Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm
Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods. In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both...
Saved in:
Published in | Asian Pacific journal of cancer prevention : APJCP Vol. 24; no. 4; pp. 1379 - 1387 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Thailand
West Asia Organization for Cancer Prevention
01.04.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1513-7368 2476-762X |
DOI | 10.31557/APJCP.2023.24.4.1379 |
Cover
Loading…
Abstract | Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods. In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both lesions in the cytology practice and can be only differentiated after resection. In this work, we aim at exploring the ability of a convolutional neural network (CNN) model to sub-classifying cytological images of Bethesda category IV diagnosis into follicular adenoma and follicular carcinoma.
We used a cohort of cytology cases n= 43 with extracted images n= 886 to train CNN model aiming to sub-classify follicular neoplasm (Bethesda category IV) into either follicular adenoma or follicular carcinoma.
In our study, the model subclassification of follicular neoplasm into follicular adenoma (n = 28/43, images n = 527/886) from follicular carcinoma (n = 15/43, images n= 359/886), has achieved an accuracy of 78%, with a sensitivity of 88.4%, and a specificity of 64% and an area under the curve (AUC) score of 0.87 for each of follicular adenoma and follicular carcinoma.
Our CNN model has achieved high sensitivity in recognizing follicular adenoma amongest cytology smears of follciualr neoplasms, thus it can be used as an ancillary technique in the subcalssification of Bethesda Iv category cytology smears. |
---|---|
AbstractList | Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods. In the Bethesda system for reporting thyroid, the category IV, encompasses both adenoma and carcinoma, but it is not possible to differentiate both lesions in the cytology practice and can be only differentiated after resection. In this work, we aim at exploring the ability of a convolutional neural network (CNN) model to sub-classifying cytological images of Bethesda category IV diagnosis into follicular adenoma and follicular carcinoma.
We used a cohort of cytology cases n= 43 with extracted images n= 886 to train CNN model aiming to sub-classify follicular neoplasm (Bethesda category IV) into either follicular adenoma or follicular carcinoma.
In our study, the model subclassification of follicular neoplasm into follicular adenoma (n = 28/43, images n = 527/886) from follicular carcinoma (n = 15/43, images n= 359/886), has achieved an accuracy of 78%, with a sensitivity of 88.4%, and a specificity of 64% and an area under the curve (AUC) score of 0.87 for each of follicular adenoma and follicular carcinoma.
Our CNN model has achieved high sensitivity in recognizing follicular adenoma amongest cytology smears of follciualr neoplasms, thus it can be used as an ancillary technique in the subcalssification of Bethesda Iv category cytology smears. |
Author | Alabrak, Mona Mohamed Aly Tahoun, Neveen Ismail, Hoda Abdel-Raouf Mohammed, Ammar Alkhouly, Asmaa Abdulaziz Elfandy, Habiba Megahed, Mohammad |
