A two‐phase strategy for control constrained elliptic optimal control problems
Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the contin...
Saved in:
Published in | Numerical linear algebra with applications Vol. 25; no. 4 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford
Wiley Subscription Services, Inc
01.08.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Summary
Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM. |
---|---|
AbstractList | Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM. Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM. Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM. |
Author | Yu, Bo Song, Xiao‐Liang |
Author_xml | – sequence: 1 givenname: Xiao‐Liang orcidid: 0000-0002-4965-6874 surname: Song fullname: Song, Xiao‐Liang organization: Dalian University of Technology – sequence: 2 givenname: Bo surname: Yu fullname: Yu, Bo email: yubo@dlut.edu.cn organization: Dalian University of Technology at Panjin |
BookMark | eNp1kE1KA0EQhRuJYBIFjzDgxs3E6t_MLEPQKAR1oeumM1brhM702D0hZOcRPKMnsceIOzf1iuKj3uONyKDxDRJyTmFCAdhV48yEUV4ckSGFssypBDXo9ynkkjN5QkYxrgFAyZIPyeMs63b-6-OzfTMRs9gF0-HrPrM-ZJVvuuBdr_29bvAlQ-fqtqurzKe5Me4PaoNfOdzEU3JsjYt49qtj8nxz_TS_zZcPi7v5bJlXnE2LvAABTIKRomBorbCiomgVVatCcmuVRFsKNFPghRACLDUopFLccFUpXFk-JheHv8n4fYux02u_DU2y1AyUkAXIskzU5YGqgo8xoNVtSLHDXlPQfV869aX7vhKaH9Bd7XD_L6fvl7Mf_hsC-G7H |
CitedBy_id | crossref_primary_10_1007_s10915_024_02489_2 crossref_primary_10_1016_j_camwa_2024_02_038 crossref_primary_10_1137_22M1485759 crossref_primary_10_12677_AAM_2022_1111840 crossref_primary_10_1007_s40314_020_01379_1 crossref_primary_10_3390_math11030570 |
Cites_doi | 10.1007/s10589-005-4559-5 10.1561/2200000016 10.1137/S1052623400371569 10.1007/s00041-008-9035-z 10.1093/oso/9780198528678.001.0001 10.1137/080716542 10.1007/BF01581204 10.1093/imanum/7.4.449 10.1137/080727154 10.1017/S0962492904000212 10.1007/s10107-016-1007-5 10.1002/nla.693 10.1137/140964357 10.1137/15M1021799 10.1007/s10107-014-0850-5 10.1007/s10444-004-4142-0 10.1080/10556788.2012.676046 10.1023/A:1020576801966 10.1137/110853996 10.1090/S0025-5718-1988-0917816-8 10.1007/s10107-014-0826-5 10.1080/10556789408805578 10.1137/140999025 10.1137/110847081 10.1093/imanum/drs001 10.1016/0022-247X(73)90022-X 10.1016/0898-1221(76)90003-1 10.1137/S0363012903431608 10.1080/10556780500094945 10.1023/A:1015489608037 10.1051/m2an/1979130403131 |
ContentType | Journal Article |
Copyright | Copyright © 2018 John Wiley & Sons, Ltd. 2018 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: Copyright © 2018 John Wiley & Sons, Ltd. – notice: 2018 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
DOI | 10.1002/nla.2138 |
DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1099-1506 |
EndPage | n/a |
ExternalDocumentID | 10_1002_nla_2138 NLA2138 |
Genre | article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 91230103; 11571061 |
GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 123 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABEFU ABEML ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GBZZK GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M6O MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RWI RWS RX1 RYL SAMSI SUPJJ TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~IA ~WT AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
ID | FETCH-LOGICAL-c3278-8040250a5482eff4f4c1ef616b853ff65ef94ea70384440f1ae45663a36c6ebf3 |
