Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm

Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods.  In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both...

Full description

Saved in:
Bibliographic Details
Published inAsian Pacific journal of cancer prevention : APJCP Vol. 24; no. 4; pp. 1379 - 1387
Main Authors Alabrak, Mona Mohamed Aly, Megahed, Mohammad, Alkhouly, Asmaa Abdulaziz, Mohammed, Ammar, Elfandy, Habiba, Tahoun, Neveen, Ismail, Hoda Abdel-Raouf
Format Journal Article
LanguageEnglish
Published Thailand West Asia Organization for Cancer Prevention 01.04.2023
Subjects
Online AccessGet full text
ISSN1513-7368
2476-762X
DOI10.31557/APJCP.2023.24.4.1379

Cover

Loading…
Abstract Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods.  In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both lesions in the cytology practice and can be only differentiated after resection. In this work, we aim at exploring the ability of a convolutional neural network (CNN) model to sub-classifying cytological images of Bethesda category IV diagnosis into follicular adenoma and follicular carcinoma. We used a cohort of cytology cases n= 43 with extracted images n= 886 to train CNN model aiming to sub-classify follicular neoplasm (Bethesda category IV) into either follicular adenoma or follicular carcinoma. In our study, the model subclassification of follicular neoplasm into follicular adenoma (n = 28/43, images n = 527/886) from follicular carcinoma (n = 15/43, images n= 359/886), has achieved an accuracy of 78%, with a sensitivity of 88.4%, and a specificity of 64% and an area under the curve (AUC) score of 0.87 for each of follicular adenoma and follicular carcinoma. Our CNN model has achieved high sensitivity in recognizing follicular adenoma amongest cytology smears of follciualr neoplasms, thus it can be used as an ancillary technique in the subcalssification of Bethesda Iv category cytology smears.
AbstractList Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods.  In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both lesions in the cytology practice and can be only differentiated after resection. In this work, we aim at exploring the ability of a convolutional neural network (CNN) model to sub-classifying cytological images of Bethesda category IV diagnosis into follicular adenoma and follicular carcinoma. We used a cohort of cytology cases n= 43 with extracted images n= 886 to train CNN model aiming to sub-classify follicular neoplasm (Bethesda category IV) into either follicular adenoma or follicular carcinoma. In our study, the model subclassification of follicular neoplasm into follicular adenoma (n = 28/43, images n = 527/886) from follicular carcinoma (n = 15/43, images n= 359/886), has achieved an accuracy of 78%, with a sensitivity of 88.4%, and a specificity of 64% and an area under the curve (AUC) score of 0.87 for each of follicular adenoma and follicular carcinoma. Our CNN model has achieved high sensitivity in recognizing follicular adenoma amongest cytology smears of follciualr neoplasms, thus it can be used as an ancillary technique in the subcalssification of Bethesda Iv category cytology smears.
Author Alabrak, Mona Mohamed Aly
Tahoun, Neveen
Ismail, Hoda Abdel-Raouf
Mohammed, Ammar
Alkhouly, Asmaa Abdulaziz
Elfandy, Habiba
Megahed, Mohammad
AuthorAffiliation 1 Department of Pathology, National Cancer Institute, Cairo University, Egypt
2 Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
AuthorAffiliation_xml – name: 2 Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
– name: 1 Department of Pathology, National Cancer Institute, Cairo University, Egypt
Author_xml – sequence: 1
  givenname: Mona Mohamed Aly
  orcidid: 0000-0002-6620-3738
  surname: Alabrak
  fullname: Alabrak, Mona Mohamed Aly
  organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt
– sequence: 2
  givenname: Mohammad
  surname: Megahed
  fullname: Megahed, Mohammad
  organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
– sequence: 3
  givenname: Asmaa Abdulaziz
  surname: Alkhouly
  fullname: Alkhouly, Asmaa Abdulaziz
  organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
– sequence: 4
  givenname: Ammar
  surname: Mohammed
  fullname: Mohammed, Ammar
  organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt
– sequence: 5
  givenname: Habiba
  surname: Elfandy
  fullname: Elfandy, Habiba
  organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt
– sequence: 6
  givenname: Neveen
  surname: Tahoun
  fullname: Tahoun, Neveen
  organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt
– sequence: 7
  givenname: Hoda Abdel-Raouf
  surname: Ismail
  fullname: Ismail, Hoda Abdel-Raouf
  organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37116162$$D View this record in MEDLINE/PubMed
BookMark eNpVkFtLwzAAhYNM3EV_gpI_0Jp72icZxelk6NApvpUsSbtIloy2G_TfO_CCPp2Hc75z4IzBIMRgAbjEKKWYc3k9XT4Uy5QgQlPCUpZiKvMTMCJMikQK8j4AI8wxTSQV2RCM2_YDIcYzyc_AkEqMBRZkBN6mTecqp53ycB46672rbdAWPkdvoQvwZb_WXrWtq3oXalj0XfSx7mGs4GrTN9EZOItHSu-9auCjjbtjensOTivlW3vxrRPwOrtdFffJ4uluXkwXiaZE5kmOEbPaYG4ZIsjmGeaEakMrqbURyghtJMLaZLk2TFVcIiSz3Got1sgwktMJuPnq3e3XW2u0DV2jfLlr3FY1fRmVK_87wW3KOh5KjCgn8rg2AVd_G37Rn4voJzCqbkE
CitedBy_id crossref_primary_10_1016_j_modpat_2024_100608
crossref_primary_10_3390_healthcare13060657
crossref_primary_10_1016_j_mpdhp_2023_06_013
crossref_primary_10_1016_j_path_2024_04_005
crossref_primary_10_1186_s40001_024_02138_2
crossref_primary_10_21294_1814_4861_2024_23_5_5_16
crossref_primary_10_1186_s12880_024_01244_1
crossref_primary_10_1016_j_path_2024_04_011
crossref_primary_10_3390_jimaging9090173
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
5PM
DOI 10.31557/APJCP.2023.24.4.1379
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
PubMed Central (Full Participant titles)
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
DatabaseTitleList MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2476-762X
EndPage 1387
ExternalDocumentID PMC10352752
37116162
Genre Journal Article
GroupedDBID CGR
CUY
CVF
ECM
EIF
NPM
---
23N
2WC
53G
5GY
5PM
9ZL
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
E3Z
EBS
EJD
F5P
FRJ
GROUPED_DOAJ
GX1
HYE
JDI
OK1
OVT
RPM
TR2
W2D
WOW
ID FETCH-LOGICAL-c3279-9104ecd15e4020e981523cd3f7ccd6ad6cd701cd89cd4af5700789ecc6b0d4293
ISSN 1513-7368
IngestDate Thu Aug 21 18:36:33 EDT 2025
Thu Jan 02 22:50:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords AI
Thyroid gland
Diagnosis
convolutional neural network
cytopathology
Language English
License This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. (https://creativecommons.org/licenses/by-nc/4.0/)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3279-9104ecd15e4020e981523cd3f7ccd6ad6cd701cd89cd4af5700789ecc6b0d4293
ORCID 0000-0002-6620-3738
OpenAccessLink http://dx.doi.org/10.31557/APJCP.2023.24.4.1379
PMID 37116162
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_10352752
pubmed_primary_37116162
PublicationCentury 2000
PublicationDate 2023-Apr-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-Apr-01
  day: 01
PublicationDecade 2020
PublicationPlace Thailand
PublicationPlace_xml – name: Thailand
– name: Iran
PublicationTitle Asian Pacific journal of cancer prevention : APJCP
PublicationTitleAlternate Asian Pac J Cancer Prev
PublicationYear 2023
Publisher West Asia Organization for Cancer Prevention
Publisher_xml – name: West Asia Organization for Cancer Prevention
SSID ssj0045875
Score 2.467808
Snippet Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods.  In the...
SourceID pubmedcentral
pubmed
SourceType Open Access Repository
Index Database
StartPage 1379
SubjectTerms Adenocarcinoma, Follicular - diagnosis
Adenocarcinoma, Follicular - pathology
Adenoma - diagnosis
Artificial Intelligence
Carcinoma - pathology
Humans
Thyroid Neoplasms - pathology
Thyroid Nodule - diagnosis
Thyroid Nodule - pathology
Title Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm
URI https://www.ncbi.nlm.nih.gov/pubmed/37116162
https://pubmed.ncbi.nlm.nih.gov/PMC10352752
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehg9LL2Pe6L3TYLdiLLdmyj8aslEJCGOnIrciSvJgtTnGTQ_Jv9x_ok2Q78uhh60UEK0okvZ_fe5bf-z2EvjJVgJEqYi8RhdIlzOCe45J4IuUhT4mSvNBvdKez-PKaXi2j5Wh070Qt7baFLw6P5pU8RapwDeSqs2T_Q7L9j8IF-AzyhRYkDO0_yThrTKSP5ctwqDV_6JDBqtZaQWjvuLLJTPl-axmXwEFcrPbNppLjC03KbWNRZzqYnLeMgh0xrcmxbCP3XJoJodHSaIqBLmDSHDHOr_I-YSz7sx9nALKGG40L2oNDs-LrNp_K0P7-4it73Gp61lweR_9ebXa2DnZ2Bz3jrJAwz0N16EebIXZ4pnPw3COMkDiRL0ZRgv0b6_UM8k9NmGVuFzPvF-Oq6oB4jNiiPL4y10LKYg_U-9LV7zZHu8UxdZR1QGwdm9bwB8Sa_r-NCgGXS7_XNlvo6_n7IfWp3w13gHa7NkgjLABHurUyQzbv-TQPNAUti8BveBbCs03QnQNY94FGiWGH7pdn087MJL49NoUzdNr9n-NFDSN8HZdp8QI9b591cGaB-xKNVP0KnU7baI7X6OcRv9jFL9b4xVWNh_jFHX7xpsQtfvERv7jD7xt0ffF9kV96bZ0PT5CQpWBvJ1QJGURKH2aoNAGfkghJSiaEjLmMhWSTQMgkFZLyUldkYEkKuicuJhL8KfIWndSbWr1HuAT7EtJUlZIRGpWiELEUBTitMhFRItk5emc35ubWkrncdHt3jpLBlvVf0Pzrw566Whke9k6QH54-9CM6O94Qn9DJttmpz-DlbosvBhXQzubTB6UcrpQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Role+in+Subclassifying+Cytology+of+Thyroid+Follicular+Neoplasm&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=Aly+Alabrak%2C+Mona+Mohamed&rft.au=Megahed%2C+Mohammad&rft.au=Alkhouly%2C+Asmma+Abdulaziz&rft.au=Mohammed%2C+Ammar&rft.date=2023-04-01&rft.pub=West+Asia+Organization+for+Cancer+Prevention&rft.issn=1513-7368&rft.eissn=2476-762X&rft.volume=24&rft.issue=4&rft.spage=1379&rft.epage=1387&rft_id=info:doi/10.31557%2FAPJCP.2023.24.4.1379&rft_id=info%3Apmid%2F37116162&rft.externalDocID=PMC10352752
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon