A graded mesh refinement approach for boundary layer originated singularly perturbed time‐delayed parabolic convection diffusion problems
In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these...
Saved in:
Published in | Mathematical methods in the applied sciences Vol. 44; no. 16; pp. 12332 - 12350 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Freiburg
Wiley Subscription Services, Inc
15.11.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0170-4214 1099-1476 |
DOI | 10.1002/mma.7358 |
Cover
Abstract | In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these problems, it is well‐known that one cannot achieve a convergent solution to maintain the boundary layer dynamics, on a fixed number of uniform meshes irrespective of the arbitrary magnitude of perturbation parameter. Here, we consider an adaptive graded mesh generation algorithm, which is based on an entropy function in conjunction with the classical difference schemes, to resolve the layer behavior. The advantage of the present algorithm is that it does not require to have any information about the location of the layer. Several examples are presented to show the high performance of the proposed algorithm. |
---|---|
AbstractList | In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these problems, it is well‐known that one cannot achieve a convergent solution to maintain the boundary layer dynamics, on a fixed number of uniform meshes irrespective of the arbitrary magnitude of perturbation parameter. Here, we consider an adaptive graded mesh generation algorithm, which is based on an entropy function in conjunction with the classical difference schemes, to resolve the layer behavior. The advantage of the present algorithm is that it does not require to have any information about the location of the layer. Several examples are presented to show the high performance of the proposed algorithm. |
Author | Kumar, Kamalesh Das, Pratibhamoy Ramos, Higinio Podila, Pramod Chakravarthy |
Author_xml | – sequence: 1 givenname: Kamalesh orcidid: 0000-0002-2527-3836 surname: Kumar fullname: Kumar, Kamalesh organization: Visvesvaraya National Institute of Technology – sequence: 2 givenname: Pramod Chakravarthy orcidid: 0000-0002-5540-6302 surname: Podila fullname: Podila, Pramod Chakravarthy organization: Visvesvaraya National Institute of Technology – sequence: 3 givenname: Pratibhamoy orcidid: 0000-0001-5095-0360 surname: Das fullname: Das, Pratibhamoy email: pratibhamoy@iitp.ac.in organization: Indian Institute of Technology – sequence: 4 givenname: Higinio orcidid: 0000-0003-2791-6230 surname: Ramos fullname: Ramos, Higinio organization: Universidad de Salamanca |
BookMark | eNp1kMtKxDAUhoMoOF7ARwi4cdMxt2na5SDeQHGj65Imp2OkTWrSKrNz78Zn9ElMHVeiq4Tk-8_P-fbQtvMOEDqiZE4JYaddp-aSL4otNKOkLDMqZL6NZoRKkglGxS7ai_GJEFJQymbofYlXQRkwuIP4iAM01kEHbsCq74NX-hE3PuDaj86osMatWkPAPtiVdWpIsWjdamxVaNe4hzCMoU6Pg-3g8-3DwIQb3Kugat9ajbV3L6AH6x02tmnGON1ST91CFw_QTqPaCIc_5z56uDi_P7vKbu4ur8-WN5nmTBbZgkJNlaQAgvESmBaSF0wwTaSspdG8ELwUgnOS_nJtDOcNLYDkYFSTFwXfR8ebuan4eYQ4VE9-DC5VVmwhS0YkIXmiTjaUDj7GJKbqg-2Sg4qSalJdJdXVpDqh81-otoOathyCsu1fgWwTeLUtrP8dXN3eLr_5L1cmlUk |
CitedBy_id | crossref_primary_10_1007_s12190_021_01613_x crossref_primary_10_1002_mma_10070 crossref_primary_10_1016_j_camwa_2022_04_016 crossref_primary_10_1002_mma_10393 crossref_primary_10_1007_s12190_024_02226_w crossref_primary_10_1002_mma_10358 crossref_primary_10_1007_s12591_022_00616_9 crossref_primary_10_1002_mma_7369 crossref_primary_10_1016_j_apnum_2022_11_003 crossref_primary_10_1007_s40819_023_01543_1 crossref_primary_10_1080_10236198_2023_2256419 crossref_primary_10_1007_s13137_023_00222_z crossref_primary_10_1108_EC_09_2023_0534 crossref_primary_10_1080_10236198_2023_2300292 crossref_primary_10_1155_2024_9458277 crossref_primary_10_1108_EC_06_2022_0396 crossref_primary_10_1002_fld_5201 crossref_primary_10_1016_j_apnum_2023_10_003 crossref_primary_10_1002_mma_10461 crossref_primary_10_1002_mma_9460 crossref_primary_10_1002_mma_9381 crossref_primary_10_1002_mma_10464 crossref_primary_10_1002_mma_8721 crossref_primary_10_1186_s13104_024_07005_1 crossref_primary_10_1007_s12190_024_02173_6 crossref_primary_10_1140_epjs_s11734_024_01254_8 crossref_primary_10_1007_s12190_023_01900_9 crossref_primary_10_1016_j_matcom_2021_05_005 crossref_primary_10_1007_s12591_022_00593_z crossref_primary_10_1186_s13104_022_06202_0 crossref_primary_10_1002_cmm4_1201 crossref_primary_10_1007_s12591_023_00645_y crossref_primary_10_1016_j_apnum_2024_09_001 crossref_primary_10_1016_j_padiff_2024_100722 crossref_primary_10_3389_fams_2023_1255672 crossref_primary_10_1016_j_matcom_2022_02_018 crossref_primary_10_1007_s11144_024_02630_0 crossref_primary_10_1007_s12190_024_02203_3 crossref_primary_10_1007_s00500_023_09273_8 crossref_primary_10_1007_s40863_024_00424_9 crossref_primary_10_1007_s40010_023_00852_w crossref_primary_10_1007_s00500_023_08057_4 crossref_primary_10_1016_j_matcom_2022_03_025 crossref_primary_10_1007_s11075_021_01205_7 crossref_primary_10_1155_2024_4523591 crossref_primary_10_2298_FIL2407457Y crossref_primary_10_1007_s12190_023_01977_2 crossref_primary_10_1016_j_matcom_2021_10_029 crossref_primary_10_1515_nleng_2024_0074 crossref_primary_10_1007_s40314_022_01928_w crossref_primary_10_1016_j_cam_2022_114852 crossref_primary_10_1016_j_camwa_2023_09_008 crossref_primary_10_1080_10236198_2022_2062235 crossref_primary_10_1007_s11075_021_01147_0 crossref_primary_10_1134_S096554252403014X crossref_primary_10_1016_j_cam_2023_115441 crossref_primary_10_1142_S0219876222500359 crossref_primary_10_1016_j_heliyon_2022_e09579 crossref_primary_10_1007_s11144_023_02546_1 crossref_primary_10_1142_S0219876221420147 crossref_primary_10_1142_S0219876223500019 crossref_primary_10_1007_s12591_021_00577_5 crossref_primary_10_1142_S0219876224500403 crossref_primary_10_1142_S0219876222500554 crossref_primary_10_2139_ssrn_3978993 crossref_primary_10_1007_s40009_023_01237_8 |
Cites_doi | 10.1016/j.cam.2015.04.034 10.1002/cmm4.1047 10.1002/mma.5067 10.1080/00207160.2016.1154948 10.1090/S0025-5718-1988-0935072-1 10.1080/00207160.2017.1290439 10.1007/s11075-018-0557-4 10.1007/s12190-019-01313-7 10.1016/j.cam.2017.11.026 10.1080/10236198.2018.1468891 10.1137/0142036 10.1016/j.amc.2003.06.012 10.1080/00207160.2019.1673892 10.1007/s10543-015-0559-8 10.1016/j.cam.2006.05.032 10.1016/S0168-9274(99)00065-3 10.1016/0303-2647(91)90004-5 10.1007/s12591-015-0265-7 10.1016/j.apnum.2019.08.028 10.1016/j.amc.2007.08.089 10.1016/j.apm.2014.10.019 10.1080/10236198.2017.1420792 10.1016/S0377-0427(00)00260-0 10.1007/978-1-4612-4050-1 10.1017/CBO9780511791253 10.4208/nmtma.2014.1316nm 10.1016/j.cam.2020.113116 10.1016/j.cam.2020.113167 10.1007/s12591-017-0385-3 10.1007/s11075-016-0199-3 10.1515/nleng-2018-0075 10.1007/1-4020-3647-7 |
ContentType | Journal Article |
Copyright | 2021 John Wiley & Sons, Ltd. |
Copyright_xml | – notice: 2021 John Wiley & Sons, Ltd. |
DBID | AAYXX CITATION 7TB 8FD FR3 JQ2 KR7 |
DOI | 10.1002/mma.7358 |
DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts |
DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection |
DatabaseTitleList | Civil Engineering Abstracts CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Mathematics |
EISSN | 1099-1476 |
EndPage | 12350 |
ExternalDocumentID | 10_1002_mma_7358 MMA7358 |
Genre | article |
GrantInformation_xml | – fundername: Science and Engineering Research Board funderid: ECR/2017/001973 |
GroupedDBID | -~X .3N .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ABPVW ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CO8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ UB1 V2E W8V W99 WBKPD WH7 WIB WIH WIK WOHZO WQJ WRC WXSBR WYISQ XBAML XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAYXX AEYWJ AGHNM AGYGG AMVHM CITATION 7TB 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY FR3 JQ2 KR7 |
ID | FETCH-LOGICAL-c3278-51eb1a71ee4239e2c4738242c077b7dc3843944330e2c6cdd33f18e06edaf6883 |
IEDL.DBID | DR2 |
ISSN | 0170-4214 |
IngestDate | Fri Jul 25 11:57:47 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Tue Jul 01 00:19:14 EDT 2025 Wed Jan 22 16:29:02 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3278-51eb1a71ee4239e2c4738242c077b7dc3843944330e2c6cdd33f18e06edaf6883 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-5095-0360 0000-0003-2791-6230 0000-0002-5540-6302 0000-0002-2527-3836 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.7358 |
PQID | 2579207006 |
PQPubID | 1016386 |
PageCount | 19 |
ParticipantIDs | proquest_journals_2579207006 crossref_primary_10_1002_mma_7358 crossref_citationtrail_10_1002_mma_7358 wiley_primary_10_1002_mma_7358_MMA7358 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 November 2021 |
PublicationDateYYYYMMDD | 2021-11-15 |
PublicationDate_xml | – month: 11 year: 2021 text: 15 November 2021 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | Freiburg |
PublicationPlace_xml | – name: Freiburg |
PublicationTitle | Mathematical methods in the applied sciences |
PublicationYear | 2021 |
Publisher | Wiley Subscription Services, Inc |
Publisher_xml | – name: Wiley Subscription Services, Inc |
References | 2019; 8 2015; 39 2007; 205 2020; 63 2017; 25 2020; 148 2005; 20 1996 2006 2018; 41 1988; 51 2002 2016; 56 2018; 24 1969; 9 2017; 94 2017; 75 2019; 81 2015; 290 1991; 25 2001; 131 2004; 157 2001 2006; 23 2020; 97 2013; 10 2020 2000; 35 2019; 24 1982; 42 2019 2019; 27 2018; 95 1980 2014; 7 2008; 197 1998; 34 1988 e_1_2_9_30_1 Solonnikov VA (e_1_2_9_37_1) 1988 e_1_2_9_34_1 e_1_2_9_35_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Santra S (e_1_2_9_18_1) 2020 Cheng O (e_1_2_9_5_1) 2005; 20 Bakhvalov NS (e_1_2_9_32_1) 1969; 9 Kadalbajoo MK (e_1_2_9_10_1) 2006; 23 e_1_2_9_15_1 e_1_2_9_38_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_36_1 e_1_2_9_16_1 e_1_2_9_19_1 Das P (e_1_2_9_31_1) 2013; 10 e_1_2_9_42_1 e_1_2_9_20_1 Murray JD (e_1_2_9_4_1) 2001 e_1_2_9_40_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 Kadalbajoo MK (e_1_2_9_11_1) 2008; 197 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_3_1 e_1_2_9_2_1 Doolan EP (e_1_2_9_41_1) 1980 Andreev VB (e_1_2_9_39_1) 1998; 34 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 10 start-page: 1 issue: 1 year: 2013 end-page: 17 article-title: Numerical solution of a system of singularly perturbed convection‐diffusion boundary‐value problems using mesh equidistribution technique publication-title: Aust J Math Anal Appl – volume: 290 start-page: 16 year: 2015 end-page: 25 article-title: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems publication-title: J Comput Appl Math – volume: 8 start-page: 328 issue: 1 year: 2019 end-page: 339 article-title: An adaptive mesh method for time dependent singularly perturbed differential‐difference equations publication-title: Nonlinear Eng – volume: 25 start-page: 179 issue: 3 year: 1991 end-page: 191 article-title: Generalized Stein's model for anatomically complex neurons publication-title: BioSystems – year: 2020 article-title: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction diffusion problems with arbitrary small diffusion terms publication-title: J Comput Appl Math – volume: 25 start-page: 327 issue: 2 year: 2017 end-page: 346 article-title: Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments publication-title: Differ Equ Dyn Syst – volume: 9 start-page: 841 year: 1969 end-page: 859 article-title: On the optimization of the methods for solving boundary value problems in the presence of boundary layers publication-title: Zh Vychisl Mater Fiz – volume: 35 start-page: 87 year: 2000 end-page: 109 article-title: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem publication-title: Appl Numer Math – volume: 81 start-page: 465 year: 2019 end-page: 487 article-title: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh publication-title: Numer Algorithms – volume: 95 start-page: 490 issue: 3 year: 2018 end-page: 510 article-title: Second‐order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equations publication-title: Int J Comput Math – volume: 23 start-page: 180 year: 2006 end-page: 201 article-title: Parameter‐Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior publication-title: Electron Trans Numer Anal – volume: 63 start-page: 171 year: 2020 end-page: 195 article-title: Das a fourth‐order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics publication-title: J Appl Math Computing – year: 2001 – year: 1996 – volume: 97 start-page: 1994 issue: 10 year: 2020 end-page: 2014 article-title: A perturbation based approach for solving fractional order Volterra‐Fredholm integro differential equations and its convergence analysis publication-title: Int J Comput Math – year: 2019 article-title: Homotopy perturbation method for solving Caputo type fractional order Volterra‐Fredholm integro‐differential equations publication-title: Comput Math Methods – volume: 148 start-page: 79 year: 2020 end-page: 97 article-title: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature publication-title: Appl Numer Math – volume: 20 start-page: 135 issue: 2 year: 2005 end-page: 141 article-title: The nonlinear singularly perturbed problems for predator‐prey reaction diffusion equation publication-title: J Biomath – volume: 75 start-page: 113 issue: 1 year: 2017 end-page: 145 article-title: Parameter uniform numerical scheme for time dependent singularly perturbed convection‐diffusion‐reaction problems with general shift arguments publication-title: Numer Algorithms – volume: 51 start-page: 631 issue: 184 year: 1988 end-page: 657 article-title: Graded‐mesh difference schemes for singularly perturbed two‐point boundary value problems publication-title: Math Comput – volume: 24 start-page: 533 issue: 3 year: 2019 end-page: 544 article-title: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter publication-title: J Comput Appl Math – volume: 24 start-page: 452 issue: 3 year: 2018 end-page: 477 article-title: A higher order difference method for singularly perturbed parabolic partial differential equations publication-title: J Difference Equations and Applications – volume: 24 start-page: 1185 issue: 7 year: 2018 end-page: 1196 article-title: Numerical simulation and convergence analysis for a system of nonlinear singularly perturbed differential equations arising in population dynamics publication-title: J Difference Equations and Appl – volume: 131 start-page: 381 year: 2001 end-page: 405 article-title: On a uniformly accurate finite difference approximation of a singularly perturbed reaction diffusion problem using grid equidistribution publication-title: J Comput Appl Math – volume: 205 start-page: 552 year: 2007 end-page: 566 article-title: A parameter‐robust finite difference method for singularly perturbed delay parabolic partial differential equations publication-title: J Comput Appl Math – volume: 27 start-page: 91 year: 2019 end-page: 112 article-title: A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms publication-title: Differ Equ Dyn Syst – volume: 94 start-page: 902 issue: 5 year: 2017 end-page: 921 article-title: ‐ uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations publication-title: Int J Comput Math – volume: 34 start-page: 921 issue: 7 year: 1998 end-page: 928 article-title: On the convergence, uniform with respect to a small parameter, of monotone three point finite difference approximations publication-title: Differential Equa – year: 1980 – volume: 41 start-page: 5359 year: 2018 end-page: 5387 article-title: Numerical treatment of two‐parameter singularly perturbed parabolic convection diffusion problems with non‐smooth data publication-title: Math Methods Appl Sci – year: 2002 – year: 1988 – year: 2006 – year: 2020 article-title: Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity publication-title: Math Methods Appl Sci – volume: 56 start-page: 51 year: 2016 end-page: 76 article-title: Numerical solution of singularly perturbed parabolic convection‐diffusion‐ reaction problems with two small parameters publication-title: BIT Numerical Math – volume: 42 start-page: 502 year: 1982 end-page: 531 article-title: Singular perturbation analysis of boundary‐value problems for differential‐difference equations publication-title: SIAM J Appl Math – start-page: 113116 year: 2020 article-title: On the approximate solutions of a class of fractional order nonlinear Volterra integro‐differential initial value problems and boundary value problems of first kind and their convergence analysis publication-title: J Comput and Appl Math – volume: 39 start-page: 2081 year: 2015 end-page: 2091 article-title: An adaptive mesh strategy for singularly perturbed convection diffusion problems publication-title: Appl Math Model – volume: 157 start-page: 11 year: 2004 end-page: 28 article-title: Numerical analysis of singularly perturbed delay differential equations with layer behavior publication-title: J Comput Appl Math – volume: 7 start-page: 23 issue: 1 year: 2014 end-page: 40 article-title: A fitted numerov method for singularly perturbed parabolic partial differential equations with a small negative shift arising in control theory publication-title: Numer Math Theor Meth Appl – volume: 197 start-page: 692 year: 2008 end-page: 707 article-title: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations publication-title: Appl Math Comput – ident: e_1_2_9_26_1 doi: 10.1016/j.cam.2015.04.034 – ident: e_1_2_9_16_1 doi: 10.1002/cmm4.1047 – ident: e_1_2_9_20_1 doi: 10.1002/mma.5067 – ident: e_1_2_9_14_1 doi: 10.1080/00207160.2016.1154948 – ident: e_1_2_9_33_1 doi: 10.1090/S0025-5718-1988-0935072-1 – year: 2020 ident: e_1_2_9_18_1 article-title: Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity publication-title: Math Methods Appl Sci – volume-title: Mathematical Biology I: An Introduction year: 2001 ident: e_1_2_9_4_1 – ident: e_1_2_9_19_1 doi: 10.1080/00207160.2017.1290439 – volume-title: Linear and Quasi Linear Equations of Parabolic Type year: 1988 ident: e_1_2_9_37_1 – ident: e_1_2_9_12_1 doi: 10.1007/s11075-018-0557-4 – ident: e_1_2_9_22_1 doi: 10.1007/s12190-019-01313-7 – ident: e_1_2_9_42_1 doi: 10.1016/j.cam.2017.11.026 – ident: e_1_2_9_30_1 doi: 10.1080/10236198.2018.1468891 – volume: 9 start-page: 841 year: 1969 ident: e_1_2_9_32_1 article-title: On the optimization of the methods for solving boundary value problems in the presence of boundary layers publication-title: Zh Vychisl Mater Fiz – ident: e_1_2_9_7_1 doi: 10.1137/0142036 – ident: e_1_2_9_9_1 doi: 10.1016/j.amc.2003.06.012 – ident: e_1_2_9_17_1 doi: 10.1080/00207160.2019.1673892 – ident: e_1_2_9_38_1 doi: 10.1007/s10543-015-0559-8 – ident: e_1_2_9_13_1 doi: 10.1016/j.cam.2006.05.032 – ident: e_1_2_9_34_1 doi: 10.1016/S0168-9274(99)00065-3 – ident: e_1_2_9_2_1 doi: 10.1016/0303-2647(91)90004-5 – volume: 34 start-page: 921 issue: 7 year: 1998 ident: e_1_2_9_39_1 article-title: On the convergence, uniform with respect to a small parameter, of monotone three point finite difference approximations publication-title: Differential Equa – ident: e_1_2_9_24_1 doi: 10.1007/s12591-015-0265-7 – ident: e_1_2_9_28_1 doi: 10.1016/j.apnum.2019.08.028 – volume: 197 start-page: 692 year: 2008 ident: e_1_2_9_11_1 article-title: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.08.089 – volume-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers year: 1980 ident: e_1_2_9_41_1 – ident: e_1_2_9_36_1 doi: 10.1016/j.apm.2014.10.019 – ident: e_1_2_9_27_1 doi: 10.1080/10236198.2017.1420792 – ident: e_1_2_9_35_1 doi: 10.1016/S0377-0427(00)00260-0 – ident: e_1_2_9_6_1 doi: 10.1007/978-1-4612-4050-1 – ident: e_1_2_9_40_1 doi: 10.1017/CBO9780511791253 – ident: e_1_2_9_8_1 doi: 10.4208/nmtma.2014.1316nm – ident: e_1_2_9_15_1 doi: 10.1016/j.cam.2020.113116 – ident: e_1_2_9_29_1 doi: 10.1016/j.cam.2020.113167 – ident: e_1_2_9_21_1 doi: 10.1007/s12591-017-0385-3 – ident: e_1_2_9_23_1 doi: 10.1007/s11075-016-0199-3 – volume: 10 start-page: 1 issue: 1 year: 2013 ident: e_1_2_9_31_1 article-title: Numerical solution of a system of singularly perturbed convection‐diffusion boundary‐value problems using mesh equidistribution technique publication-title: Aust J Math Anal Appl – volume: 20 start-page: 135 issue: 2 year: 2005 ident: e_1_2_9_5_1 article-title: The nonlinear singularly perturbed problems for predator‐prey reaction diffusion equation publication-title: J Biomath – ident: e_1_2_9_25_1 doi: 10.1515/nleng-2018-0075 – ident: e_1_2_9_3_1 doi: 10.1007/1-4020-3647-7 – volume: 23 start-page: 180 year: 2006 ident: e_1_2_9_10_1 article-title: Parameter‐Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior publication-title: Electron Trans Numer Anal |
SSID | ssj0008112 |
Score | 2.5297441 |
Snippet | In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion... |
SourceID | proquest crossref wiley |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 12332 |
SubjectTerms | adaptive mesh algorithm algorithmic complexity Algorithms boundary layer phenomena Boundary layers Diffusion layers entropy graded mesh Grid refinement (mathematics) Mesh generation parabolic convection–diffusion problems Parabolic differential equations Parameters Partial differential equations Perturbation time delay |
Title | A graded mesh refinement approach for boundary layer originated singularly perturbed time‐delayed parabolic convection diffusion problems |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7358 https://www.proquest.com/docview/2579207006 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMetaSd2gG2AKBvISGjAIV1sx7F7rIBpQuoOiEmTOESO_QrS2jI17aE77b7L_kb-Et5znBYQSIhTlMT54cT2-8Z57_MYeylz0CYfQJYrUFnhtcVx0NvMQVmjvXRqABScPDorT8-LDxf6InlVUixMy4dYT7hRz4jjNXVwVzfHG2jodOr6RmmK8xWqJGz-u48bcpQV8Ucn0WGyQoqi487m8rg78FdLtJGXP4vUaGVOHrDP3f21ziWX_eWi7vvr39CN_1eBXXY_iU8-bFvLHtuC2T7bGa3Jrc0-20udveGvE5H6zUN2O-Rf5i5A4FNovnKsCl6cphV5hyTnqH15HVM0zVd84lDI85RzCyUtpwkJ8nedrPgVzNHK1biR0tp_v7kjTOUKVwlCXhOlmEdP-BhvwSl_y5Im9HjKfNM8Yucn7z-9Pc1SFofMK4mfqFqgOXBGABBrEKQvjLIoDHxuTG2CVzYG5yqV477Sh6DUWFjISwhuXFqrHrPt2bcZPGE8-DDQTigUlXgCK50BXYix0b4QQYLrsVfdG618QpxTpo1J1cKZZYXPvKJn3mMv1iWvWqzHH8ocdo2iSh27qXCEG0gcJvOyx47i2_3r8dVoNKTl038teMDuSfKYISdDfci2F_MlPEPJs6ifx8b9A9p6ASI |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tywE4ALuworCAkRCPQ7qJHceuOFXAqsBmD2hX2gNS5DhTkGjLqmkP5cSdC7-RX8KMk7SAQEKcoiR2Ej_G83ky8w3AQxmjNvEAo1ihilKvLa2D3kYOs5L0pVMD5ODk_Dgbnaavz_TZFjzrYmEafoi1wY0lI6zXLOBskD7YsIZOp65vlLYX4GJKOIN3Xi_ebrijbBJ-dTI_TJTKJO2YZ2N50NX8VRdtAObPMDXomcNr8K77wsa95GN_uSj7_vNv5I3_2YTrcLXFn2LYTJgd2MLZLlzJ1-St9S7stPJeiyctKfXTG_B1KN7PXYWVmGL9QVBb6O1sWRQdK7kg-CvKkKVpvhITR1hetGm3CNUKtkmwy-tkJc5xToqupIuc2f77l2_MVLmiU-YhL5moWARn-BByITiFy5JteqJNflPfhNPDlyfPR1GbyCHyStIuVSekEZxJEJluEKVPjbKEDXxsTGkqr2yIz1UqpnuZryqlxonFOMPKjTNr1R5szz7N8BaIylcD7RJFuJIeYKUzqNNkbLRPk0qi68HjbkgL37Kcc7KNSdHwM8uC-rzgPu_Bg3XJ84bZ4w9l9rtZUbSyXRe0yA0krZRx1oNHYXj_Wr_I8yEfb_9rwftwaXSSHxVHr47f3IHLkh1o2OdQ78P2Yr7Eu4SAFuW9MNN_AN3gBUE |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRA9FFpADRRYJMTj4NTe9Xo3xwiIyiMVQlSqxMFa706o1CREcXJIT9y58Bv5Jcys1wkgkBAny_b6sY-Z-Tye-YaxRyIFpdMeJKkEmeROGdSDziQWigrtpZU9oOTk4XFxdJK_PlWnMaqScmEafoi1w40kI-hrEvCZHx1uSEMnE9vVUpnL7EpeIJAgQPR-Qx1lsvCnk-hhklxkeUs8m4rD9spfTdEGX_6MUoOZGVxnH9sXbKJLzrvLRdV1F79xN_5fD26wnYg-eb9ZLrvsEkz32PZwTd1a77HdKO01fxopqZ_dZF_7_NPcevB8AvUZx67gw8mvyFtOco7gl1ehRtN8xccWkTyPRbcQ03LySFDA63jFZzBHM1fhQapr__3LN-KpXOEusZBXRFPMQyh8SLjgVMBlSR49Hkvf1LfYyeDlh-dHSSzjkDgp8BtVZWgPrM4AiGwQhMu1NIgMXKp1pb2TJmTnSpniucJ5L-UoM5AW4O2oMEbeZlvTz1PYZ9w731M2k4gq8QZGWA0qz0ZauTzzAmyHPWlntHSR45xKbYzLhp1ZlDjmJY15hz1ct5w1vB5_aHPQLooySnZdoorrCdSTadFhj8Ps_vX6cjjs0_bOvzZ8wK6-ezEo3746fnOXXRMUPUMBh-qAbS3mS7iH8GdR3Q_r_Afa2QPw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graded+mesh+refinement+approach+for+boundary+layer+originated+singularly+perturbed+time%E2%80%90delayed+parabolic+convection+diffusion+problems&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Kumar%2C+Kamalesh&rft.au=Podila%2C+Pramod+Chakravarthy&rft.au=Das%2C+Pratibhamoy&rft.au=Ramos%2C+Higinio&rft.date=2021-11-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=16&rft.spage=12332&rft.epage=12350&rft_id=info:doi/10.1002%2Fmma.7358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon |