrix–vector multiplication
  publication-title: Linear Algebra Appl.
  doi: 10.1016/S0024-3795(00)00232-9
SSID ssj0007614
Score 2.09501
Snippet An n × n quaternion matrix A is termed P-symmetric (or P-skewsymmetric) if A = PAP (or A = − PAP), where P is an n × n nontrivial quaternion involution. In...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 721
SubjectTerms Algebra
Exact sciences and technology
Finite differences and functional equations
Functional analysis
Linear and multilinear algebra, matrix theory
Mathematical analysis
Mathematics
Moore–Penrose inverse
Numerical analysis
Numerical analysis. Scientific computation
P-skewsymmetric matrix
P-symmetric matrix
Quaternion matrix
Sciences and techniques of general use
System of matrix equations
Title P-(skew)symmetric common solutions to a pair of quaternion matrix equations
URI https://dx.doi.org/10.1016/j.amc.2007.05.021
Volume 195
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELVKewEhxCrKUvnAAZBSEmdxfawqqkJFxYFKvUWOa0sF0i2tgAvfzkyziB7ogasTZ3kZzbwkz28IufICxtGDxGpoN7A8roeW0HZkBb4Csgw1gpmVQLYXdPre48AflEgrXwuDssos96c5fZWts5G7DM276WiEa3wF-kVh0EJRwgW_FeaKAEK70nzodnpFQoY39dSMWaDMy3bzn5srmZeMcyNDv24z56_ytDuVCYBm0m4Xv0pQe5_sZdyRNtPLOyAlPT4kO0-F8WpyRLrP1nXypj9ukq84xmZZisKdQajRIsboYkIlncrRnE4MnS0lfhKEDTRGt_5Pqmep-3dyTPrt-5dWx8r6JVjKZXxhAVXxNTPBUHB0cXcU58bjLlCEoTGAvSuhEgklGkPmKB14MCS0caTgRqNNnXtCyuPJWJ8SqgM0mkd3IiWBUEmpgGpoL-IRE0qzqErsHKZQZWbi2NPiPcxVY68hIItNLnlo-yEgWyW3xZRp6qSxaWcvxz5cC4cQMv2mabW151ScCBck-ZyLs_8d95xspzoRlLFckPJivtSXQEYWUY1s1b-dWhZyPwHz2_I
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8JAEN4QPagxxmfEB-7Bg5oU-l72aIgE5REPkHBrttvdBBUoFKJe_O3O0BblIAev224f09mZr-033xBy7fo2Qw0So6oc33CZigyuzNDwPQlgGXKErRcE2Y7f6LlPfa9fILW8FgZplVnsT2P6IlpnI5XMmpV4MMAaX456Uei0kJSw4HfTheWLq7P89cPzgPf0VIqZI8nLdPJfmwuSlxjmMoZe2bStv5LTbiwSMJlOe138SkD1fbKXIUd6n17cASmo0SHZaS9lV5Mj0nw2bpJX9X6bfA6H2CpLUrgvcDS69DA6G1NBYzGY0rGmk7nAD4KwgQ5Rq_-Dqkmq_Z0ck179oVtrGFm3BEM6NpsZAFQ8ZWs_4gw13C3JmHaZAwAh0hos7wjIQ1zyamRbUvkuDHGlLcGZVihS55yQjdF4pE4JVT7KzKM2kRQAp4SQADSUG7LQ5lLZYZGYuZkCmUmJY0eLtyDnjL0EYFlscckC0wvAskVyt5wSpzoa63Z2c9sHK84QQJxfN6208pyWJ8JyJI8xfva_416RrUa33Qpaj53mOdlOGSNIaLkgG7PpXF0CLJmFpYXbfQPHN9y2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=P-%28skew%29symmetric+common+solutions+to+a+pair+of+quaternion+matrix+equations&rft.jtitle=Applied+mathematics+and+computation&rft.au=Wang%2C+Qing-Wen&rft.au=Chang%2C+Hai-Xia&rft.au=Lin%2C+Chun-Yan&rft.date=2008-02-01&rft.pub=Elsevier+Inc&rft.issn=0096-3003&rft.eissn=1873-5649&rft.volume=195&rft.issue=2&rft.spage=721&rft.epage=732&rft_id=info:doi/10.1016%2Fj.amc.2007.05.021&rft.externalDocID=S0096300307006108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0096-3003&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0096-3003&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0096-3003&client=summon