A graded mesh refinement approach for boundary layer originated singularly perturbed time‐delayed parabolic convection diffusion problems

In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these...

Full description

Saved in:
Bibliographic Details
Published inMathematical methods in the applied sciences Vol. 44; no. 16; pp. 12332 - 12350
Main Authors Kumar, Kamalesh, Podila, Pramod Chakravarthy, Das, Pratibhamoy, Ramos, Higinio
Format Journal Article
LanguageEnglish
Published Freiburg Wiley Subscription Services, Inc 15.11.2021
Subjects
Online AccessGet full text
ISSN0170-4214
1099-1476
DOI10.1002/mma.7358

Cover

Abstract In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these problems, it is well‐known that one cannot achieve a convergent solution to maintain the boundary layer dynamics, on a fixed number of uniform meshes irrespective of the arbitrary magnitude of perturbation parameter. Here, we consider an adaptive graded mesh generation algorithm, which is based on an entropy function in conjunction with the classical difference schemes, to resolve the layer behavior. The advantage of the present algorithm is that it does not require to have any information about the location of the layer. Several examples are presented to show the high performance of the proposed algorithm.
AbstractList In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion parameter. The presence of this parameter leads to boundary layer phenomena. These problems are also known as singularly perturbed problems. For these problems, it is well‐known that one cannot achieve a convergent solution to maintain the boundary layer dynamics, on a fixed number of uniform meshes irrespective of the arbitrary magnitude of perturbation parameter. Here, we consider an adaptive graded mesh generation algorithm, which is based on an entropy function in conjunction with the classical difference schemes, to resolve the layer behavior. The advantage of the present algorithm is that it does not require to have any information about the location of the layer. Several examples are presented to show the high performance of the proposed algorithm.
Author Kumar, Kamalesh
Das, Pratibhamoy
Ramos, Higinio
Podila, Pramod Chakravarthy
Author_xml – sequence: 1
  givenname: Kamalesh
  orcidid: 0000-0002-2527-3836
  surname: Kumar
  fullname: Kumar, Kamalesh
  organization: Visvesvaraya National Institute of Technology
– sequence: 2
  givenname: Pramod Chakravarthy
  orcidid: 0000-0002-5540-6302
  surname: Podila
  fullname: Podila, Pramod Chakravarthy
  organization: Visvesvaraya National Institute of Technology
– sequence: 3
  givenname: Pratibhamoy
  orcidid: 0000-0001-5095-0360
  surname: Das
  fullname: Das, Pratibhamoy
  email: pratibhamoy@iitp.ac.in
  organization: Indian Institute of Technology
– sequence: 4
  givenname: Higinio
  orcidid: 0000-0003-2791-6230
  surname: Ramos
  fullname: Ramos, Higinio
  organization: Universidad de Salamanca
BookMark eNp1kMtKxDAUhoMoOF7ARwi4cdMxt2na5SDeQHGj65Imp2OkTWrSKrNz78Zn9ElMHVeiq4Tk-8_P-fbQtvMOEDqiZE4JYaddp-aSL4otNKOkLDMqZL6NZoRKkglGxS7ai_GJEFJQymbofYlXQRkwuIP4iAM01kEHbsCq74NX-hE3PuDaj86osMatWkPAPtiVdWpIsWjdamxVaNe4hzCMoU6Pg-3g8-3DwIQb3Kugat9ajbV3L6AH6x02tmnGON1ST91CFw_QTqPaCIc_5z56uDi_P7vKbu4ur8-WN5nmTBbZgkJNlaQAgvESmBaSF0wwTaSspdG8ELwUgnOS_nJtDOcNLYDkYFSTFwXfR8ebuan4eYQ4VE9-DC5VVmwhS0YkIXmiTjaUDj7GJKbqg-2Sg4qSalJdJdXVpDqh81-otoOathyCsu1fgWwTeLUtrP8dXN3eLr_5L1cmlUk
