A two‐phase strategy for control constrained elliptic optimal control problems

Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the contin...

Full description

Saved in:
Bibliographic Details
Published inNumerical linear algebra with applications Vol. 25; no. 4
Main Authors Song, Xiao‐Liang, Yu, Bo
Format Journal Article
LanguageEnglish
Published Oxford Wiley Subscription Services, Inc 01.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM.
AbstractList Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM.
Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM.
Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with pointwise box constraints on the control, an inexact alternating direction method of multipliers (iADMM) is first proposed on the continuous level with the aim of solving discretized problems with moderate accuracy. Then, the standard piecewise linear finite element is employed to discretize the related subproblems appearing in each iteration of the iADMM algorithm. Such approach will give us the freedom to discretize two inner subproblems of the iADMM algorithm by different discretized scheme, respectively. More importantly, it should be emphasized that the discretized version of the iADMM algorithm can be regarded as a modification of the inexact semiproximal ADMM (isPADMM) algorithm. In order to obtain more accurate solution, the primal‐dual active set method is used as a postprocessor of the isPADMM. Numerical results not only show that the isPADMM and the two‐phase strategy are highly efficient but also show the mesh independence of the isPADMM.
Author Yu, Bo
Song, Xiao‐Liang
Author_xml – sequence: 1
  givenname: Xiao‐Liang
  orcidid: 0000-0002-4965-6874
  surname: Song
  fullname: Song, Xiao‐Liang
  organization: Dalian University of Technology
– sequence: 2
  givenname: Bo
  surname: Yu
  fullname: Yu, Bo
  email: yubo@dlut.edu.cn
  organization: Dalian University of Technology at Panjin
BookMark eNp1kE1KA0EQhRuJYBIFjzDgxs3E6t_MLEPQKAR1oeumM1brhM702D0hZOcRPKMnsceIOzf1iuKj3uONyKDxDRJyTmFCAdhV48yEUV4ckSGFssypBDXo9ynkkjN5QkYxrgFAyZIPyeMs63b-6-OzfTMRs9gF0-HrPrM-ZJVvuuBdr_29bvAlQ-fqtqurzKe5Me4PaoNfOdzEU3JsjYt49qtj8nxz_TS_zZcPi7v5bJlXnE2LvAABTIKRomBorbCiomgVVatCcmuVRFsKNFPghRACLDUopFLccFUpXFk-JheHv8n4fYux02u_DU2y1AyUkAXIskzU5YGqgo8xoNVtSLHDXlPQfV869aX7vhKaH9Bd7XD_L6fvl7Mf_hsC-G7H
CitedBy_id crossref_primary_10_1007_s10915_024_02489_2
crossref_primary_10_1016_j_camwa_2024_02_038
crossref_primary_10_1137_22M1485759
crossref_primary_10_12677_AAM_2022_1111840
crossref_primary_10_1007_s40314_020_01379_1
crossref_primary_10_3390_math11030570
Cites_doi 10.1007/s10589-005-4559-5
10.1561/2200000016
10.1137/S1052623400371569
10.1007/s00041-008-9035-z
10.1093/oso/9780198528678.001.0001
10.1137/080716542
10.1007/BF01581204
10.1093/imanum/7.4.449
10.1137/080727154
10.1017/S0962492904000212
10.1007/s10107-016-1007-5
10.1002/nla.693
10.1137/140964357
10.1137/15M1021799
10.1007/s10107-014-0850-5
10.1007/s10444-004-4142-0
10.1080/10556788.2012.676046
10.1023/A:1020576801966
10.1137/110853996
10.1090/S0025-5718-1988-0917816-8
10.1007/s10107-014-0826-5
10.1080/10556789408805578
10.1137/140999025
10.1137/110847081
10.1093/imanum/drs001
10.1016/0022-247X(73)90022-X
10.1016/0898-1221(76)90003-1
10.1137/S0363012903431608
10.1080/10556780500094945
10.1023/A:1015489608037
10.1051/m2an/1979130403131
ContentType Journal Article
Copyright Copyright © 2018 John Wiley & Sons, Ltd.
2018 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2018 John Wiley & Sons, Ltd.