IEDL.DBID | DR2 |
ISSN | 1070-5325 |
IngestDate | Thu Oct 10 19:54:30 EDT 2024 Fri Aug 23 04:53:01 EDT 2024 Sat Aug 24 00:41:51 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3278-8040250a5482eff4f4c1ef616b853ff65ef94ea70384440f1ae45663a36c6ebf3 |
ORCID | 0000-0002-4965-6874 |
OpenAccessLink | http://arxiv.org/pdf/1610.00306 |
PQID | 2064580599 |
PQPubID | 2034341 |
PageCount | 1 |
ParticipantIDs | proquest_journals_2064580599 crossref_primary_10_1002_nla_2138 wiley_primary_10_1002_nla_2138_NLA2138 |
PublicationCentury | 2000 |
PublicationDate | August 2018 2018-08-00 20180801 |
PublicationDateYYYYMMDD | 2018-08-01 |
PublicationDate_xml | – month: 08 year: 2018 text: August 2018 |
PublicationDecade | 2010 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | Numerical linear algebra with applications |
PublicationYear | 2018 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2004; 43 2010; 32 1979; 13 2010; 17 2002; 13 1987; 7 2008; 14 1976; 2 2009 2008 2008; 34 2005 1988; 50 2002 2011; 3 1992; 55 2015; 25 1973; 44 2013; 33 2006; 21 2013; 34 2002; 23 2002; 22 2005; 30 2016; 155 2017; 161 2017 2015 2012; 27 1980 2009; 2 2012; 22 2016; 26 1975; 9 1994; 4 2007; 26 2005; 14 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Wathen AJ (e_1_2_8_35_1) 2008; 34 Glowinski R (e_1_2_8_21_1) 1975; 9 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 Chen L (e_1_2_8_42_1) 2008 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_22_1 e_1_2_8_23_1 e_1_2_8_41_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 Elman HC (e_1_2_8_33_1) 2005 Hinze M (e_1_2_8_40_1) 2009 Kinderlehrer D (e_1_2_8_30_1) 1980 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 |
References_xml | – volume: 155 start-page: 57 issue: 1‐2 year: 2016 end-page: 79 article-title: The direct extension of ADMM for multi‐block convex minimization problems is not necessarily convergent publication-title: Math Program – volume: 50 start-page: 1 issue: 181 year: 1988 end-page: 17 article-title: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems publication-title: Math Comput – volume: 44 start-page: 28 issue: 1 year: 1973 end-page: 47 article-title: Approximation of a class of optimal control problems with order of convergence estimates publication-title: J Math Anal Appl – year: 2009 – volume: 13 start-page: 313 issue: 4 year: 1979 end-page: 328 article-title: On the approximation of the solution of an optimal control problem governed by an elliptic equation publication-title: Rairo Anal Numér – volume: 7 start-page: 449 issue: 4 year: 1987 end-page: 457 article-title: Realistic eigenvalue bounds for the Galerkin mass matrix publication-title: IMA J Numer Anal – year: 2005 – volume: 26 start-page: 922 issue: 2 year: 2016 end-page: 950 article-title: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization publication-title: SIAM J Optim – volume: 22 start-page: 193 issue: 2 year: 2002 end-page: 224 article-title: Primal‐dual strategy for state‐constrained optimal control problems publication-title: Comput Optim Appl – volume: 25 start-page: 882 issue: 2 year: 2015 end-page: 915 article-title: A convergent 3‐block semiproximal alternating direction method of multipliers for conic programming with 4‐type constraints publication-title: SIAM J Optim – volume: 2 start-page: 17 issue: 1 year: 1976 end-page: 40 