Spatio-Temporal Classification of Lung Ventilation Patterns Using 3D EIT Images: A General Approach for Individualized Lung Function Evaluation

The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivit...

Full description

Saved in:
Bibliographic Details
Published inIEEE journal of biomedical and health informatics Vol. 28; no. 1; pp. 367 - 378
Main Authors Chen, Shuzhe, Li, Li, Lin, Zhichao, Zhang, Ke, Gong, Ying, Wang, Lu, Wu, Xu, Li, Maokun, Song, Yuanlin, Yang, Fan, Xu, Shenheng
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.01.2024
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The Pulmonary Function Test (PFT) is a widely utilized and rigorous classification test for evaluating lung function, serving as a comprehensive diagnostic tool for lung conditions. Meanwhile, Electrical Impedance Tomography (EIT) is a rapidly advancing clinical technique that visualizes conductivity distribution induced by ventilation. EIT provides additional spatial and temporal information on lung ventilation beyond traditional PFT. However, relying solely on conventional isolated interpretations of PFT results and EIT images overlooks the continuous dynamic aspects of lung ventilation. This study aims to classify lung ventilation patterns by extracting spatial and temporal features from the 3D EIT image series. The study uses a Variational Autoencoder (VAE) with a MultiRes block to compress the spatial distribution in a 3D image into a one-dimensional vector. These vectors are then stacked to create a feature map for the exhibition of temporal features. A simple convolutional neural network is used for classification. Data from 137 subjects were utilized for the training phase. Initially, the model underwent validation through a leave-one-out cross-validation process. During this validation, the model achieved an accuracy and sensitivity of 0.96 and 1.00, respectively, with an f1-score of 0.98 when identifying the normal subjects. To assess pipeline reliability and feasibility, we tested it on 9 newly recruited subjects, with accurate ventilation mode predictions for 8 out of 9. In addition, we included 2D EIT results for comparison and conducted ablation experiments to validate the effectiveness of the VAE. The study demonstrates the potential of using image series for lung ventilation mode classification, providing a feasible method for patient prescreening and presenting an alternative form of PFT.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2194
2168-2208
2168-2208
DOI:10.1109/JBHI.2023.3328343