– notice: 2018 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1002/nla.2138
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1099-1506
EndPage n/a
ExternalDocumentID 10_1002_nla_2138
NLA2138
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 91230103; 11571061
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABEFU
ABEML
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GBZZK
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M6O
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RWI
RWS
RX1
RYL
SAMSI
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~IA
~WT
AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3278-8040250a5482eff4f4c1ef616b853ff65ef94ea70384440f1ae45663a36c6ebf3
IEDL.DBID DR2
ISSN 1070-5325
IngestDate Thu Oct 10 19:54:30 EDT 2024
Fri Aug 23 04:53:01 EDT 2024
Sat Aug 24 00:41:51 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3278-8040250a5482eff4f4c1ef616b853ff65ef94ea70384440f1ae45663a36c6ebf3
ORCID 0000-0002-4965-6874
OpenAccessLink http://arxiv.org/pdf/1610.00306
PQID 2064580599
PQPubID 2034341
PageCount 1
ParticipantIDs proquest_journals_2064580599
crossref_primary_10_1002_nla_2138
wiley_primary_10_1002_nla_2138_NLA2138
PublicationCentury 2000
PublicationDate August 2018
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: August 2018
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Numerical linear algebra with applications
PublicationYear 2018
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2004; 43
2010; 32
1979; 13
2010; 17
2002; 13
1987; 7
2008; 14
1976; 2
2009
2008
2008; 34
2005
1988; 50
2002
2011; 3
1992; 55
2015; 25
1973; 44
2013; 33
2006; 21
2013; 34
2002; 23
2002; 22
2005; 30
2016; 155
2017; 161
2017
2015
2012; 27
1980
2009; 2
2012; 22
2016; 26
1975; 9
1994; 4
2007; 26
2005; 14
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Wathen AJ (e_1_2_8_35_1) 2008; 34
Glowinski R (e_1_2_8_21_1) 1975; 9
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_5_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_9_1
Chen L (e_1_2_8_42_1) 2008
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_22_1
e_1_2_8_23_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
e_1_2_8_37_1
Elman HC (e_1_2_8_33_1) 2005
Hinze M (e_1_2_8_40_1) 2009
Kinderlehrer D (e_1_2_8_30_1) 1980
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
References_xml – volume: 155
  start-page: 57
  issue: 1‐2
  year: 2016
  end-page: 79
  article-title: The direct extension of ADMM for multi‐block convex minimization problems is not necessarily convergent
  publication-title: Math Program
– volume: 50
  start-page: 1
  issue: 181
  year: 1988
  end-page: 17
  article-title: A preconditioning technique for indefinite systems resulting from mixed approximations of elliptic problems
  publication-title: Math Comput
– volume: 44
  start-page: 28
  issue: 1
  year: 1973
  end-page: 47
  article-title: Approximation of a class of optimal control problems with order of convergence estimates
  publication-title: J Math Anal Appl
– year: 2009
– volume: 13
  start-page: 313
  issue: 4
  year: 1979
  end-page: 328
  article-title: On the approximation of the solution of an optimal control problem governed by an elliptic equation
  publication-title: Rairo Anal Numér
– volume: 7
  start-page: 449
  issue: 4
  year: 1987
  end-page: 457
  article-title: Realistic eigenvalue bounds for the Galerkin mass matrix
  publication-title: IMA J Numer Anal
– year: 2005
– volume: 26
  start-page: 922
  issue: 2
  year: 2016
  end-page: 950
  article-title: A majorized ADMM with indefinite proximal terms for linearly constrained convex composite optimization
  publication-title: SIAM J Optim
– volume: 22
  start-page: 193
  issue: 2
  year: 2002
  end-page: 224
  article-title: Primal‐dual strategy for state‐constrained optimal control problems
  publication-title: Comput Optim Appl
– volume: 25
  start-page: 882
  issue: 2
  year: 2015
  end-page: 915
  article-title: A convergent 3‐block semiproximal alternating direction method of multipliers for conic programming with 4‐type constraints