article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation publication-title: Comput Math Appl – volume: 34 start-page: 125 issue: 7 year: 2008 end-page: 135 article-title: Chebyshev semi‐iteration in preconditioning for problems including the mass matrix publication-title: Electron T Numer Ana – volume: 21 start-page: 121 issue: 1 year: 2006 end-page: 134 article-title: Error estimates for linear‐quadratic control problems with control constraints publication-title: Optim Methods Softw – volume: 14 start-page: 1 issue: 2 year: 2005 end-page: 137 article-title: Numerical solution of saddle point problems publication-title: Acta Numer – volume: 26 start-page: 137 issue: 1‐3 year: 2007 end-page: 153 article-title: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems publication-title: Adv Comput Math – volume: 34 start-page: 946 issue: 3 year: 2013 end-page: 977 article-title: Hankel matrix rank minimization with applications to system identification and realization publication-title: SIAM J Matrix Anal Appl – volume: 43 start-page: 970 issue: 3 year: 2004 end-page: 985 article-title: Superconvergence properties of optimal control problems publication-title: SIAM J Control Optim – volume: 9 start-page: 41 issue: 2 year: 1975 end-page: 76 article-title: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation‐dualité d'une classe de problémes de Dirichlet non linéaires publication-title: Rev Fr Automat Infor – volume: 27 start-page: 933 issue: 6 year: 2012 end-page: 950 article-title: The semi‐smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization publication-title: Optim Methods Softw – volume: 14 start-page: 629 issue: 5‐6 year: 2008 end-page: 654 article-title: Iterative thresholding for sparse approximations publication-title: J Fourier Anal Appl – volume: 22 start-page: 1042 issue: 3 year: 2012 end-page: 1064 article-title: An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP publication-title: SIAM J Optim – volume: 32 start-page: 271 issue: 1 year: 2010 end-page: 298 article-title: Optimal solvers for PDE‐constrained optimization publication-title: SIAM J Sci Comput – volume: 26 start-page: 1072 issue: 2 year: 2016 end-page: 1100 article-title: An efficient inexact ABCD method for least squares semidefinite programming publication-title: SIAM J Optim – volume: 30 start-page: 45 issue: 1 year: 2005 end-page: 61 article-title: A variational discretization concept in control‐constrained optimization: the linear‐quadratic case publication-title: Comput Optim Appl – volume: 17 start-page: 977 issue: 6 year: 2010 end-page: 996 article-title: Block‐triangular preconditioners for PDE‐constrained optimization publication-title: Numer Linear Algebra Appl – year: 1980 – volume: 33 start-page: 343 issue: 1 year: 2013 end-page: 369 article-title: Preconditioned MHSS iteration methods for a class of block two‐by‐two linear systems with applications to distributed control problems publication-title: IMA J Numer Anal – volume: 2 start-page: 183 issue: 1 year: 2009 end-page: 202 article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems publication-title: SIAM J Imaging Sci – year: 2002 – volume: 13 start-page: 805 issue: 3 year: 2002 end-page: 841 article-title: Semismooth Newton methods for operator equations in function spaces publication-title: SIAM J Optim – year: 2008 – volume: 55 start-page: 293 issue: 1 year: 