AuthorAffiliation | 1 Department of Pathology, National Cancer Institute, Cairo University, Egypt 2 Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt |
AuthorAffiliation_xml | – name: 2 Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt – name: 1 Department of Pathology, National Cancer Institute, Cairo University, Egypt |
Author_xml | – sequence: 1 givenname: Mona Mohamed Aly orcidid: 0000-0002-6620-3738 surname: Alabrak fullname: Alabrak, Mona Mohamed Aly organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt – sequence: 2 givenname: Mohammad surname: Megahed fullname: Megahed, Mohammad organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt – sequence: 3 givenname: Asmaa Abdulaziz surname: Alkhouly fullname: Alkhouly, Asmaa Abdulaziz organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt – sequence: 4 givenname: Ammar surname: Mohammed fullname: Mohammed, Ammar organization: Department of computer science, Faculty of Graduate Studies for Statistical Research, Cairo University, Egypt – sequence: 5 givenname: Habiba surname: Elfandy fullname: Elfandy, Habiba organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt – sequence: 6 givenname: Neveen surname: Tahoun fullname: Tahoun, Neveen organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt – sequence: 7 givenname: Hoda Abdel-Raouf surname: Ismail fullname: Ismail, Hoda Abdel-Raouf organization: Department of Pathology, National Cancer Institute, Cairo University, Egypt |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37116162$$D View this record in MEDLINE/PubMed |
BookMark | eNpVkFtLwzAAhYNM3EV_gpI_0Jp72icZxelk6NApvpUsSbtIloy2G_TfO_CCPp2Hc75z4IzBIMRgAbjEKKWYc3k9XT4Uy5QgQlPCUpZiKvMTMCJMikQK8j4AI8wxTSQV2RCM2_YDIcYzyc_AkEqMBRZkBN6mTecqp53ycB46672rbdAWPkdvoQvwZb_WXrWtq3oXalj0XfSx7mGs4GrTN9EZOItHSu-9auCjjbtjensOTivlW3vxrRPwOrtdFffJ4uluXkwXiaZE5kmOEbPaYG4ZIsjmGeaEakMrqbURyghtJMLaZLk2TFVcIiSz3Got1sgwktMJuPnq3e3XW2u0DV2jfLlr3FY1fRmVK_87wW3KOh5KjCgn8rg2AVd_G37Rn4voJzCqbkE |
CitedBy_id | crossref_primary_10_1016_j_modpat_2024_100608 crossref_primary_10_3390_healthcare13060657 crossref_primary_10_1016_j_mpdhp_2023_06_013 crossref_primary_10_1016_j_path_2024_04_005 crossref_primary_10_1186_s40001_024_02138_2 crossref_primary_10_21294_1814_4861_2024_23_5_5_16 crossref_primary_10_1186_s12880_024_01244_1 crossref_primary_10_1016_j_path_2024_04_011 crossref_primary_10_3390_jimaging9090173 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM 5PM |
DOI | 10.31557/APJCP.2023.24.4.1379 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed PubMed Central (Full Participant titles) |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2476-762X |
EndPage | 1387 |
ExternalDocumentID | PMC10352752 37116162 |
Genre | Journal Article |
GroupedDBID | CGR CUY CVF ECM EIF NPM --- 23N 2WC 53G 5GY 5PM 9ZL ADBBV ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV E3Z EBS EJD F5P FRJ GROUPED_DOAJ GX1 HYE JDI OK1 OVT RPM TR2 W2D WOW |
ID | FETCH-LOGICAL-c3279-9104ecd15e4020e981523cd3f7ccd6ad6cd701cd89cd4af5700789ecc6b0d4293 |
ISSN | 1513-7368 |
IngestDate | Thu Aug 21 18:36:33 EDT 2025 Thu Jan 02 22:50:34 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | AI Thyroid gland Diagnosis convolutional neural network cytopathology |
Language | English |
License | This work is licensed under a Creative Commons Attribution-Non Commercial 4.0 International License. (https://creativecommons.org/licenses/by-nc/4.0/) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c3279-9104ecd15e4020e981523cd3f7ccd6ad6cd701cd89cd4af5700789ecc6b0d4293 |
ORCID | 0000-0002-6620-3738 |
OpenAccessLink | http://dx.doi.org/10.31557/APJCP.2023.24.4.1379 |
PMID | 37116162 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_10352752 pubmed_primary_37116162 |
PublicationCentury | 2000 |
PublicationDate | 2023-Apr-01 |
PublicationDateYYYYMMDD | 2023-04-01 |
PublicationDate_xml | – month: 04 year: 2023 text: 2023-Apr-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Thailand |
PublicationPlace_xml | – name: Thailand – name: Iran |
PublicationTitle | Asian Pacific journal of cancer prevention : APJCP |
PublicationTitleAlternate | Asian Pac J Cancer Prev |
PublicationYear | 2023 |
Publisher | West Asia Organization for Cancer Prevention |
Publisher_xml | – name: West Asia Organization for Cancer Prevention |
SSID | ssj0045875 |
Score | 2.467808 |
Snippet | Fine needle aspiration cytology has higher sensitivity and predictive value for diagnosis of thyroid nodules than any other single diagnostic methods. In the... |
SourceID | pubmedcentral pubmed |
SourceType | Open Access Repository Index Database |
StartPage | 1379 |
SubjectTerms | Adenocarcinoma, Follicular - diagnosis Adenocarcinoma, Follicular - pathology Adenoma - diagnosis Artificial Intelligence Carcinoma - pathology Humans Thyroid Neoplasms - pathology Thyroid Nodule - diagnosis Thyroid Nodule - pathology |
Title | Artificial Intelligence Role in Subclassifying Cytology of Thyroid Follicular Neoplasm |
URI | https://www.ncbi.nlm.nih.gov/pubmed/37116162 https://pubmed.ncbi.nlm.nih.gov/PMC10352752 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Na9swFBehg9LL2Pe6L3TYLdiLLdmyj8aslEJCGOnIrciSvJgtTnGTQ_Jv9x_ok2Q78uhh60UEK0okvZ_fe5bf-z2EvjJVgJEqYi8RhdIlzOCe45J4IuUhT4mSvNBvdKez-PKaXi2j5Wh070Qt7baFLw6P5pU8RapwDeSqs2T_Q7L9j8IF-AzyhRYkDO0_yThrTKSP5ctwqDV_6JDBqtZaQWjvuLLJTPl-axmXwEFcrPbNppLjC03KbWNRZzqYnLeMgh0xrcmxbCP3XJoJodHSaIqBLmDSHDHOr_I-YSz7sx9nALKGG40L2oNDs-LrNp_K0P7-4it73Gp61lweR_9ebXa2DnZ2Bz3jrJAwz0N16EebIXZ4pnPw3COMkDiRL0ZRgv0b6_UM8k9NmGVuFzPvF-Oq6oB4jNiiPL4y10LKYg_U-9LV7zZHu8UxdZR1QGwdm9bwB8Sa_r-NCgGXS7_XNlvo6_n7IfWp3w13gHa7NkgjLABHurUyQzbv-TQPNAUti8BveBbCs03QnQNY94FGiWGH7pdn087MJL49NoUzdNr9n-NFDSN8HZdp8QI9b591cGaB-xKNVP0KnU7baI7X6OcRv9jFL9b4xVWNh_jFHX7xpsQtfvERv7jD7xt0ffF9kV96bZ0PT5CQpWBvJ1QJGURKH2aoNAGfkghJSiaEjLmMhWSTQMgkFZLyUldkYEkKuicuJhL8KfIWndSbWr1HuAT7EtJUlZIRGpWiELEUBTitMhFRItk5emc35ubWkrncdHt3jpLBlvVf0Pzrw566Whke9k6QH54-9CM6O94Qn9DJttmpz-DlbosvBhXQzubTB6UcrpQ |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+Intelligence+Role+in+Subclassifying+Cytology+of+Thyroid+Follicular+Neoplasm&rft.jtitle=Asian+Pacific+journal+of+cancer+prevention+%3A+APJCP&rft.au=Aly+Alabrak%2C+Mona+Mohamed&rft.au=Megahed%2C+Mohammad&rft.au=Alkhouly%2C+Asmma+Abdulaziz&rft.au=Mohammed%2C+Ammar&rft.date=2023-04-01&rft.pub=West+Asia+Organization+for+Cancer+Prevention&rft.issn=1513-7368&rft.eissn=2476-762X&rft.volume=24&rft.issue=4&rft.spage=1379&rft.epage=1387&rft_id=info:doi/10.31557%2FAPJCP.2023.24.4.1379&rft_id=info%3Apmid%2F37116162&rft.externalDocID=PMC10352752 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1513-7368&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1513-7368&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1513-7368&client=summon |