  publication-title: SIAM J Optim
– volume: 2
  start-page: 17
  issue: 1
  year: 1976
  end-page: 40
  article-title: A dual algorithm for the solution of nonlinear variational problems via finite element approximation
  publication-title: Comput Math Appl
– volume: 34
  start-page: 125
  issue: 7
  year: 2008
  end-page: 135
  article-title: Chebyshev semi‐iteration in preconditioning for problems including the mass matrix
  publication-title: Electron T Numer Ana
– volume: 21
  start-page: 121
  issue: 1
  year: 2006
  end-page: 134
  article-title: Error estimates for linear‐quadratic control problems with control constraints
  publication-title: Optim Methods Softw
– volume: 14
  start-page: 1
  issue: 2
  year: 2005
  end-page: 137
  article-title: Numerical solution of saddle point problems
  publication-title: Acta Numer
– volume: 26
  start-page: 137
  issue: 1‐3
  year: 2007
  end-page: 153
  article-title: Using piecewise linear functions in the numerical approximation of semilinear elliptic control problems
  publication-title: Adv Comput Math
– volume: 34
  start-page: 946
  issue: 3
  year: 2013
  end-page: 977
  article-title: Hankel matrix rank minimization with applications to system identification and realization
  publication-title: SIAM J Matrix Anal Appl
– volume: 43
  start-page: 970
  issue: 3
  year: 2004
  end-page: 985
  article-title: Superconvergence properties of optimal control problems
  publication-title: SIAM J Control Optim
– volume: 9
  start-page: 41
  issue: 2
  year: 1975
  end-page: 76
  article-title: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation‐dualité d'une classe de problémes de Dirichlet non linéaires
  publication-title: Rev Fr Automat Infor
– volume: 27
  start-page: 933
  issue: 6
  year: 2012
  end-page: 950
  article-title: The semi‐smooth Newton method for variationally discretized control constrained elliptic optimal control problems; implementation, convergence and globalization
  publication-title: Optim Methods Softw
– volume: 14
  start-page: 629
  issue: 5‐6
  year: 2008
  end-page: 654
  article-title: Iterative thresholding for sparse approximations
  publication-title: J Fourier Anal Appl
– volume: 22
  start-page: 1042
  issue: 3
  year: 2012
  end-page: 1064
  article-title: An inexact accelerated proximal gradient method for large scale linearly constrained convex SDP
  publication-title: SIAM J Optim
– volume: 32
  start-page: 271
  issue: 1
  year: 2010
  end-page: 298
  article-title: Optimal solvers for PDE‐constrained optimization
  publication-title: SIAM J Sci Comput
– volume: 26
  start-page: 1072
  issue: 2
  year: 2016
  end-page: 1100
  article-title: An efficient inexact ABCD method for least squares semidefinite programming
  publication-title: SIAM J Optim
– volume: 30
  start-page: 45
  issue: 1
  year: 2005
  end-page: 61
  article-title: A variational discretization concept in control‐constrained optimization: the linear‐quadratic case
  publication-title: Comput Optim Appl
– volume: 17
  start-page: 977
  issue: 6
  year: 2010
  end-page: 996
  article-title: Block‐triangular preconditioners for PDE‐constrained optimization
  publication-title: Numer Linear Algebra Appl
– year: 1980
– volume: 33
  start-page: 343
  issue: 1
  year: 2013
  end-page: 369
  article-title: Preconditioned MHSS iteration methods for a class of block two‐by‐two linear systems with applications to distributed control problems
  publication-title: IMA J Numer Anal
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  end-page: 202
  article-title: A fast iterative shrinkage‐thresholding algorithm for linear inverse problems
  publication-title: SIAM J Imaging Sci
– year: 2002
– volume: 13
  start-page: 805
  issue: 3
  year: 2002
  end-page: 841
  article-title: Semismooth Newton methods for operator equations in function spaces
  publication-title: SIAM J Optim
– year: 2008
– volume: 55
  start-page: 293
  issue: 1
  year: 1992
  end-page: 318
  article-title: On the Douglas–Rachford splitting method and the proximal point algorithm for maximal monotone operators
  publication-title: Math Program
– volume: 23
  start-page: 201
  issue: 2
  year: 2002
  end-page: 229
  article-title: Error estimates for the numerical approximation of a semilinear elliptic control problem
  publication-title: Comput Optim Appl
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  end-page: 122
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
– year: 2017
– volume: 161
  start-page: 237
  issue: 1‐2
  year: 2017
  end-page: 270
  article-title: An efficient inexact symmetric Gauss–Seidel based majorized ADMM for high‐dimensional convex composite conic programming
  publication-title: Math Program
– volume: 155
  start-page: 333
  issue: 1‐2
  year: 2016
  end-page: 373
  article-title: A Schur complement based semi‐proximal ADMM for convex quadratic conic programming and extensions
  publication-title: Math Program
– year: 2015
– volume: 4
  start-page: 75
  issue: 1
  year: 1994
  end-page: 83
  article-title: Some saddle‐function splitting methods for convex programming
  publication-title: Optim Methods Softw
– ident: e_1_2_8_2_1
  doi: 10.1007/s10589-005-4559-5
– ident: e_1_2_8_17_1
  doi: 10.1561/2200000016
– ident: e_1_2_8_12_1
  doi: 10.1137/S1052623400371569
– ident: e_1_2_8_13_1
  doi: 10.1007/s00041-008-9035-z
– volume-title: Optimization with PDE constraints
  year: 2009
  ident: e_1_2_8_40_1
  contributor:
    fullname: Hinze M
– volume: 9
  start-page: 41
  issue: 2
  year: 1975
  ident: e_1_2_8_21_1
  article-title: Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation‐dualité d'une classe de problémes de Dirichlet non linéaires
  publication-title: Rev Fr Automat Infor
  contributor:
    fullname: Glowinski R
– ident: e_1_2_8_39_1
– volume-title: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics
  year: 2005
  ident: e_1_2_8_33_1
  doi: 10.1093/oso/9780198528678.001.0001
  contributor:
    fullname: Elman HC
– ident: e_1_2_8_15_1
  doi: 10.1137/080716542
– ident: e_1_2_8_23_1
  doi: 10.1007/BF01581204
– ident: e_1_2_8_31_1
  doi: 10.1093/imanum/7.4.449
– ident: e_1_2_8_34_1
  doi: 10.1137/080727154
– ident: e_1_2_8_36_1
  doi: 10.1017/S0962492904000212
– volume: 34
  start-page: 125
  issue: 7
  year: 2008
  ident: e_1_2_8_35_1
  article-title: Chebyshev semi‐iteration in preconditioning for problems including the mass matrix
  publication-title: Electron T Numer Ana
  contributor:
    fullname: Wathen AJ
– ident: e_1_2_8_18_1
  doi: 10.1007/s10107-016-1007-5
– ident: e_1_2_8_37_1
  doi: 10.1002/nla.693
– ident: e_1_2_8_26_1
  doi: 10.1137/140964357
– ident: e_1_2_8_16_1
  doi: 10.1137/15M1021799
– volume-title: Technical Report
  year: 2008
  ident: e_1_2_8_42_1
  contributor:
    fullname: Chen L
– ident: e_1_2_8_5_1
– ident: e_1_2_8_10_1
– ident: e_1_2_8_27_1
– ident: e_1_2_8_19_1
  doi: 10.1007/s10107-014-0850-5
– ident: e_1_2_8_8_1
  doi: 10.1007/s10444-004-4142-0
– ident: e_1_2_8_41_1
  doi: 10.1080/10556788.2012.676046
– ident: e_1_2_8_7_1
  doi: 10.1023/A:1020576801966
– ident: e_1_2_8_20_1
  doi: 10.1137/110853996
– ident: e_1_2_8_38_1
  doi: 10.1090/S0025-5718-1988-0917816-8
– ident: e_1_2_8_25_1
  doi: 10.1007/s10107-014-0826-5
– ident: e_1_2_8_24_1
  doi: 10.1080/10556789408805578
– ident: e_1_2_8_28_1
  doi: 10.1137/140999025
– ident: e_1_2_8_14_1
  doi: 10.1137/110847081
– volume-title: An introduction to variational inequalities and their applications
  year: 1980
  ident: e_1_2_8_30_1
  contributor:
    fullname: Kinderlehrer D
– ident: e_1_2_8_32_1
  doi: 10.1093/imanum/drs001
– ident: e_1_2_8_3_1
  doi: 10.1016/0022-247X(73)90022-X
– ident: e_1_2_8_22_1
  doi: 10.1016/0898-1221(76)90003-1
– ident: e_1_2_8_6_1
  doi: 10.1137/S0363012903431608
– ident: e_1_2_8_9_1
  doi: 10.1080/10556780500094945
– ident: e_1_2_8_11_1
  doi: 10.1023/A:1015489608037
– ident: e_1_2_8_29_1
– ident: e_1_2_8_4_1
  doi: 10.1051/m2an/1979130403131
SSID ssj0006593
Score 2.272736
Snippet Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems...
Summary Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems...
Elliptic optimal control problems with pointwise box constraints on the control are considered. To numerically solve elliptic optimal control problems with...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Publisher
SubjectTerms Algorithms
Control theory
Discretization
Finite element method
inexact semiproximal ADMM
Iterative methods
Optimal control
semismooth Newton method
Title A two‐phase strategy for control constrained elliptic optimal control problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnla.2138
https://www.proquest.com/docview/2064580599
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfspMe_C1Op0QQb93aJMu641DHEDdEHAw8lDRLEJzbsB2iJ_8E_0b_El-adpuCIF6aHlJo8_Lyvq-8fAJwKo1SoZbca3DDPPRE44UYpz1f6JhTw01D243C3Z7o9PnVoD7IqyrtXhjHh5j_cLOeka3X1sFlnNSWoKEjWaUBs_t8A9aw1VwXtwtylHC8XUxufK_OaL3gzvq0Vjz4PRIt5OWySM2iTHsD7ov3c8Ulj9VZGlfV2w904_8-YBPWc_FJWm62bMGKHm_DWndObk124KZF0pfJ5_vH9AHjG0kcvPaVoLYleVm7bZPsaAk9JJbniauOIhO8PsnRvFN-Uk2yC_325d15x8tPXfAUo5hShujWqIskpjJUG7QWV4E2IhAxRnZjRF2bJtcSV4qQc-6bQGo0rmCSCYUGNmwPSuPJWO8D4UpThRlaU4WYteCN3zSaCqmkheQMaRlOCgtEUwfXiBxGmWawazs6ZagUpoly90oiail7oUXLlOEsG-Nfn4961y3bHvy14yGsoigKXZFfBUrp80wfofBI4-Nsin0Bi57WRw
link.rule.ids 315,783,787,1378,27937,27938,46307,46731
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3PS8MwFMcfcx7Ug7_F6dQK4q1bm6ZZh6ehjqnbENlgB6GkWYLg3IbtED35J_g3-pf40h_bFATx0vSQ0DYvL-_7QvoJwAlXQniSU7NClWOiJyrTwzhtWkwGlCiqKlL_KNxqs0aXXvfcXg7Osn9hEj7EdMFNe0Y8X2sH1wvS5Tlq6ICXiO14C7CIz3C0V17czdhRLCHuYnpjma5D3Iw8a5Fy1vJ7LJoJzHmZGseZ-hrcZ2-YbC95LE2ioCTefsAb__kJ67Ca6k-jlgyYDcjJ4SastKbw1nALbmtG9DL6fP8YP2CIM8KEX_tqoLw10p3tugzj0yVk39BIT5x4hDHC6xMfTCulh9WE29CtX3bOG2Z68IIpHIJZpYeejdKIYzZDpEKDUWFLxWwWYHBXirlSVankOFl4lFJL2VyifZnDHSbQxsrZgfxwNJS7YFAhicAkrSo8TFzwxqoqSRgXXHNy-qQAx5kJ_HHC1_ATkjKJede6dwpQzGzjpx4W-kSD9jxNlynAadzJv7b3282aLvf-WvEIlhqdVtNvXrVv9mEZNZKX7PkrQj56nsgD1CFRcBiPty_s1dpg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3dSsMwFMcPOkH0wm9xOrWCeNetTdMsuxzqmLqNIQ4GXpQsSxCc27Adolc-gs_ok3jSj20KgnjT9CKFNicn53_KyS8Ap0JLyZWgdplqz0ZP1DbHOG07TPUo0VSXldko3Gyxeoded_1uWlVp9sIkfIjpDzfjGfF6bRx83NelOWjoQBSJ6_FFWKIMZ6oRRLczdBRLgLuY3Ti27xE_A886pJQ9-T0UzfTlvEqNw0xtHe6zF0yqSx6Lk6hXlG8_2I3_-4INWEvVp1VNpssmLKjhFqw2p-jWcBvaVSt6GX2-f4wfMMBZYUKvfbVQ3FppXbtpw_hsCdW3DNATlx1pjfD6JAbTTulRNeEOdGqXd-d1Oz12wZYewZySo1-jMBKYyxCl0VxUukozl_UwtGvNfKUrVAlcKjil1NGuUGhd5gmPSbSw9nYhNxwN1R5YVCoiMUWrSI5pC944Fa0IE1IYSk6f5OEks0AwTugaQcJRJjHt2oxOHgqZaYLUv8KAGMweN2yZPJzFY_zr80GrUTXt_l87HsNy-6IWNK5aNwewggKJJwV_BchFzxN1iCIk6h3Fs-0LiCnZDw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two%E2%80%90phase+strategy+for+control+constrained+elliptic+optimal+control+problems&rft.jtitle=Numerical+linear+algebra+with+applications&rft.au=Song%2C+Xiao%E2%80%90Liang&rft.au=Yu%2C+Bo&rft.date=2018-08-01&rft.issn=1070-5325&rft.eissn=1099-1506&rft.volume=25&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Fnla.2138&rft.externalDBID=10.1002%252Fnla.2138&rft.externalDocID=NLA2138
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-5325&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-5325&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-5325&client=summon