1992 end-page: 318 article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators publication-title: Math Program – volume: 23 start-page: 201 issue: 2 year: 2002 end-page: 229 article-title: Error estimates for the numerical approximation of a semilinear elliptic control problem publication-title: Comput Optim Appl – volume: 3 start-page: 1 issue: 1 year: 2011 end-page: 122 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found Trends Mach Learn – year: 2017 – volume: 161 start-page: 237 issue: 1‐2 year: 2017 end-page: 270 article-title: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high‐dimensional convex composite conic programming publication-title: Math Program – volume: 155 start-page: 333 issue: 1‐2 year: 2016 end-page: 373 article-title: A Schur complement based semi‐proximal ADMM for convex quadratic conic programming and extensions publication-title: Math Program – year: 2015 – volume: 4 start-page: 75 issue: 1 year: 1994 end-page: 83 article-title: Some saddle‐function splitting methods for convex programming publication-title: Optim Methods Softw – ident: e_1_2_8_2_1 doi: 10.1007/s10589-005-4559-5 – ident: e_1_2_8_17_1 doi: 10.1561/2200000016 – ident: e_1_2_8_12_1 doi: 10.1137/S1052623400371569 – ident: e_1_2_8_13_1 doi: 10.1007/s00041-008-9035-z – volume-title: Optimization with PDE constraints year: 2009 ident: e_1_2_8_40_1 contributor: fullname: Hinze M – volume: 9 start-page: 41 issue: 2 year: 1975 ident: e_1_2_8_21_1 article-title: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation‐dualité d'une classe de problémes de Dirichlet non linéaires publication-title: Rev Fr Automat Infor contributor: fullname: Glowinski R – ident: e_1_2_8_39_1 – volume-title: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics year: 2005 ident: e_1_2_8_33_1 doi: 10.1093/oso/9780198528678.001.0001 contributor: fullname: Elman HC – ident: e_1_2_8_15_1 doi: 10.1137/080716542 – ident: e_1_2_8_23_1 doi: 10.1007/BF01581204 – ident: e_1_2_8_31_1 doi: 10.1093/imanum/7.4.449 – ident: e_1_2_8_34_1 doi: 10.1137/080727154 – ident: e_1_2_8_36_1 doi: 10.1017/S0962492904000212 – volume: 34 start-page: 125 issue: 7 year: 2008 ident: e_1_2_8_35_1 article-title: Chebyshev semi‐iteration in preconditioning for problems including the mass matrix publication-title: Electron T Numer Ana contributor: fullname: Wathen AJ – ident: e_1_2_8_18_1 doi: 10.1007/s10107-016-1007-5 – ident: e_1_2_8_37_1 doi: 10.1002/nla.693 – ident: e_1_2_8_26_1 doi: 10.1137/140964357 – ident: e_1_2_8_16_1 doi: 10.1137/15M1021799 – volume-title: Technical Report year: 2008 ident: e_1_2_8_42_1 contributor: fullname: Chen L – ident: e_1_2_8_5_1 – ident: e_1_2_8_10_1 – ident: e_1_2_8_27_1 – ident: e_1_2_8_19_1 doi: 10.1007/s10107-014-0850-5 – ident: e_1_2_8_8_1 doi: 10.1007/s10444-004-4142-0 – ident: e_1_2_8_41_1 doi: 10.1080/10556788.2012.676046 – ident: e_1_2_8_7_1 doi: 10.1023/A:1020576801966 – ident: e_1_2_8_20_1 doi: 10.1137/110853996 – ident: e_1_2_8_38_1 doi: 10.1090/S0025-5718-1988-0917816-8 – ident: e_1_2_8_25_1 doi: 10.1007/s10107-014-0826-5 – ident: e_1_2_8_24_1 doi: 10.1080/10556789408805578 – ident: e_1_2_8_28_1 doi: 10.1137/140999025 – ident: e_1_2_8_14_1 doi: 10.1137/110847081 – volume-title: An introduction to variational inequalities and their applications year: 1980 ident: e_1_2_8_30_1 contributor: fullname: Kinderlehrer D – ident: e_1_2_8_32_1 doi: 10.1093/imanum/drs001 – ident: e_1_2_8_3_1 doi: 10.1016/0022-247X(73)90022-X – ident: e_1_2_8_22_1 doi: 10.1016/0898-1221(76)90003-1 – ident: e_1_2_8_6_1 doi: 10.1137/S0363012903431608 – ident: e_1_2_8_9_1 doi: 10.1080/10556780500094945 – ident: e_1_2_8_11_1 doi: 10.1023/A:1015489608037 – ident: e_1_2_8_29_1 – ident: e_1_2_8_4_1 doi: 10.1051/m2an/1979130403131 |