CitedBy_id crossref_primary_10_1007_s12190_021_01613_x
crossref_primary_10_1002_mma_10070
crossref_primary_10_1016_j_camwa_2022_04_016
crossref_primary_10_1002_mma_10393
crossref_primary_10_1007_s12190_024_02226_w
crossref_primary_10_1002_mma_10358
crossref_primary_10_1007_s12591_022_00616_9
crossref_primary_10_1002_mma_7369
crossref_primary_10_1016_j_apnum_2022_11_003
crossref_primary_10_1007_s40819_023_01543_1
crossref_primary_10_1080_10236198_2023_2256419
crossref_primary_10_1007_s13137_023_00222_z
crossref_primary_10_1108_EC_09_2023_0534
crossref_primary_10_1080_10236198_2023_2300292
crossref_primary_10_1155_2024_9458277
crossref_primary_10_1108_EC_06_2022_0396
crossref_primary_10_1002_fld_5201
crossref_primary_10_1016_j_apnum_2023_10_003
crossref_primary_10_1002_mma_10461
crossref_primary_10_1002_mma_9460
crossref_primary_10_1002_mma_9381
crossref_primary_10_1002_mma_10464
crossref_primary_10_1002_mma_8721
crossref_primary_10_1186_s13104_024_07005_1
crossref_primary_10_1007_s12190_024_02173_6
crossref_primary_10_1140_epjs_s11734_024_01254_8
crossref_primary_10_1007_s12190_023_01900_9
crossref_primary_10_1016_j_matcom_2021_05_005
crossref_primary_10_1007_s12591_022_00593_z
crossref_primary_10_1186_s13104_022_06202_0
crossref_primary_10_1002_cmm4_1201
crossref_primary_10_1007_s12591_023_00645_y
crossref_primary_10_1016_j_apnum_2024_09_001
crossref_primary_10_1016_j_padiff_2024_100722
crossref_primary_10_3389_fams_2023_1255672
crossref_primary_10_1016_j_matcom_2022_02_018
crossref_primary_10_1007_s11144_024_02630_0
crossref_primary_10_1007_s12190_024_02203_3
crossref_primary_10_1007_s00500_023_09273_8
crossref_primary_10_1007_s40863_024_00424_9
crossref_primary_10_1007_s40010_023_00852_w
crossref_primary_10_1007_s00500_023_08057_4
crossref_primary_10_1016_j_matcom_2022_03_025
crossref_primary_10_1007_s11075_021_01205_7
crossref_primary_10_1155_2024_4523591
crossref_primary_10_2298_FIL2407457Y
crossref_primary_10_1007_s12190_023_01977_2
crossref_primary_10_1016_j_matcom_2021_10_029
crossref_primary_10_1515_nleng_2024_0074
crossref_primary_10_1007_s40314_022_01928_w
crossref_primary_10_1016_j_cam_2022_114852
crossref_primary_10_1016_j_camwa_2023_09_008
crossref_primary_10_1080_10236198_2022_2062235
crossref_primary_10_1007_s11075_021_01147_0
crossref_primary_10_1134_S096554252403014X
crossref_primary_10_1016_j_cam_2023_115441
crossref_primary_10_1142_S0219876222500359
crossref_primary_10_1016_j_heliyon_2022_e09579
crossref_primary_10_1007_s11144_023_02546_1
crossref_primary_10_1142_S0219876221420147
crossref_primary_10_1142_S0219876223500019
crossref_primary_10_1007_s12591_021_00577_5
crossref_primary_10_1142_S0219876224500403
crossref_primary_10_1142_S0219876222500554
crossref_primary_10_2139_ssrn_3978993
crossref_primary_10_1007_s40009_023_01237_8
Cites_doi 10.1016/j.cam.2015.04.034
10.1002/cmm4.1047
10.1002/mma.5067
10.1080/00207160.2016.1154948
10.1090/S0025-5718-1988-0935072-1
10.1080/00207160.2017.1290439
10.1007/s11075-018-0557-4
10.1007/s12190-019-01313-7
10.1016/j.cam.2017.11.026
10.1080/10236198.2018.1468891
10.1137/0142036
10.1016/j.amc.2003.06.012
10.1080/00207160.2019.1673892
10.1007/s10543-015-0559-8
10.1016/j.cam.2006.05.032
10.1016/S0168-9274(99)00065-3
10.1016/0303-2647(91)90004-5
10.1007/s12591-015-0265-7
10.1016/j.apnum.2019.08.028
10.1016/j.amc.2007.08.089
10.1016/j.apm.2014.10.019
10.1080/10236198.2017.1420792
10.1016/S0377-0427(00)00260-0
10.1007/978-1-4612-4050-1
10.1017/CBO9780511791253
10.4208/nmtma.2014.1316nm
10.1016/j.cam.2020.113116
10.1016/j.cam.2020.113167
10.1007/s12591-017-0385-3
10.1007/s11075-016-0199-3
10.1515/nleng-2018-0075
10.1007/1-4020-3647-7
ContentType Journal Article
Copyright 2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7TB
8FD
FR3
JQ2
KR7
DOI 10.1002/mma.7358
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-1476
EndPage 12350
ExternalDocumentID 10_1002_mma_7358
MMA7358
Genre article
GrantInformation_xml – fundername: Science and Engineering Research Board
  funderid: ECR/2017/001973
GroupedDBID -~X
.3N
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ABPVW
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CO8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WH7
WIB
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XBAML
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAYXX
AEYWJ
AGHNM
AGYGG
AMVHM
CITATION
7TB
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
FR3
JQ2
KR7
ID FETCH-LOGICAL-c3278-51eb1a71ee4239e2c4738242c077b7dc3843944330e2c6cdd33f18e06edaf6883
IEDL.DBID DR2
ISSN 0170-4214
IngestDate Fri Jul 25 11:57:47 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Tue Jul 01 00:19:14 EDT 2025
Wed Jan 22 16:29:02 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3278-51eb1a71ee4239e2c4738242c077b7dc3843944330e2c6cdd33f18e06edaf6883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5095-0360
0000-0003-2791-6230
0000-0002-5540-6302
0000-0002-2527-3836
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mma.7358
PQID 2579207006
PQPubID 1016386
PageCount 19
ParticipantIDs proquest_journals_2579207006
crossref_primary_10_1002_mma_7358
crossref_citationtrail_10_1002_mma_7358
wiley_primary_10_1002_mma_7358_MMA7358
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 November 2021
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 15 November 2021
  day: 15
PublicationDecade 2020
PublicationPlace Freiburg
PublicationPlace_xml – name: Freiburg
PublicationTitle Mathematical methods in the applied sciences
PublicationYear 2021
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 8
2015; 39
2007; 205
2020; 63
2017; 25
2020; 148
2005; 20
1996
2006
2018; 41
1988; 51
2002
2016; 56
2018; 24
1969; 9
2017; 94
2017; 75
2019; 81
2015; 290
1991; 25
2001; 131
2004; 157
2001
2006; 23
2020; 97
2013; 10
2020
2000; 35
2019; 24
1982; 42
2019
2019; 27
2018; 95
1980
2014; 7
2008; 197
1998; 34
1988
e_1_2_9_30_1
Solonnikov VA (e_1_2_9_37_1) 1988
e_1_2_9_34_1
e_1_2_9_35_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Santra S (e_1_2_9_18_1) 2020
Cheng O (e_1_2_9_5_1) 2005; 20
Bakhvalov NS (e_1_2_9_32_1) 1969; 9
Kadalbajoo MK (e_1_2_9_10_1) 2006; 23
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_16_1
e_1_2_9_19_1
Das P (e_1_2_9_31_1) 2013; 10
e_1_2_9_42_1
e_1_2_9_20_1
Murray JD (e_1_2_9_4_1) 2001
e_1_2_9_40_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
Kadalbajoo MK (e_1_2_9_11_1) 2008; 197
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_3_1
e_1_2_9_2_1
Doolan EP (e_1_2_9_41_1) 1980
Andreev VB (e_1_2_9_39_1) 1998; 34
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 10
  start-page: 1
  issue: 1
  year: 2013
  end-page: 17
  article-title: Numerical solution of a system of singularly perturbed convection‐diffusion boundary‐value problems using mesh equidistribution technique
  publication-title: Aust J Math Anal Appl
– volume: 290
  start-page: 16
  year: 2015
  end-page: 25
  article-title: Comparison of a priori and a posteriori meshes for singularly perturbed nonlinear parameterized problems
  publication-title: J Comput Appl Math
– volume: 8
  start-page: 328
  issue: 1
  year: 2019
  end-page: 339
  article-title: An adaptive mesh method for time dependent singularly perturbed differential‐difference equations
  publication-title: Nonlinear Eng
– volume: 25
  start-page: 179
  issue: 3
  year: 1991
  end-page: 191
  article-title: Generalized Stein's model for anatomically complex neurons
  publication-title: BioSystems
– year: 2020
  article-title: A moving mesh refinement based optimal accurate uniformly convergent computational method for a parabolic system of boundary layer originated reaction diffusion problems with arbitrary small diffusion terms
  publication-title: J Comput Appl Math
– volume: 25
  start-page: 327
  issue: 2
  year: 2017
  end-page: 346
  article-title: Numerical treatment for the class of time dependent singularly perturbed parabolic problems with general shift arguments
  publication-title: Differ Equ Dyn Syst
– volume: 9
  start-page: 841
  year: 1969
  end-page: 859
  article-title: On the optimization of the methods for solving boundary value problems in the presence of boundary layers
  publication-title: Zh Vychisl Mater Fiz
– volume: 35
  start-page: 87
  year: 2000
  end-page: 109
  article-title: Convergence analysis of finite difference approximations on equidistribted grids to a singularly perturbed boundary value problem
  publication-title: Appl Numer Math
– volume: 81
  start-page: 465
  year: 2019
  end-page: 487
  article-title: An a posteriori based convergence analysis for a nonlinear singularly perturbed system of delay differential equations on an adaptive mesh
  publication-title: Numer Algorithms
– volume: 95
  start-page: 490
  issue: 3
  year: 2018
  end-page: 510
  article-title: Second‐order uniformly convergent numerical method for singularly perturbed delay parabolic partial differential equations
  publication-title: Int J Comput Math
– volume: 23
  start-page: 180
  year: 2006
  end-page: 201
  article-title: Parameter‐Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior
  publication-title: Electron Trans Numer Anal
– volume: 63
  start-page: 171
  year: 2020
  end-page: 195
  article-title: Das a fourth‐order numerical scheme for singularly perturbed delay parabolic problem arising in population dynamics
  publication-title: J Appl Math Computing
– year: 2001
– year: 1996
– volume: 97
  start-page: 1994
  issue: 10
  year: 2020
  end-page: 2014
  article-title: A perturbation based approach for solving fractional order Volterra‐Fredholm integro differential equations and its convergence analysis
  publication-title: Int J Comput Math
– year: 2019
  article-title: Homotopy perturbation method for solving Caputo type fractional order Volterra‐Fredholm integro‐differential equations
  publication-title: Comput Math Methods
– volume: 148
  start-page: 79
  year: 2020
  end-page: 97
  article-title: Higher order accurate approximations on equidistributed meshes for boundary layer originated mixed type reaction diffusion systems with multiple scale nature
  publication-title: Appl Numer Math
– volume: 20
  start-page: 135
  issue: 2
  year: 2005
  end-page: 141
  article-title: The nonlinear singularly perturbed problems for predator‐prey reaction diffusion equation
  publication-title: J Biomath
– volume: 75
  start-page: 113
  issue: 1
  year: 2017
  end-page: 145
  article-title: Parameter uniform numerical scheme for time dependent singularly perturbed convection‐diffusion‐reaction problems with general shift arguments
  publication-title: Numer Algorithms
– volume: 51
  start-page: 631
  issue: 184
  year: 1988
  end-page: 657
  article-title: Graded‐mesh difference schemes for singularly perturbed two‐point boundary value problems
  publication-title: Math Comput
– volume: 24
  start-page: 533
  issue: 3
  year: 2019
  end-page: 544
  article-title: Parameter uniform optimal order numerical approximation of a class of singularly perturbed system of reaction diffusion problems involving a small perturbation parameter
  publication-title: J Comput Appl Math
– volume: 24
  start-page: 452
  issue: 3
  year: 2018
  end-page: 477
  article-title: A higher order difference method for singularly perturbed parabolic partial differential equations
  publication-title: J Difference Equations and Applications
– volume: 24
  start-page: 1185
  issue: 7
  year: 2018
  end-page: 1196
  article-title: Numerical simulation and convergence analysis for a system of nonlinear singularly perturbed differential equations arising in population dynamics
  publication-title: J Difference Equations and Appl
– volume: 131
  start-page: 381
  year: 2001
  end-page: 405
  article-title: On a uniformly accurate finite difference approximation of a singularly perturbed reaction diffusion problem using grid equidistribution
  publication-title: J Comput Appl Math
– volume: 205
  start-page: 552
  year: 2007
  end-page: 566
  article-title: A parameter‐robust finite difference method for singularly perturbed delay parabolic partial differential equations
  publication-title: J Comput Appl Math
– volume: 27
  start-page: 91
  year: 2019
  end-page: 112
  article-title: A numerical method for solving boundary and interior layers dominated parabolic problems with discontinuous convection coefficient and source terms
  publication-title: Differ Equ Dyn Syst
– volume: 94
  start-page: 902
  issue: 5
  year: 2017
  end-page: 921
  article-title: ‐ uniformly convergent numerical scheme for singularly perturbed delay parabolic partial differential equations
  publication-title: Int J Comput Math
– volume: 34
  start-page: 921
  issue: 7
  year: 1998
  end-page: 928
  article-title: On the convergence, uniform with respect to a small parameter, of monotone three point finite difference approximations
  publication-title: Differential Equa
– year: 1980
– volume: 41
  start-page: 5359
  year: 2018
  end-page: 5387
  article-title: Numerical treatment of two‐parameter singularly perturbed parabolic convection diffusion problems with non‐smooth data
  publication-title: Math Methods Appl Sci
– year: 2002
– year: 1988
– year: 2006
– year: 2020
  article-title: Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity
  publication-title: Math Methods Appl Sci
– volume: 56
  start-page: 51
  year: 2016
  end-page: 76
  article-title: Numerical solution of singularly perturbed parabolic convection‐diffusion‐ reaction problems with two small parameters
  publication-title: BIT Numerical Math
– volume: 42
  start-page: 502
  year: 1982
  end-page: 531
  article-title: Singular perturbation analysis of boundary‐value problems for differential‐difference equations
  publication-title: SIAM J Appl Math
– start-page: 113116
  year: 2020
  article-title: On the approximate solutions of a class of fractional order nonlinear Volterra integro‐differential initial value problems and boundary value problems of first kind and their convergence analysis
  publication-title: J Comput and Appl Math
– volume: 39
  start-page: 2081
  year: 2015
  end-page: 2091
  article-title: An adaptive mesh strategy for singularly perturbed convection diffusion problems
  publication-title: Appl Math Model
– volume: 157
  start-page: 11
  year: 2004
  end-page: 28
  article-title: Numerical analysis of singularly perturbed delay differential equations with layer behavior
  publication-title: J Comput Appl Math
– volume: 7
  start-page: 23
  issue: 1
  year: 2014
  end-page: 40
  article-title: A fitted numerov method for singularly perturbed parabolic partial differential equations with a small negative shift arising in control theory
  publication-title: Numer Math Theor Meth Appl
– volume: 197
  start-page: 692
  year: 2008
  end-page: 707
  article-title: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations
  publication-title: Appl Math Comput
– ident: e_1_2_9_26_1
  doi: 10.1016/j.cam.2015.04.034
– ident: e_1_2_9_16_1
  doi: 10.1002/cmm4.1047
– ident: e_1_2_9_20_1
  doi: 10.1002/mma.5067
– ident: e_1_2_9_14_1
  doi: 10.1080/00207160.2016.1154948
– ident: e_1_2_9_33_1
  doi: 10.1090/S0025-5718-1988-0935072-1
– year: 2020
  ident: e_1_2_9_18_1
  article-title: Analysis of the L1 scheme for a time fractional parabolic–elliptic problem involving weak singularity
  publication-title: Math Methods Appl Sci
– volume-title: Mathematical Biology I: An Introduction
  year: 2001
  ident: e_1_2_9_4_1
– ident: e_1_2_9_19_1
  doi: 10.1080/00207160.2017.1290439
– volume-title: Linear and Quasi Linear Equations of Parabolic Type
  year: 1988
  ident: e_1_2_9_37_1
– ident: e_1_2_9_12_1
  doi: 10.1007/s11075-018-0557-4
– ident: e_1_2_9_22_1
  doi: 10.1007/s12190-019-01313-7
– ident: e_1_2_9_42_1
  doi: 10.1016/j.cam.2017.11.026
– ident: e_1_2_9_30_1
  doi: 10.1080/10236198.2018.1468891
– volume: 9
  start-page: 841
  year: 1969
  ident: e_1_2_9_32_1
  article-title: On the optimization of the methods for solving boundary value problems in the presence of boundary layers
  publication-title: Zh Vychisl Mater Fiz
– ident: e_1_2_9_7_1
  doi: 10.1137/0142036
– ident: e_1_2_9_9_1
  doi: 10.1016/j.amc.2003.06.012
– ident: e_1_2_9_17_1
  doi: 10.1080/00207160.2019.1673892
– ident: e_1_2_9_38_1
  doi: 10.1007/s10543-015-0559-8
– ident: e_1_2_9_13_1
  doi: 10.1016/j.cam.2006.05.032
– ident: e_1_2_9_34_1
  doi: 10.1016/S0168-9274(99)00065-3
– ident: e_1_2_9_2_1
  doi: 10.1016/0303-2647(91)90004-5
– volume: 34
  start-page: 921
  issue: 7
  year: 1998
  ident: e_1_2_9_39_1
  article-title: On the convergence, uniform with respect to a small parameter, of monotone three point finite difference approximations
  publication-title: Differential Equa
– ident: e_1_2_9_24_1
  doi: 10.1007/s12591-015-0265-7
– ident: e_1_2_9_28_1
  doi: 10.1016/j.apnum.2019.08.028
– volume: 197
  start-page: 692
  year: 2008
  ident: e_1_2_9_11_1
  article-title: A numerical method based on finite difference for boundary value problems for singularly perturbed delay differential equations
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.08.089
– volume-title: Uniform Numerical Methods for Problems with Initial and Boundary Layers
  year: 1980
  ident: e_1_2_9_41_1
– ident: e_1_2_9_36_1
  doi: 10.1016/j.apm.2014.10.019
– ident: e_1_2_9_27_1
  doi: 10.1080/10236198.2017.1420792
– ident: e_1_2_9_35_1
  doi: 10.1016/S0377-0427(00)00260-0
– ident: e_1_2_9_6_1
  doi: 10.1007/978-1-4612-4050-1
– ident: e_1_2_9_40_1
  doi: 10.1017/CBO9780511791253
– ident: e_1_2_9_8_1
  doi: 10.4208/nmtma.2014.1316nm
– ident: e_1_2_9_15_1
  doi: 10.1016/j.cam.2020.113116
– ident: e_1_2_9_29_1
  doi: 10.1016/j.cam.2020.113167
– ident: e_1_2_9_21_1
  doi: 10.1007/s12591-017-0385-3
– ident: e_1_2_9_23_1
  doi: 10.1007/s11075-016-0199-3
– volume: 10
  start-page: 1
  issue: 1
  year: 2013
  ident: e_1_2_9_31_1
  article-title: Numerical solution of a system of singularly perturbed convection‐diffusion boundary‐value problems using mesh equidistribution technique
  publication-title: Aust J Math Anal Appl
– volume: 20
  start-page: 135
  issue: 2
  year: 2005
  ident: e_1_2_9_5_1
  article-title: The nonlinear singularly perturbed problems for predator‐prey reaction diffusion equation
  publication-title: J Biomath
– ident: e_1_2_9_25_1
  doi: 10.1515/nleng-2018-0075
– ident: e_1_2_9_3_1
  doi: 10.1007/1-4020-3647-7
– volume: 23
  start-page: 180
  year: 2006
  ident: e_1_2_9_10_1
  article-title: Parameter‐Uniform fitted mesh method for singularly perturbed delay differential equations with layer behavior
  publication-title: Electron Trans Numer Anal
SSID ssj0008112
Score 2.5297441
Snippet In this work, we consider a graded mesh refinement algorithm for solving time‐delayed parabolic partial differential equations with a small diffusion...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12332
SubjectTerms adaptive mesh algorithm
algorithmic complexity
Algorithms
boundary layer phenomena
Boundary layers
Diffusion layers
entropy
graded mesh
Grid refinement (mathematics)
Mesh generation
parabolic convection–diffusion problems
Parabolic differential equations
Parameters
Partial differential equations
Perturbation
time delay
Title A graded mesh refinement approach for boundary layer originated singularly perturbed time‐delayed parabolic convection diffusion problems
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmma.7358
https://www.proquest.com/docview/2579207006
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ3Pb9MwFMetaSd2gG2AKBvISGjAIV1sx7F7rIBpQuoOiEmTOESO_QrS2jI17aE77b7L_kb-Et5znBYQSIhTlMT54cT2-8Z57_MYeylz0CYfQJYrUFnhtcVx0NvMQVmjvXRqABScPDorT8-LDxf6InlVUixMy4dYT7hRz4jjNXVwVzfHG2jodOr6RmmK8xWqJGz-u48bcpQV8Ucn0WGyQoqi487m8rg78FdLtJGXP4vUaGVOHrDP3f21ziWX_eWi7vvr39CN_1eBXXY_iU8-bFvLHtuC2T7bGa3Jrc0-20udveGvE5H6zUN2O-Rf5i5A4FNovnKsCl6cphV5hyTnqH15HVM0zVd84lDI85RzCyUtpwkJ8nedrPgVzNHK1biR0tp_v7kjTOUKVwlCXhOlmEdP-BhvwSl_y5Im9HjKfNM8Yucn7z-9Pc1SFofMK4mfqFqgOXBGABBrEKQvjLIoDHxuTG2CVzYG5yqV477Sh6DUWFjISwhuXFqrHrPt2bcZPGE8-DDQTigUlXgCK50BXYix0b4QQYLrsVfdG618QpxTpo1J1cKZZYXPvKJn3mMv1iWvWqzHH8ocdo2iSh27qXCEG0gcJvOyx47i2_3r8dVoNKTl038teMDuSfKYISdDfci2F_MlPEPJs6ifx8b9A9p6ASI
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB4tywE4ALuworCAkRCPQ7qJHceuOFXAqsBmD2hX2gNS5DhTkGjLqmkP5cSdC7-RX8KMk7SAQEKcoiR2Ej_G83ky8w3AQxmjNvEAo1ihilKvLa2D3kYOs5L0pVMD5ODk_Dgbnaavz_TZFjzrYmEafoi1wY0lI6zXLOBskD7YsIZOp65vlLYX4GJKOIN3Xi_ebrijbBJ-dTI_TJTKJO2YZ2N50NX8VRdtAObPMDXomcNr8K77wsa95GN_uSj7_vNv5I3_2YTrcLXFn2LYTJgd2MLZLlzJ1-St9S7stPJeiyctKfXTG_B1KN7PXYWVmGL9QVBb6O1sWRQdK7kg-CvKkKVpvhITR1hetGm3CNUKtkmwy-tkJc5xToqupIuc2f77l2_MVLmiU-YhL5moWARn-BByITiFy5JteqJNflPfhNPDlyfPR1GbyCHyStIuVSekEZxJEJluEKVPjbKEDXxsTGkqr2yIz1UqpnuZryqlxonFOMPKjTNr1R5szz7N8BaIylcD7RJFuJIeYKUzqNNkbLRPk0qi68HjbkgL37Kcc7KNSdHwM8uC-rzgPu_Bg3XJ84bZ4w9l9rtZUbSyXRe0yA0krZRx1oNHYXj_Wr_I8yEfb_9rwftwaXSSHxVHr47f3IHLkh1o2OdQ78P2Yr7Eu4SAFuW9MNN_AN3gBUE
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BkRA9FFpADRRYJMTj4NTe9Xo3xwiIyiMVQlSqxMFa706o1CREcXJIT9y58Bv5Jcys1wkgkBAny_b6sY-Z-Tye-YaxRyIFpdMeJKkEmeROGdSDziQWigrtpZU9oOTk4XFxdJK_PlWnMaqScmEafoi1w40kI-hrEvCZHx1uSEMnE9vVUpnL7EpeIJAgQPR-Qx1lsvCnk-hhklxkeUs8m4rD9spfTdEGX_6MUoOZGVxnH9sXbKJLzrvLRdV1F79xN_5fD26wnYg-eb9ZLrvsEkz32PZwTd1a77HdKO01fxopqZ_dZF_7_NPcevB8AvUZx67gw8mvyFtOco7gl1ehRtN8xccWkTyPRbcQ03LySFDA63jFZzBHM1fhQapr__3LN-KpXOEusZBXRFPMQyh8SLjgVMBlSR49Hkvf1LfYyeDlh-dHSSzjkDgp8BtVZWgPrM4AiGwQhMu1NIgMXKp1pb2TJmTnSpniucJ5L-UoM5AW4O2oMEbeZlvTz1PYZ9w731M2k4gq8QZGWA0qz0ZauTzzAmyHPWlntHSR45xKbYzLhp1ZlDjmJY15hz1ct5w1vB5_aHPQLooySnZdoorrCdSTadFhj8Ps_vX6cjjs0_bOvzZ8wK6-ezEo3746fnOXXRMUPUMBh-qAbS3mS7iH8GdR3Q_r_Afa2QPw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+graded+mesh+refinement+approach+for+boundary+layer+originated+singularly+perturbed+time%E2%80%90delayed+parabolic+convection+diffusion+problems&rft.jtitle=Mathematical+methods+in+the+applied+sciences&rft.au=Kumar%2C+Kamalesh&rft.au=Podila%2C+Pramod+Chakravarthy&rft.au=Das%2C+Pratibhamoy&rft.au=Ramos%2C+Higinio&rft.date=2021-11-15&rft.issn=0170-4214&rft.eissn=1099-1476&rft.volume=44&rft.issue=16&rft.spage=12332&rft.epage=12350&rft_id=info:doi/10.1002%2Fmma.7358&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mma_7358
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0170-4214&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0170-4214&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0170-4214&client=summon