SSID | ssj0006593 |
Score | 2.272736 |
Snippet | Summary
Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems... Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems... Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Publisher |
SubjectTerms | Algorithms Control theory Discretization Finite element method inexact semiproximal ADMM Iterative methods Optimal control semismooth Newton method |
Title | A two‐phase strategy for control constrained elliptic optimal control problems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2138 https://www.proquest.com/docview/2064580599 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfspMe_C1Op0QQb93aJMu641DHEDdEHAw8lDRLEJzbsB2iJ_8E_0b_El-adpuCIF6aHlJo8_Lyvq-8fAJwKo1SoZbca3DDPPRE44UYpz1f6JhTw01D243C3Z7o9PnVoD7IqyrtXhjHh5j_cLOeka3X1sFlnNSWoKEjWaUBs_t8A9aw1VwXtwtylHC8XUxufK_OaL3gzvq0Vjz4PRIt5OWySM2iTHsD7ov3c8Ulj9VZGlfV2w904_8-YBPWc_FJWm62bMGKHm_DWndObk124KZF0pfJ5_vH9AHjG0kcvPaVoLYleVm7bZPsaAk9JJbniauOIhO8PsnRvFN-Uk2yC_325d15x8tPXfAUo5hShujWqIskpjJUG7QWV4E2IhAxRnZjRF2bJtcSV4qQc-6bQGo0rmCSCYUGNmwPSuPJWO8D4UpThRlaU4WYteCN3zSaCqmkheQMaRlOCgtEUwfXiBxGmWawazs6ZagUpoly90oiail7oUXLlOEsG-Nfn4961y3bHvy14yGsoigKXZFfBUrp80wfofBI4-Nsin0Bi57WRw |
link.rule.ids | 315,783,787,1378,27937,27938,46307,46731 |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfcx7Ug7_F6dQK4q1bm6ZZh6ehjqnbENlgB6GkWYLg3IbtED35J_g3-pf40h_bFATx0vSQ0DYvL-_7QvoJwAlXQniSU7NClWOiJyrTwzhtWkwGlCiqKlL_KNxqs0aXXvfcXg7Osn9hEj7EdMFNe0Y8X2sH1wvS5Tlq6ICXiO14C7CIz3C0V17czdhRLCHuYnpjma5D3Iw8a5Fy1vJ7LJoJzHmZGseZ-hrcZ2-YbC95LE2ioCTefsAb__kJ67Ca6k-jlgyYDcjJ4SastKbw1nALbmtG9DL6fP8YP2CIM8KEX_tqoLw10p3tugzj0yVk39BIT5x4hDHC6xMfTCulh9WE29CtX3bOG2Z68IIpHIJZpYeejdKIYzZDpEKDUWFLxWwWYHBXirlSVankOFl4lFJL2VyifZnDHSbQxsrZgfxwNJS7YFAhicAkrSo8TFzwxqoqSRgXXHNy-qQAx5kJ_HHC1_ATkjKJede6dwpQzGzjpx4W-kSD9jxNlynAadzJv7b3282aLvf-WvEIlhqdVtNvXrVv9mEZNZKX7PkrQj56nsgD1CFRcBiPty_s1dpg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dSsMwFMcPOkH0wm9xOrWCeNetTdMsuxzqmLqNIQ4GXpQsSxCc27Adolc-gs_ok3jSj20KgnjT9CKFNicn53_KyS8Ap0JLyZWgdplqz0ZP1DbHOG07TPUo0VSXldko3Gyxeoded_1uWlVp9sIkfIjpDzfjGfF6bRx83NelOWjoQBSJ6_FFWKIMZ6oRRLczdBRLgLuY3Ti27xE_A886pJQ9-T0UzfTlvEqNw0xtHe6zF0yqSx6Lk6hXlG8_2I3_-4INWEvVp1VNpssmLKjhFqw2p-jWcBvaVSt6GX2-f4wfMMBZYUKvfbVQ3FppXbtpw_hsCdW3DNATlx1pjfD6JAbTTulRNeEOdGqXd-d1Oz12wZYewZySo1-jMBKYyxCl0VxUukozl_UwtGvNfKUrVAlcKjil1NGuUGhd5gmPSbSw9nYhNxwN1R5YVCoiMUWrSI5pC944Fa0IE1IYSk6f5OEks0AwTugaQcJRJjHt2oxOHgqZaYLUv8KAGMweN2yZPJzFY_zr80GrUTXt_l87HsNy-6IWNK5aNwewggKJJwV_BchFzxN1iCIk6h3Fs-0LiCnZDw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two%E2%80%90phase+strategy+for+control+constrained+elliptic+optimal+control+problems&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Song%2C+Xiao%E2%80%90Liang&rft.au=Yu%2C+Bo&rft.date=2018-08-01&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=25&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnla.2138&rft.externalDBID=10.1002%252Fnla.2138&rft.externalDocID=NLA2138 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon |